Properties

Label 50.26.b.c.49.2
Level $50$
Weight $26$
Character 50.49
Analytic conductor $197.998$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [50,26,Mod(49,50)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(50, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 26, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("50.49");
 
S:= CuspForms(chi, 26);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 26 \)
Character orbit: \([\chi]\) \(=\) 50.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(197.998389976\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 74193735x^{2} + 1376177615409424 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{12}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 10)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.2
Root \(6090.72 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 50.49
Dual form 50.26.b.c.49.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4096.00i q^{2} +701909. i q^{3} -1.67772e7 q^{4} +2.87502e9 q^{6} -7.10199e8i q^{7} +6.87195e10i q^{8} +3.54612e11 q^{9} +6.69047e12 q^{11} -1.17761e13i q^{12} +4.06505e12i q^{13} -2.90898e12 q^{14} +2.81475e14 q^{16} +2.05623e15i q^{17} -1.45249e15i q^{18} -1.32410e16 q^{19} +4.98495e14 q^{21} -2.74041e16i q^{22} +2.83334e16i q^{23} -4.82348e16 q^{24} +1.66504e16 q^{26} +8.43625e17i q^{27} +1.19152e16i q^{28} -8.79820e17 q^{29} -3.20276e17 q^{31} -1.15292e18i q^{32} +4.69610e18i q^{33} +8.42232e18 q^{34} -5.94940e18 q^{36} -4.64680e19i q^{37} +5.42350e19i q^{38} -2.85329e18 q^{39} -1.18387e20 q^{41} -2.04184e18i q^{42} +1.34535e20i q^{43} -1.12247e20 q^{44} +1.16053e20 q^{46} -7.78716e20i q^{47} +1.97570e20i q^{48} +1.34056e21 q^{49} -1.44329e21 q^{51} -6.82002e19i q^{52} +3.18129e21i q^{53} +3.45549e21 q^{54} +4.88045e19 q^{56} -9.29396e21i q^{57} +3.60374e21i q^{58} +2.03629e21 q^{59} +3.16043e22 q^{61} +1.31185e21i q^{62} -2.51845e20i q^{63} -4.72237e21 q^{64} +1.92352e22 q^{66} +4.98952e22i q^{67} -3.44978e22i q^{68} -1.98875e22 q^{69} +1.16862e23 q^{71} +2.43688e22i q^{72} +1.07622e23i q^{73} -1.90333e23 q^{74} +2.22147e23 q^{76} -4.75156e21i q^{77} +1.16871e22i q^{78} -2.51396e23 q^{79} -2.91689e23 q^{81} +4.84913e23i q^{82} +1.47962e24i q^{83} -8.36336e21 q^{84} +5.51054e23 q^{86} -6.17554e23i q^{87} +4.59765e23i q^{88} +1.69758e24 q^{89} +2.88699e21 q^{91} -4.75355e23i q^{92} -2.24804e23i q^{93} -3.18962e24 q^{94} +8.09246e23 q^{96} -4.56953e24i q^{97} -5.49095e24i q^{98} +2.37252e24 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 67108864 q^{4} - 4466376704 q^{6} - 706820944772 q^{9} - 16758339752832 q^{11} + 315947884249088 q^{14} + 11\!\cdots\!24 q^{16} - 69\!\cdots\!40 q^{19} + 98\!\cdots\!68 q^{21} + 74\!\cdots\!64 q^{24}+ \cdots + 26\!\cdots\!76 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/50\mathbb{Z}\right)^\times\).

\(n\) \(27\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 4096.00i − 0.707107i
\(3\) 701909.i 0.762545i 0.924463 + 0.381272i \(0.124514\pi\)
−0.924463 + 0.381272i \(0.875486\pi\)
\(4\) −1.67772e7 −0.500000
\(5\) 0 0
\(6\) 2.87502e9 0.539200
\(7\) − 7.10199e8i − 0.0193934i −0.999953 0.00969672i \(-0.996913\pi\)
0.999953 0.00969672i \(-0.00308661\pi\)
\(8\) 6.87195e10i 0.353553i
\(9\) 3.54612e11 0.418526
\(10\) 0 0
\(11\) 6.69047e12 0.642758 0.321379 0.946951i \(-0.395854\pi\)
0.321379 + 0.946951i \(0.395854\pi\)
\(12\) − 1.17761e13i − 0.381272i
\(13\) 4.06505e12i 0.0483920i 0.999707 + 0.0241960i \(0.00770258\pi\)
−0.999707 + 0.0241960i \(0.992297\pi\)
\(14\) −2.90898e12 −0.0137132
\(15\) 0 0
\(16\) 2.81475e14 0.250000
\(17\) 2.05623e15i 0.855974i 0.903785 + 0.427987i \(0.140777\pi\)
