Properties

Label 50.26.b.h
Level $50$
Weight $26$
Character orbit 50.b
Analytic conductor $197.998$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [50,26,Mod(49,50)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(50, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 26, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("50.49");
 
S:= CuspForms(chi, 26);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 26 \)
Character orbit: \([\chi]\) \(=\) 50.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(197.998389976\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 5211818408605 x^{8} + \cdots + 28\!\cdots\!01 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{38}\cdot 3^{10}\cdot 5^{24} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{9}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4096 \beta_{5} q^{2} + (\beta_{6} - 144799 \beta_{5}) q^{3} - 16777216 q^{4} + (4096 \beta_1 + 593096704) q^{6} + ( - \beta_{7} + \cdots + 9843777238 \beta_{5}) q^{7} - 68719476736 \beta_{5} q^{8}+ \cdots + ( - 71837333568 \beta_{4} + \cdots + 46\!\cdots\!34) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 167772160 q^{4} + 5930967040 q^{6} - 1950750722780 q^{9} - 17674067967630 q^{11} - 403201115668480 q^{14} + 28\!\cdots\!60 q^{16} - 13\!\cdots\!50 q^{19} - 11\!\cdots\!80 q^{21} - 99\!\cdots\!40 q^{24}+ \cdots + 46\!\cdots\!40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{10} + 5211818408605 x^{8} + \cdots + 28\!\cdots\!01 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( - 1161020069065 \nu^{8} + \cdots - 24\!\cdots\!69 ) / 16\!\cdots\!76 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 25\!\cdots\!31 \nu^{8} + \cdots + 89\!\cdots\!63 ) / 10\!\cdots\!28 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 21\!\cdots\!03 \nu^{8} + \cdots + 20\!\cdots\!59 ) / 82\!\cdots\!96 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 26\!\cdots\!39 \nu^{8} + \cdots - 55\!\cdots\!47 ) / 42\!\cdots\!92 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 15\!\cdots\!65 \nu^{9} + \cdots + 80\!\cdots\!85 \nu ) / 33\!\cdots\!12 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 22\!\cdots\!35 \nu^{9} + \cdots + 15\!\cdots\!27 \nu ) / 33\!\cdots\!12 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 12\!\cdots\!97 \nu^{9} + \cdots + 25\!\cdots\!93 \nu ) / 46\!\cdots\!08 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 15\!\cdots\!93 \nu^{9} + \cdots + 11\!\cdots\!51 \nu ) / 65\!\cdots\!08 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 22\!\cdots\!57 \nu^{9} + \cdots + 23\!\cdots\!61 \nu ) / 84\!\cdots\!04 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_{6} - 144799\beta_{5} \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -9\beta_{3} + \beta_{2} - 308319\beta _1 - 1042363681721 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -2652\beta_{9} + 189313\beta_{8} - 878619\beta_{7} - 1512782441334\beta_{6} + 465845814391417639\beta_{5} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( - 683916324 \beta_{4} + 19086881503686 \beta_{3} - 1442268076198 \beta_{2} + \cdots + 16\!\cdots\!21 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 57\!\cdots\!00 \beta_{9} + \cdots - 93\!\cdots\!99 \beta_{5} \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 23\!\cdots\!80 \beta_{4} + \cdots - 26\!\cdots\!01 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( - 10\!\cdots\!80 \beta_{9} + \cdots + 17\!\cdots\!79 \beta_{5} \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 18\!\cdots\!68 \beta_{4} + \cdots + 43\!\cdots\!61 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 19\!\cdots\!84 \beta_{9} + \cdots - 32\!\cdots\!79 \beta_{5} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/50\mathbb{Z}\right)^\times\).

