Properties

Label 50.26.b.g
Level $50$
Weight $26$
Character orbit 50.b
Analytic conductor $197.998$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [50,26,Mod(49,50)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(50, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 26, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("50.49");
 
S:= CuspForms(chi, 26);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 26 \)
Character orbit: \([\chi]\) \(=\) 50.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(197.998389976\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 5878907094 x^{6} + \cdots + 44\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{20}\cdot 3^{10}\cdot 5^{14} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4096 \beta_{3} q^{2} + ( - 26589 \beta_{3} + \beta_1) q^{3} - 16777216 q^{4} + ( - 4096 \beta_{2} + 108908544) q^{6} + ( - \beta_{7} - 2773709092 \beta_{3} - 6786 \beta_1) q^{7} - 68719476736 \beta_{3} q^{8}+ \cdots + ( - 18172403201700 \beta_{5} + \cdots + 50\!\cdots\!44) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 134217728 q^{4} + 871268352 q^{6} - 3809379693024 q^{9} - 28715352278184 q^{11} + 90888899526656 q^{14} + 22\!\cdots\!48 q^{16} + 25\!\cdots\!40 q^{19} + 71\!\cdots\!96 q^{21} - 14\!\cdots\!32 q^{24}+ \cdots + 40\!\cdots\!52 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 5878907094 x^{6} + \cdots + 44\!\cdots\!00 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 30\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 15\nu^{4} + 44091803205\nu^{2} + 9981754453699758000 ) / 18641220777293 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{7} + 5878907094 \nu^{5} + \cdots + 33\!\cdots\!96 \nu ) / 24\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 500 \nu^{6} + 2259704459110 \nu^{4} + \cdots - 25\!\cdots\!50 ) / 18\!\cdots\!93 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 5000 \nu^{6} + 25452780059335 \nu^{4} + \cdots + 75\!\cdots\!50 ) / 18\!\cdots\!93 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 135853707867217 \nu^{7} + \cdots - 45\!\cdots\!92 \nu ) / 16\!\cdots\!28 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 280566039606923 \nu^{7} + \cdots + 53\!\cdots\!48 \nu ) / 16\!\cdots\!28 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 30 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{5} - 10\beta_{4} - 190249\beta_{2} - 440918032050 ) / 300 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 1763867\beta_{7} - 476597\beta_{6} - 83885493497818500\beta_{3} - 248667639775\beta_1 ) / 3000 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -2939453547\beta_{5} + 29394535470\beta_{4} + 932052513409063\beta_{2} + 1096422984171637021350 ) / 300 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( - 89\!\cdots\!49 \beta_{7} + \cdots + 73\!\cdots\!65 \beta_1 ) / 3000 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 48\!\cdots\!66 \beta_{5} + \cdots - 16\!\cdots\!50 ) / 1500 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 35\!\cdots\!03 \beta_{7} + \cdots - 23\!\cdots\!35 \beta_1 ) / 3000 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/50\mathbb{Z}\right)^\times\).

\(n\) \(27\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
58169.7i
10094.1i
28504.7i
39759.0i
39759.0i
28504.7i
10094.1i
58169.7i
4096.00i 1.71850e6i −1.67772e7 0 −7.03899e9 3.68156e8i 6.87195e10i −2.10596e12 0
49.2 4096.00i 276233.i −1.67772e7 0 −1.13145e9 2.71222e10i 6.87195e10i 7.70984e11 0
49.3 4096.00i 881731.i −1.67772e7 0 3.61157e9 2.21890e10i 6.87195e10i 6.98383e10 0
49.4 4096.00i 1.21936e6i −1.67772e7 0 4.99450e9 3.85845e10i 6.87195e10i −6.39550e11 0
49.5 4096.00i 1.21936e6i −1.67772e7 0 4.99450e9 3.85845e10i 6.87195e10i −6.39550e11 0
49.6 4096.00i 881731.i −1.67772e7 0 3.61157e9 2.21890e10i 6.87195e10i 6.98383e10 0
49.7 4096.00i 276233.i −1.67772e7 0 −1.13145e9 2.71222e10i 6.87195e10i 7.70984e11 0
49.8 4096.00i 1.71850e6i −1.67772e7 0 −7.03899e9 3.68156e8i 6.87195e10i −2.10596e12 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 49.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 50.26.b.g 8
5.b even 2 1 inner 50.26.b.g 8
5.c odd 4 1 50.26.a.g 4
5.c odd 4 1 50.26.a.h yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
50.26.a.g 4 5.c odd 4 1
50.26.a.h yes 4 5.c odd 4 1
50.26.b.g 8 1.a even 1 1 trivial
50.26.b.g 8 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{8} + 5293844284284 T_{3}^{6} + \cdots + 26\!\cdots\!81 \) acting on \(S_{26}^{\mathrm{new}}(50, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 16777216)^{4} \) Copy content Toggle raw display
$3$ \( T^{8} + \cdots + 26\!\cdots\!81 \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( T^{8} + \cdots + 73\!\cdots\!16 \) Copy content Toggle raw display
$11$ \( (T^{4} + \cdots - 11\!\cdots\!59)^{2} \) Copy content Toggle raw display
$13$ \( T^{8} + \cdots + 45\!\cdots\!96 \) Copy content Toggle raw display
$17$ \( T^{8} + \cdots + 10\!\cdots\!81 \) Copy content Toggle raw display
$19$ \( (T^{4} + \cdots - 17\!\cdots\!75)^{2} \) Copy content Toggle raw display
$23$ \( T^{8} + \cdots + 29\!\cdots\!36 \) Copy content Toggle raw display
$29$ \( (T^{4} + \cdots + 10\!\cdots\!00)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} + \cdots + 31\!\cdots\!16)^{2} \) Copy content Toggle raw display
$37$ \( T^{8} + \cdots + 95\!\cdots\!36 \) Copy content Toggle raw display
$41$ \( (T^{4} + \cdots + 26\!\cdots\!41)^{2} \) Copy content Toggle raw display
$43$ \( T^{8} + \cdots + 98\!\cdots\!16 \) Copy content Toggle raw display
$47$ \( T^{8} + \cdots + 31\!\cdots\!76 \) Copy content Toggle raw display
$53$ \( T^{8} + \cdots + 16\!\cdots\!56 \) Copy content Toggle raw display
$59$ \( (T^{4} + \cdots - 13\!\cdots\!00)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} + \cdots - 73\!\cdots\!84)^{2} \) Copy content Toggle raw display
$67$ \( T^{8} + \cdots + 80\!\cdots\!81 \) Copy content Toggle raw display
$71$ \( (T^{4} + \cdots - 15\!\cdots\!84)^{2} \) Copy content Toggle raw display
$73$ \( T^{8} + \cdots + 22\!\cdots\!61 \) Copy content Toggle raw display
$79$ \( (T^{4} + \cdots - 14\!\cdots\!00)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} + \cdots + 10\!\cdots\!01 \) Copy content Toggle raw display
$89$ \( (T^{4} + \cdots + 74\!\cdots\!25)^{2} \) Copy content Toggle raw display
$97$ \( T^{8} + \cdots + 11\!\cdots\!76 \) Copy content Toggle raw display
show more
show less