−0.903785 + 0.427987i \(0.859223\pi\)
\(18\) − 1.45249e15i − 0.295942i
\(19\) −1.32410e16 −1.37246 −0.686230 0.727384i \(-0.740736\pi\)
−0.686230 + 0.727384i \(0.740736\pi\)
\(20\) 0 0
\(21\) 4.98495e14 0.0147884
\(22\) − 2.74041e16i − 0.454499i
\(23\) 2.83334e16i 0.269588i 0.990874 + 0.134794i \(0.0430372\pi\)
−0.990874 + 0.134794i \(0.956963\pi\)
\(24\) −4.82348e16 −0.269600
\(25\) 0 0
\(26\) 1.66504e16 0.0342183
\(27\) 8.43625e17i 1.08169i
\(28\) 1.19152e16i 0.00969672i
\(29\) −8.79820e17 −0.461763 −0.230881 0.972982i \(-0.574161\pi\)
−0.230881 + 0.972982i \(0.574161\pi\)
\(30\) 0 0
\(31\) −3.20276e17 −0.0730302 −0.0365151 0.999333i \(-0.511626\pi\)
−0.0365151 + 0.999333i \(0.511626\pi\)
\(32\) − 1.15292e18i − 0.176777i
\(33\) 4.69610e18i 0.490132i
\(34\) 8.42232e18 0.605265
\(35\) 0 0
\(36\) −5.94940e18 −0.209263
\(37\) − 4.64680e19i − 1.16047i −0.814450 0.580233i \(-0.802961\pi\)
0.814450 0.580233i \(-0.197039\pi\)
\(38\) 5.42350e19i 0.970476i
\(39\) −2.85329e18 −0.0369011
\(40\) 0 0
\(41\) −1.18387e20 −0.819418 −0.409709 0.912216i \(-0.634370\pi\)
−0.409709 + 0.912216i \(0.634370\pi\)
\(42\) − 2.04184e18i − 0.0104569i
\(43\) 1.34535e20i 0.513426i 0.966488 + 0.256713i \(0.0826396\pi\)
−0.966488 + 0.256713i \(0.917360\pi\)
\(44\) −1.12247e20 −0.321379
\(45\) 0 0
\(46\) 1.16053e20 0.190627
\(47\) − 7.78716e20i − 0.977587i −0.872399 0.488794i \(-0.837437\pi\)
0.872399 0.488794i \(-0.162563\pi\)
\(48\) 1.97570e20i 0.190636i
\(49\) 1.34056e21 0.999624
\(50\) 0 0
\(51\) −1.44329e21 −0.652718
\(52\) − 6.82002e19i − 0.0241960i
\(53\) 3.18129e21i 0.889517i 0.895651 + 0.444759i \(0.146711\pi\)
−0.895651 + 0.444759i \(0.853289\pi\)
\(54\) 3.45549e21 0.764870
\(55\) 0 0
\(56\) 4.88045e19 0.00685661
\(57\) − 9.29396e21i − 1.04656i
\(58\) 3.60374e21i 0.326516i
\(59\) 2.03629e21 0.149001 0.0745005 0.997221i \(-0.476264\pi\)
0.0745005 + 0.997221i \(0.476264\pi\)
\(60\) 0 0
\(61\) 3.16043e22 1.52448 0.762242 0.647292i \(-0.224099\pi\)
0.762242 + 0.647292i \(0.224099\pi\)
\(62\) 1.31185e21i 0.0516402i
\(63\) − 2.51845e20i − 0.00811665i
\(64\) −4.72237e21 −0.125000
\(65\) 0 0
\(66\) 1.92352e22 0.346576
\(67\) 4.98952e22i 0.744945i 0.928043 + 0.372472i \(0.121490\pi\)
−0.928043 + 0.372472i \(0.878510\pi\)
\(68\) − 3.44978e22i − 0.427987i
\(69\) −1.98875e22 −0.205573
\(70\) 0 0
\(71\) 1.16862e23 0.845169 0.422585 0.906324i \(-0.361123\pi\)
0.422585 + 0.906324i \(0.361123\pi\)
\(72\) 2.43688e22i 0.147971i
\(73\) 1.07622e23i 0.550001i 0.961444 + 0.275001i \(0.0886780\pi\)
−0.961444 + 0.275001i \(0.911322\pi\)
\(74\) −1.90333e23 −0.820574
\(75\) 0 0
\(76\) 2.22147e23 0.686230
\(77\) − 4.75156e21i − 0.0124653i
\(78\) 1.16871e22i 0.0260930i
\(79\) −2.51396e23 −0.478651 −0.239326 0.970939i \(-0.576926\pi\)
−0.239326 + 0.970939i \(0.576926\pi\)
\(80\) 0 0
\(81\) −2.91689e23 −0.406310
\(82\) 4.84913e23i 0.579416i
\(83\) 1.47962e24i 1.51941i 0.650270 + 0.759703i \(0.274656\pi\)
−0.650270 + 0.759703i \(0.725344\pi\)
\(84\) −8.36336e21 −0.00739418
\(85\) 0 0
\(86\) 5.51054e23 0.363047
\(87\) − 6.17554e23i − 0.352115i
\(88\) 4.59765e23i 0.227249i
\(89\) 1.69758e24 0.728544 0.364272 0.931293i \(-0.381318\pi\)
0.364272 + 0.931293i \(0.381318\pi\)
\(90\) 0 0
\(91\) 2.88699e21 0.000938487 0
\(92\) − 4.75355e23i − 0.134794i
\(93\) − 2.24804e23i − 0.0556888i
\(94\) −3.18962e24 −0.691259
\(95\) 0 0
\(96\) 8.09246e23 0.134800
\(97\) − 4.56953e24i − 0.668689i −0.942451 0.334345i \(-0.891485\pi\)
0.942451 0.334345i \(-0.108515\pi\)
\(98\) − 5.49095e24i − 0.706841i
\(99\) 2.37252e24 0.269011
\(100\) 0 0
\(101\) −1.34474e25 −1.18747 −0.593735 0.804661i \(-0.702347\pi\)