\(n\) \(27\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
1.22241e6i
598018.i
43423.8i
1.22475e6i
1.36309e6i
1.36309e6i
1.22475e6i
43423.8i
598018.i
1.22241e6i
4096.00i 1.22241e6i −1.67772e7 0 −5.00697e9 6.80801e10i 6.87195e10i −6.46987e11 0
49.2 4096.00i 598018.i −1.67772e7 0 −2.44948e9 1.45531e10i 6.87195e10i 4.89664e11 0
49.3 4096.00i 43423.8i −1.67772e7 0 −1.77864e8 1.17021e10i 6.87195e10i 8.45403e11 0
49.4 4096.00i 1.22475e6i −1.67772e7 0 5.01659e9 5.40343e10i 6.87195e10i −6.52735e11 0
49.5 4096.00i 1.36309e6i −1.67772e7 0 5.58321e9 6.14282e10i 6.87195e10i −1.01072e12 0
49.6 4096.00i 1.36309e6i −1.67772e7 0 5.58321e9 6.14282e10i 6.87195e10i −1.01072e12 0
49.7 4096.00i 1.22475e6i −1.67772e7 0 5.01659e9 5.40343e10i 6.87195e10i −6.52735e11 0
49.8 4096.00i 43423.8i −1.67772e7 0 −1.77864e8 1.17021e10i 6.87195e10i 8.45403e11 0
49.9 4096.00i 598018.i −1.67772e7 0 −2.44948e9 1.45531e10i 6.87195e10i 4.89664e11 0
49.10 4096.00i 1.22241e6i −1.67772e7 0 −5.00697e9 6.80801e10i 6.87195e10i −6.46987e11 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 49.10
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 50.26.b.h 10
5.b even 2 1 inner 50.26.b.h 10
5.c odd 4 1 50.26.a.i 5
5.c odd 4 1 50.26.a.j yes 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
50.26.a.i 5 5.c odd 4 1
50.26.a.j yes 5 5.c odd 4 1
50.26.b.h 10 1.a even 1 1 trivial
50.26.b.h 10 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{10} + 5211818408605 T_{3}^{8} + \cdots + 28\!\cdots\!01 \) acting on \(S_{26}^{\mathrm{new}}(50, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 16777216)^{5} \) Copy content Toggle raw display
$3$ \( T^{10} + \cdots + 28\!\cdots\!01 \) Copy content Toggle raw display
$5$ \( T^{10} \) Copy content Toggle raw display
$7$ \( T^{10} + \cdots + 14\!\cdots\!24 \) Copy content Toggle raw display
$11$ \( (T^{5} + \cdots + 14\!\cdots\!43)^{2} \) Copy content Toggle raw display
$13$ \( T^{10} + \cdots + 26\!\cdots\!76 \) Copy content Toggle raw display
$17$ \( T^{10} + \cdots + 62\!\cdots\!49 \) Copy content Toggle raw display
$19$ \( (T^{5} + \cdots + 23\!\cdots\!25)^{2} \) Copy content Toggle raw display
$23$ \( T^{10} + \cdots + 43\!\cdots\!76 \) Copy content Toggle raw display
$29$ \( (T^{5} + \cdots + 21\!\cdots\!00)^{2} \) Copy content Toggle raw display
$31$ \( (T^{5} + \cdots + 23\!\cdots\!68)^{2} \) Copy content Toggle raw display
$37$ \( T^{10} + \cdots + 58\!\cdots\!24 \) Copy content Toggle raw display
$41$ \( (T^{5} + \cdots + 55\!\cdots\!43)^{2} \) Copy content Toggle raw display
$43$ \( T^{10} + \cdots + 74\!\cdots\!76 \) Copy content Toggle raw display
$47$ \( T^{10} + \cdots + 14\!\cdots\!24 \) Copy content Toggle raw display
$53$ \( T^{10} + \cdots + 81\!\cdots\!76 \) Copy content Toggle raw display
$59$ \( (T^{5} + \cdots - 27\!\cdots\!00)^{2} \) Copy content Toggle raw display
$61$ \( (T^{5} + \cdots - 43\!\cdots\!32)^{2} \) Copy content Toggle raw display
$67$ \( T^{10} + \cdots + 17\!\cdots\!49 \) Copy content Toggle raw display
$71$ \( (T^{5} + \cdots - 22\!\cdots\!32)^{2} \) Copy content Toggle raw display
$73$ \( T^{10} + \cdots + 17\!\cdots\!01 \) Copy content Toggle raw display
$79$ \( (T^{5} + \cdots - 10\!\cdots\!00)^{2} \) Copy content Toggle raw display
$83$ \( T^{10} + \cdots + 14\!\cdots\!01 \) Copy content Toggle raw display
$89$ \( (T^{5} + \cdots - 20\!\cdots\!25)^{2} \) Copy content Toggle raw display
$97$ \( T^{10} + \cdots + 53\!\cdots\!24 \) Copy content Toggle raw display
show more
show less