−0.593735 + 0.804661i \(0.702347\pi\)
\(102\) 5.91170e24i 0.461541i
\(103\) 1.45443e25i 1.00514i 0.864536 + 0.502571i \(0.167612\pi\)
−0.864536 + 0.502571i \(0.832388\pi\)
\(104\) −2.79348e23 −0.0171092
\(105\) 0 0
\(106\) 1.30305e25 0.628984
\(107\) − 3.33812e25i − 1.43286i −0.697657 0.716432i \(-0.745774\pi\)
0.697657 0.716432i \(-0.254226\pi\)
\(108\) − 1.41537e25i − 0.540845i
\(109\) −4.20504e25 −1.43199 −0.715993 0.698107i \(-0.754026\pi\)
−0.715993 + 0.698107i \(0.754026\pi\)
\(110\) 0 0
\(111\) 3.26163e25 0.884908
\(112\) − 1.99903e23i − 0.00484836i
\(113\) − 7.61141e25i − 1.65190i −0.563741 0.825952i \(-0.690638\pi\)
0.563741 0.825952i \(-0.309362\pi\)
\(114\) −3.80681e25 −0.740031
\(115\) 0 0
\(116\) 1.47609e25 0.230881
\(117\) 1.44152e24i 0.0202533i
\(118\) − 8.34063e24i − 0.105360i
\(119\) 1.46033e24 0.0166003
\(120\) 0 0
\(121\) −6.35847e25 −0.586862
\(122\) − 1.29451e26i − 1.07797i
\(123\) − 8.30968e25i − 0.624843i
\(124\) 5.37333e24 0.0365151
\(125\) 0 0
\(126\) −1.03156e24 −0.00573934
\(127\) − 2.50269e26i − 1.26142i −0.776018 0.630710i \(-0.782764\pi\)
0.776018 0.630710i \(-0.217236\pi\)
\(128\) 1.93428e25i 0.0883883i
\(129\) −9.44310e25 −0.391510
\(130\) 0 0
\(131\) −3.42885e26 −1.17289 −0.586445 0.809989i \(-0.699473\pi\)
−0.586445 + 0.809989i \(0.699473\pi\)
\(132\) − 7.87875e25i − 0.245066i
\(133\) 9.40373e24i 0.0266167i
\(134\) 2.04371e26 0.526755
\(135\) 0 0
\(136\) −1.41303e26 −0.302632
\(137\) 1.44437e26i 0.282274i 0.989990 + 0.141137i \(0.0450757\pi\)
−0.989990 + 0.141137i \(0.954924\pi\)
\(138\) 8.14590e25i 0.145362i
\(139\) −4.93300e26 −0.804314 −0.402157 0.915571i \(-0.631739\pi\)
−0.402157 + 0.915571i \(0.631739\pi\)
\(140\) 0 0
\(141\) 5.46588e26 0.745454
\(142\) − 4.78666e26i − 0.597625i
\(143\) 2.71971e25i 0.0311044i
\(144\) 9.98144e25 0.104631
\(145\) 0 0
\(146\) 4.40818e26 0.388910
\(147\) 9.40954e26i 0.762258i
\(148\) 7.79604e26i 0.580233i
\(149\) −1.50844e27 −1.03205 −0.516023 0.856575i \(-0.672588\pi\)
−0.516023 + 0.856575i \(0.672588\pi\)
\(150\) 0 0
\(151\) 1.70083e26 0.0985027 0.0492513 0.998786i \(-0.484316\pi\)
0.0492513 + 0.998786i \(0.484316\pi\)
\(152\) − 9.09913e26i − 0.485238i
\(153\) 7.29164e26i 0.358247i
\(154\) −1.94624e25 −0.00881429
\(155\) 0 0
\(156\) 4.78703e25 0.0184505
\(157\) 3.29198e27i 1.17142i 0.810522 + 0.585708i \(0.199184\pi\)
−0.810522 + 0.585708i \(0.800816\pi\)
\(158\) 1.02972e27i 0.338458i
\(159\) −2.23297e27 −0.678296
\(160\) 0 0
\(161\) 2.01223e25 0.00522823
\(162\) 1.19476e27i 0.287305i
\(163\) − 5.07392e26i − 0.112979i −0.998403 0.0564896i \(-0.982009\pi\)
0.998403 0.0564896i \(-0.0179908\pi\)
\(164\) 1.98620e27 0.409709
\(165\) 0 0
\(166\) 6.06052e27 1.07438
\(167\) − 8.44897e26i − 0.138947i −0.997584 0.0694733i \(-0.977868\pi\)
0.997584 0.0694733i \(-0.0221319\pi\)
\(168\) 3.42563e25i 0.00522847i
\(169\) 7.03989e27 0.997658
\(170\) 0 0
\(171\) −4.69541e27 −0.574410
\(172\) − 2.25712e27i − 0.256713i
\(173\) 7.54461e27i 0.798106i 0.916928 + 0.399053i \(0.130661\pi\)
−0.916928 + 0.399053i \(0.869339\pi\)
\(174\) −2.52950e27 −0.248983
\(175\) 0 0
\(176\) 1.88320e27 0.160690
\(177\) 1.42929e27i 0.113620i
\(178\) − 6.95330e27i − 0.515159i
\(179\) 5.46396e27 0.377437 0.188718 0.982031i \(-0.439567\pi\)
0.188718 + 0.982031i \(0.439567\pi\)
\(180\) 0 0
\(181\) −2.74350e28 −1.64939 −0.824693 0.565581i \(-0.808652\pi\)
−0.824693 + 0.565581i \(0.808652\pi\)
\(182\) − 1.18251e25i 0 0.000663611i
\(183\) 2.21833e28i 1.16249i
\(184\) −1.94705e27 −0.0953137
\(185\) 0 0
\(186\) −9.20799e26 −0.0393779
\(187\) 1.37571e28i 0.550184i
\(188\) 1.30647e28i 0.488794i
\(189\) 5.99142e26 0.0209777
\(190\) 0 0
\(191\) −2.53537e28 −0.778258 −0.389129 0.921183i \(-0.627224\pi\)
−0.389129 + 0.921183i \(0.627224\pi\)
\(192\) − 3.31467e27i − 0.0953181i
\(193\) − 4.66476e27i − 0.125708i −0.998023 0.0628540i \(-0.979980\pi\)
0.998023 0.0628540i \(-0.0200202\pi\)
\(194\) −1.87168e28 −0.472835
\(195\) 0 0
\(196\) −2.24909e28 −0.499812
\(197\) − 1.14775e28i − 0.239343i −0.992814 0.119672i \(-0.961816\pi\)
0.992814 0.119672i \(-0.0381842\pi\)
\(198\) − 9.71784e27i − 0.190219i
\(199\) −1.02205e29 −1.87849 −0.939243 0.343254i \(-0.888471\pi\)
−0.939243 + 0.343254i \(0.888471\pi\)
\(200\) 0 0
\(201\) −3.50219e28 −0.568053
\(202\) 5.50807e28i 0.839668i
\(203\) 6.24848e26i 0.00895517i
\(204\) 2.42143e28 0.326359
\(205\) 0 0
\(206\) 5.95734e28 0.710742
\(207\) 1.00474e28i 0.112829i
\(208\) 1.14421e27i 0.0120980i
\(209\) −8.85883e28 −0.882161
\(210\) 0 0
\(211\) 1.45021e29 1.28204 0.641020 0.767524i \(-0.278512\pi\)
0.641020 + 0.767524i \(0.278512\pi\)
\(212\) − 5.33731e28i − 0.444759i
\(213\) 8.20264e28i 0.644479i
\(214\) −1.36729e29 −1.01319
\(215\) 0 0
\(216\) −5.79735e28 −0.382435
\(217\) 2.27460e26i 0.00141631i
\(218\) 1.72238e29i 1.01257i
\(219\) −7.55406e28 −0.419400
\(220\) 0 0
\(221\) −8.35868e27 −0.0414223
\(222\) − 1.33597e29i − 0.625724i
\(223\) 3.26058e29i 1.44372i 0.692038 + 0.721861i \(0.256713\pi\)
−0.692038 + 0.721861i \(0.743287\pi\)
\(224\) −8.18804e26 −0.00342831
\(225\) 0 0
\(226\) −3.11763e29 −1.16807
\(227\) − 4.25210e29i − 1.50758i −0.657115 0.753791i \(-0.728223\pi\)
0.657115 0.753791i \(-0.271777\pi\)
\(228\) 1.55927e29i 0.523281i
\(229\) −5.46098e29 −1.73511 −0.867555 0.497342i \(-0.834310\pi\)
−0.867555 + 0.497342i \(0.834310\pi\)
\(230\) 0 0
\(231\) 3.33517e27 0.00950534
\(232\) − 6.04608e28i − 0.163258i
\(233\) 2.50604e29i 0.641268i 0.947203 + 0.320634i \(0.103896\pi\)
−0.947203 + 0.320634i \(0.896104\pi\)
\(234\) 5.90445e27 0.0143213
\(235\) 0 0
\(236\) −3.41632e28 −0.0745005
\(237\) − 1.76457e29i − 0.364993i
\(238\) − 5.98153e27i − 0.0117382i
\(239\) −6.64864e29 −1.23811 −0.619055 0.785348i \(-0.712484\pi\)
−0.619055 + 0.785348i \(0.712484\pi\)
\(240\) 0 0
\(241\) 2.77555e29 0.465731 0.232866 0.972509i \(-0.425190\pi\)
0.232866 + 0.972509i \(0.425190\pi\)
\(242\) 2.60443e29i 0.414974i
\(243\) 5.10055e29i 0.771859i
\(244\) −5.30232e29 −0.762242
\(245\) 0 0
\(246\) −3.40365e29 −0.441830
\(247\) − 5.38252e28i − 0.0664161i
\(248\) − 2.20092e28i − 0.0258201i
\(249\) −1.03856e30 −1.15862
\(250\) 0 0
\(251\) −1.49015e30 −1.50421 −0.752105 0.659043i \(-0.770962\pi\)
−0.752105 + 0.659043i \(0.770962\pi\)
\(252\) 4.22526e27i 0.00405833i
\(253\) 1.89563e29i 0.173280i
\(254\) −1.02510e30 −0.891959
\(255\) 0 0
\(256\) 7.92282e28 0.0625000
\(257\) − 7.29296e29i − 0.547948i −0.961737 0.273974i \(-0.911662\pi\)
0.961737 0.273974i \(-0.0883383\pi\)
\(258\) 3.86790e29i 0.276840i
\(259\) −3.30016e28 −0.0225054
\(260\) 0 0
\(261\) −3.11995e29 −0.193260
\(262\) 1.40446e30i 0.829358i
\(263\) 5.88360e29i 0.331281i 0.986186 + 0.165640i \(0.0529691\pi\)
−0.986186 + 0.165640i \(0.947031\pi\)
\(264\) −3.22713e29 −0.173288
\(265\) 0 0
\(266\) 3.85177e28 0.0188209
\(267\) 1.19155e30i 0.555548i
\(268\) − 8.37103e29i − 0.372472i
\(269\) −1.22413e30 −0.519904 −0.259952 0.965622i \(-0.583707\pi\)
−0.259952 + 0.965622i \(0.583707\pi\)
\(270\) 0 0
\(271\) −1.53605e30 −0.594688 −0.297344 0.954770i \(-0.596101\pi\)
−0.297344 + 0.954770i \(0.596101\pi\)
\(272\) 5.78778e29i 0.213993i
\(273\) 2.02641e27i 0 0.000715638i
\(274\) 5.91613e29 0.199598
\(275\) 0 0
\(276\) 3.33656e29 0.102786
\(277\) − 4.32632e29i − 0.127386i −0.997970 0.0636929i \(-0.979712\pi\)
0.997970 0.0636929i \(-0.0202878\pi\)
\(278\) 2.02056e30i 0.568736i
\(279\) −1.13574e29 −0.0305650
\(280\) 0 0
\(281\) −3.63667e30 −0.895107 −0.447554 0.894257i \(-0.647705\pi\)
−0.447554 + 0.894257i \(0.647705\pi\)
\(282\) − 2.23882e30i − 0.527116i
\(283\) 8.38888e30i 1.88962i 0.327624 + 0.944808i \(0.393752\pi\)
−0.327624 + 0.944808i \(0.606248\pi\)
\(284\) −1.96062e30 −0.422585
\(285\) 0 0
\(286\) 1.11399e29 0.0219941
\(287\) 8.40783e28i 0.0158913i
\(288\) − 4.08840e29i − 0.0739856i
\(289\) 1.54254e30 0.267309
\(290\) 0 0
\(291\) 3.20739e30 0.509906
\(292\) − 1.80559e30i − 0.275001i
\(293\) 8.70672e30i 1.27060i 0.772265 + 0.635301i \(0.219124\pi\)
−0.772265 + 0.635301i \(0.780876\pi\)
\(294\) 3.85415e30 0.538998
\(295\) 0 0
\(296\) 3.19326e30 0.410287
\(297\) 5.64425e30i 0.695265i
\(298\) 6.17856e30i 0.729767i
\(299\) −1.15177e29 −0.0130459
\(300\) 0 0
\(301\) 9.55463e28 0.00995710
\(302\) − 6.96658e29i − 0.0696519i
\(303\) − 9.43888e30i − 0.905498i
\(304\) −3.72700e30 −0.343115
\(305\) 0 0
\(306\) 2.98666e30 0.253319
\(307\) 3.24336e30i 0.264098i 0.991243 + 0.132049i \(0.0421557\pi\)
−0.991243 + 0.132049i \(0.957844\pi\)
\(308\) 7.97180e28i 0.00623265i
\(309\) −1.02088e31 −0.766465
\(310\) 0 0
\(311\) −1.24495e30 −0.0862281 −0.0431140 0.999070i \(-0.513728\pi\)
−0.0431140 + 0.999070i \(0.513728\pi\)
\(312\) − 1.96077e29i − 0.0130465i
\(313\) − 2.33420e31i − 1.49222i −0.665820 0.746112i \(-0.731918\pi\)
0.665820 0.746112i \(-0.268082\pi\)
\(314\) 1.34839e31 0.828316
\(315\) 0 0
\(316\) 4.21772e30 0.239326
\(317\) 2.11447e31i 1.15335i 0.816974 + 0.576674i \(0.195650\pi\)
−0.816974 + 0.576674i \(0.804350\pi\)
\(318\) 9.14626e30i 0.479628i
\(319\) −5.88641e30 −0.296802
\(320\) 0 0
\(321\) 2.34306e31 1.09262
\(322\) − 8.24211e28i − 0.00369692i
\(323\) − 2.72265e31i − 1.17479i
\(324\) 4.89374e30 0.203155
\(325\) 0 0
\(326\) −2.07828e30 −0.0798883
\(327\) − 2.95156e31i − 1.09195i
\(328\) − 8.13549e30i − 0.289708i
\(329\) −5.53043e29 −0.0189588
\(330\) 0 0
\(331\) −4.35367e31 −1.38359 −0.691793 0.722096i \(-0.743179\pi\)
−0.691793 + 0.722096i \(0.743179\pi\)
\(332\) − 2.48239e31i − 0.759703i
\(333\) − 1.64781e31i − 0.485685i
\(334\) −3.46070e30 −0.0982501
\(335\) 0 0
\(336\) 1.40314e29 0.00369709
\(337\) − 5.97252e30i − 0.151630i −0.997122 0.0758148i \(-0.975844\pi\)
0.997122 0.0758148i \(-0.0241558\pi\)
\(338\) − 2.88354e31i − 0.705451i
\(339\) 5.34252e31 1.25965
\(340\) 0 0
\(341\) −2.14279e30 −0.0469408
\(342\) 1.92324e31i 0.406169i
\(343\) − 1.90449e30i − 0.0387796i
\(344\) −9.24514e30 −0.181524
\(345\) 0 0
\(346\) 3.09027e31 0.564346
\(347\) − 9.71425e31i − 1.71116i −0.517670 0.855580i \(-0.673201\pi\)
0.517670 0.855580i \(-0.326799\pi\)
\(348\) 1.03608e31i 0.176057i
\(349\) 7.20784e31 1.18165 0.590823 0.806801i \(-0.298803\pi\)
0.590823 + 0.806801i \(0.298803\pi\)
\(350\) 0 0
\(351\) −3.42938e30 −0.0523451
\(352\) − 7.71358e30i − 0.113625i
\(353\) − 6.98207e31i − 0.992660i −0.868134 0.496330i \(-0.834681\pi\)
0.868134 0.496330i \(-0.165319\pi\)
\(354\) 5.85437e30 0.0803414
\(355\) 0 0
\(356\) −2.84807e31 −0.364272
\(357\) 1.02502e30i 0.0126584i
\(358\) − 2.23804e31i − 0.266888i
\(359\) 1.33870e32 1.54171 0.770857 0.637009i \(-0.219829\pi\)
0.770857 + 0.637009i \(0.219829\pi\)
\(360\) 0 0
\(361\) 8.22469e31 0.883649
\(362\) 1.12374e32i 1.16629i
\(363\) − 4.46307e31i − 0.447508i
\(364\) −4.84357e28 −0.000469244 0
\(365\) 0 0
\(366\) 9.08629e31 0.822003
\(367\) 6.63971e31i 0.580528i 0.956947 + 0.290264i \(0.0937431\pi\)
−0.956947 + 0.290264i \(0.906257\pi\)
\(368\) 7.97514e30i 0.0673970i
\(369\) −4.19814e31 −0.342947
\(370\) 0 0
\(371\) 2.25935e30 0.0172508
\(372\) 3.77159e30i 0.0278444i
\(373\) − 2.18553e32i − 1.56026i −0.625619 0.780129i \(-0.715154\pi\)
0.625619 0.780129i \(-0.284846\pi\)
\(374\) 5.63493e31 0.389039
\(375\) 0 0
\(376\) 5.35129e31 0.345629
\(377\) − 3.57651e30i − 0.0223456i
\(378\) − 2.45409e30i − 0.0148334i
\(379\) 1.48811e32 0.870253 0.435126 0.900369i \(-0.356704\pi\)
0.435126 + 0.900369i \(0.356704\pi\)
\(380\) 0 0
\(381\) 1.75666e32 0.961889
\(382\) 1.03849e32i 0.550311i
\(383\) 2.09320e32i 1.07356i 0.843723 + 0.536779i \(0.180359\pi\)
−0.843723 + 0.536779i \(0.819641\pi\)
\(384\) −1.35769e31 −0.0674001
\(385\) 0 0
\(386\) −1.91068e31 −0.0888889
\(387\) 4.77076e31i 0.214882i
\(388\) 7.66639e31i 0.334345i
\(389\) 2.78926e32 1.17793 0.588965 0.808158i \(-0.299535\pi\)
0.588965 + 0.808158i \(0.299535\pi\)
\(390\) 0 0
\(391\) −5.82600e31 −0.230760
\(392\) 9.21229e31i 0.353420i
\(393\) − 2.40674e32i − 0.894381i
\(394\) −4.70120e31 −0.169241
\(395\) 0 0
\(396\) −3.98043e31 −0.134505
\(397\) 4.22963e32i 1.38491i 0.721461 + 0.692455i \(0.243471\pi\)
−0.721461 + 0.692455i \(0.756529\pi\)
\(398\) 4.18631e32i 1.32829i
\(399\) −6.60056e30 −0.0202964
\(400\) 0 0
\(401\) −2.59389e32 −0.749284 −0.374642 0.927169i \(-0.622234\pi\)
−0.374642 + 0.927169i \(0.622234\pi\)
\(402\) 1.43450e32i 0.401674i
\(403\) − 1.30194e30i − 0.00353408i
\(404\) 2.25611e32 0.593735
\(405\) 0 0
\(406\) 2.55938e30 0.00633226
\(407\) − 3.10893e32i − 0.745900i
\(408\) − 9.91820e31i − 0.230771i
\(409\) −7.31347e32 −1.65037 −0.825186 0.564861i \(-0.808930\pi\)
−0.825186 + 0.564861i \(0.808930\pi\)
\(410\) 0 0
\(411\) −1.01381e32 −0.215246
\(412\) − 2.44013e32i − 0.502571i
\(413\) − 1.44617e30i − 0.00288964i
\(414\) 4.11540e31 0.0797825
\(415\) 0 0
\(416\) 4.68668e30 0.00855458
\(417\) − 3.46252e32i − 0.613325i
\(418\) 3.62858e32i 0.623782i
\(419\) 6.24972e32 1.04276 0.521381 0.853324i \(-0.325417\pi\)
0.521381 + 0.853324i \(0.325417\pi\)
\(420\) 0 0
\(421\) −2.51168e32 −0.394855 −0.197427 0.980318i \(-0.563259\pi\)
−0.197427 + 0.980318i \(0.563259\pi\)
\(422\) − 5.94008e32i − 0.906539i
\(423\) − 2.76142e32i − 0.409146i
\(424\) −2.18616e32 −0.314492
\(425\) 0 0
\(426\) 3.35980e32 0.455716
\(427\) − 2.24453e31i − 0.0295650i
\(428\) 5.60044e32i 0.716432i
\(429\) −1.90899e31 −0.0237185
\(430\) 0 0
\(431\) −1.55381e33 −1.82151 −0.910754 0.412948i \(-0.864499\pi\)
−0.910754 + 0.412948i \(0.864499\pi\)
\(432\) 2.37459e32i 0.270422i
\(433\) − 1.08349e33i − 1.19874i −0.800472 0.599370i \(-0.795418\pi\)
0.800472 0.599370i \(-0.204582\pi\)
\(434\) 9.31674e29 0.00100148
\(435\) 0 0
\(436\) 7.05489e32 0.715993
\(437\) − 3.75161e32i − 0.369999i
\(438\) 3.09414e32i 0.296561i
\(439\) −1.66407e33 −1.55012 −0.775058 0.631890i \(-0.782279\pi\)
−0.775058 + 0.631890i \(0.782279\pi\)
\(440\) 0 0
\(441\) 4.75380e32 0.418368
\(442\) 3.42371e31i 0.0292900i
\(443\) − 3.77416e32i − 0.313887i −0.987608 0.156944i \(-0.949836\pi\)
0.987608 0.156944i \(-0.0501641\pi\)
\(444\) −5.47211e32 −0.442454
\(445\) 0 0
\(446\) 1.33553e33 1.02087
\(447\) − 1.05879e33i − 0.786981i
\(448\) 3.35382e30i 0.00242418i
\(449\) −2.15921e33 −1.51781 −0.758903 0.651204i \(-0.774264\pi\)
−0.758903 + 0.651204i \(0.774264\pi\)
\(450\) 0 0
\(451\) −7.92063e32 −0.526688
\(452\) 1.27698e33i 0.825952i
\(453\) 1.19383e32i 0.0751127i
\(454\) −1.74166e33 −1.06602
\(455\) 0 0
\(456\) 6.38676e32 0.370016
\(457\) 8.65127e30i 0.00487671i 0.999997 + 0.00243836i \(0.000776154\pi\)
−0.999997 + 0.00243836i \(0.999224\pi\)
\(458\) 2.23682e33i 1.22691i
\(459\) −1.73469e33 −0.925897
\(460\) 0 0
\(461\) −3.15151e33 −1.59315 −0.796575 0.604539i \(-0.793357\pi\)
−0.796575 + 0.604539i \(0.793357\pi\)
\(462\) − 1.36608e31i − 0.00672129i
\(463\) 2.93719e33i 1.40660i 0.710895 + 0.703298i \(0.248290\pi\)
−0.710895 + 0.703298i \(0.751710\pi\)
\(464\) −2.47647e32 −0.115441
\(465\) 0 0
\(466\) 1.02648e33 0.453445
\(467\) − 2.28078e33i − 0.980895i −0.871471 0.490448i \(-0.836833\pi\)
0.871471 0.490448i \(-0.163167\pi\)
\(468\) − 2.41846e31i − 0.0101267i
\(469\) 3.54356e31 0.0144470
\(470\) 0 0
\(471\) −2.31067e33 −0.893257
\(472\) 1.39933e32i 0.0526798i
\(473\) 9.00099e32i 0.330009i
\(474\) −7.22768e32 −0.258089
\(475\) 0 0
\(476\) −2.45003e31 −0.00830013
\(477\) 1.12812e33i 0.372286i
\(478\) 2.72328e33i 0.875476i
\(479\) 7.97173e32 0.249666 0.124833 0.992178i \(-0.460161\pi\)
0.124833 + 0.992178i \(0.460161\pi\)
\(480\) 0 0
\(481\) 1.88895e32 0.0561573
\(482\) − 1.13686e33i − 0.329322i
\(483\) 1.41241e31i 0.00398676i
\(484\) 1.06677e33 0.293431
\(485\) 0 0
\(486\) 2.08918e33 0.545787
\(487\) − 7.32515e32i − 0.186511i −0.995642 0.0932555i \(-0.970273\pi\)
0.995642 0.0932555i \(-0.0297273\pi\)
\(488\) 2.17183e33i 0.538987i
\(489\) 3.56143e32 0.0861516
\(490\) 0 0
\(491\) −2.35651e33 −0.541690 −0.270845 0.962623i \(-0.587303\pi\)
−0.270845 + 0.962623i \(0.587303\pi\)
\(492\) 1.39413e33i 0.312421i
\(493\) − 1.80911e33i − 0.395257i
\(494\) −2.20468e32 −0.0469633
\(495\) 0 0
\(496\) −9.01496e31 −0.0182576
\(497\) − 8.29952e31i − 0.0163907i
\(498\) 4.25394e33i 0.819265i
\(499\) −1.11697e33 −0.209789 −0.104895 0.994483i \(-0.533451\pi\)
−0.104895 + 0.994483i \(0.533451\pi\)
\(500\) 0 0
\(501\) 5.93041e32 0.105953
\(502\) 6.10366e33i 1.06364i
\(503\) − 3.79303e33i − 0.644743i −0.946613 0.322372i \(-0.895520\pi\)
0.946613 0.322372i \(-0.104480\pi\)
\(504\) 1.73067e31 0.00286967
\(505\) 0 0
\(506\) 7.76452e32 0.122527
\(507\) 4.94136e33i 0.760759i
\(508\) 4.19881e33i 0.630710i
\(509\) 7.62370e33 1.11736 0.558681 0.829383i \(-0.311308\pi\)
0.558681 + 0.829383i \(0.311308\pi\)
\(510\) 0 0
\(511\) 7.64328e31 0.0106664
\(512\) − 3.24519e32i − 0.0441942i
\(513\) − 1.11704e34i − 1.48458i
\(514\) −2.98720e33 −0.387458
\(515\) 0 0
\(516\) 1.58429e33 0.195755
\(517\) − 5.20997e33i − 0.628353i
\(518\) 1.35174e32i 0.0159137i
\(519\) −5.29563e33 −0.608592
\(520\) 0 0
\(521\) 5.33662e33 0.584514 0.292257 0.956340i \(-0.405594\pi\)
0.292257 + 0.956340i \(0.405594\pi\)
\(522\) 1.27793e33i 0.136655i
\(523\) − 1.14894e34i − 1.19957i −0.800160 0.599786i \(-0.795252\pi\)
0.800160 0.599786i \(-0.204748\pi\)
\(524\) 5.75265e33 0.586445
\(525\) 0 0
\(526\) 2.40992e33 0.234251
\(527\) − 6.58561e32i − 0.0625120i
\(528\) 1.32183e33i 0.122533i
\(529\) 1.02430e34 0.927322
\(530\) 0 0
\(531\) 7.22092e32 0.0623607
\(532\) − 1.57768e32i − 0.0133084i
\(533\) − 4.81248e32i − 0.0396533i
\(534\) 4.88059e33 0.392831
\(535\) 0 0
\(536\) −3.42877e33 −0.263378
\(537\) 3.83520e33i 0.287812i
\(538\) 5.01403e33i 0.367628i
\(539\) 8.96900e33 0.642517
\(540\) 0 0
\(541\) −2.08461e34 −1.42580 −0.712901 0.701265i \(-0.752619\pi\)
−0.712901 + 0.701265i \(0.752619\pi\)
\(542\) 6.29167e33i 0.420508i
\(543\) − 1.92569e34i − 1.25773i
\(544\) 2.37067e33 0.151316
\(545\) 0 0
\(546\) 8.30016e30 0.000506033 0
\(547\) − 5.82664e33i − 0.347197i −0.984816 0.173599i \(-0.944460\pi\)
0.984816 0.173599i \(-0.0555395\pi\)
\(548\) − 2.42324e33i − 0.141137i
\(549\) 1.12073e34 0.638036
\(550\) 0 0
\(551\) 1.16497e34 0.633751
\(552\) − 1.36666e33i − 0.0726809i
\(553\) 1.78541e32i 0.00928270i
\(554\) −1.77206e33 −0.0900754
\(555\) 0 0
\(556\) 8.27619e33 0.402157
\(557\) − 2.41168e34i − 1.14586i −0.819606 0.572928i \(-0.805807\pi\)
0.819606 0.572928i \(-0.194193\pi\)
\(558\) 4.65198e32i 0.0216127i
\(559\) −5.46889e32 −0.0248457
\(560\) 0 0
\(561\) −9.65626e33 −0.419540
\(562\) 1.48958e34i 0.632937i
\(563\) − 1.42755e34i − 0.593248i −0.954994 0.296624i \(-0.904139\pi\)
0.954994 0.296624i \(-0.0958608\pi\)
\(564\) −9.17022e33 −0.372727
\(565\) 0 0
\(566\) 3.43609e34 1.33616
\(567\) 2.07158e32i 0.00787975i
\(568\) 8.03069e33i 0.298812i
\(569\) 4.47698e34 1.62960 0.814802 0.579739i \(-0.196846\pi\)
0.814802 + 0.579739i \(0.196846\pi\)
\(570\) 0 0
\(571\) −1.37949e33 −0.0480581 −0.0240291 0.999711i \(-0.507649\pi\)
−0.0240291 + 0.999711i \(0.507649\pi\)
\(572\) − 4.56291e32i − 0.0155522i
\(573\) − 1.77960e34i − 0.593456i
\(574\) 3.44385e32 0.0112369
\(575\) 0 0
\(576\) −1.67461e33 −0.0523157
\(577\) − 2.32241e33i − 0.0709973i −0.999370 0.0354986i \(-0.988698\pi\)
0.999370 0.0354986i \(-0.0113019\pi\)
\(578\) − 6.31825e33i − 0.189016i
\(579\) 3.27424e33 0.0958579
\(580\) 0 0
\(581\) 1.05082e33 0.0294665
\(582\) − 1.31375e34i − 0.360558i
\(583\) 2.12843e34i 0.571745i
\(584\) −7.39570e33 −0.194455
\(585\) 0 0
\(586\) 3.56627e34 0.898451
\(587\) 4.35047e34i 1.07290i 0.843931 + 0.536451i \(0.180235\pi\)
−0.843931 + 0.536451i \(0.819765\pi\)
\(588\) − 1.57866e34i − 0.381129i
\(589\) 4.24076e33 0.100231
\(590\) 0 0
\(591\) 8.05619e33 0.182510
\(592\) − 1.30796e34i − 0.290117i
\(593\) − 5.31713e34i − 1.15476i −0.816474 0.577382i \(-0.804074\pi\)
0.816474 0.577382i \(-0.195926\pi\)
\(594\) 2.31188e34 0.491626
\(595\) 0 0
\(596\) 2.53074e34 0.516023
\(597\) − 7.17385e34i − 1.43243i
\(598\) 4.71763e32i 0.00922484i
\(599\) −7.13123e34 −1.36562 −0.682809 0.730597i \(-0.739242\pi\)
−0.682809 + 0.730597i \(0.739242\pi\)
\(600\) 0 0
\(601\) 3.07608e34 0.565023 0.282512 0.959264i \(-0.408832\pi\)
0.282512 + 0.959264i \(0.408832\pi\)
\(602\) − 3.91358e32i − 0.00704073i
\(603\) 1.76935e34i 0.311779i
\(604\) −2.85351e33 −0.0492513
\(605\) 0 0
\(606\) −3.86617e34 −0.640284
\(607\) 2.76184e34i 0.448064i 0.974582 + 0.224032i \(0.0719221\pi\)
−0.974582 + 0.224032i \(0.928078\pi\)
\(608\) 1.52658e34i 0.242619i
\(609\) −4.38586e32 −0.00682871
\(610\) 0 0
\(611\) 3.16552e33 0.0473074
\(612\) − 1.22333e34i − 0.179124i
\(613\) − 4.94974e34i − 0.710112i −0.934845 0.355056i \(-0.884462\pi\)
0.934845 0.355056i \(-0.115538\pi\)
\(614\) 1.32848e34 0.186746
\(615\) 0 0
\(616\) 3.26525e32 0.00440715
\(617\) 1.12825e35i 1.49225i 0.665805 + 0.746126i \(0.268088\pi\)
−0.665805 + 0.746126i \(0.731912\pi\)
\(618\) 4.18151e34i 0.541973i
\(619\) −5.35184e34 −0.679782 −0.339891 0.940465i \(-0.610390\pi\)
−0.339891 + 0.940465i \(0.610390\pi\)
\(620\) 0 0
\(621\) −2.39027e34 −0.291610
\(622\) 5.09934e33i 0.0609725i
\(623\) − 1.20562e33i − 0.0141290i
\(624\) −8.03131e32 −0.00922527
\(625\) 0 0
\(626\) −9.56089e34 −1.05516
\(627\) − 6.21809e34i − 0.672687i
\(628\) − 5.52302e34i − 0.585708i
\(629\) 9.55490e34 0.993329
\(630\) 0 0
\(631\) −9.73214e34 −0.972392 −0.486196 0.873850i \(-0.661616\pi\)
−0.486196 + 0.873850i \(0.661616\pi\)
\(632\) − 1.72758e34i − 0.169229i
\(633\) 1.01792e35i 0.977612i
\(634\) 8.66087e34 0.815541
\(635\) 0 0
\(636\) 3.74631e34 0.339148
\(637\) 5.44946e33i 0.0483738i
\(638\) 2.41107e34i 0.209871i
\(639\) 4.14406e34 0.353725
\(640\) 0 0
\(641\) −2.79912e34 −0.229772 −0.114886 0.993379i \(-0.536650\pi\)
−0.114886 + 0.993379i \(0.536650\pi\)
\(642\) − 9.59717e34i − 0.772601i
\(643\) 1.80728e35i 1.42688i 0.700714 + 0.713442i \(0.252865\pi\)
−0.700714 + 0.713442i \(0.747135\pi\)
\(644\) −3.37597e32 −0.00261412
\(645\) 0 0
\(646\) −1.11520e35 −0.830702
\(647\) 7.31933e34i 0.534771i 0.963590 + 0.267385i \(0.0861597\pi\)
−0.963590 + 0.267385i \(0.913840\pi\)
\(648\) − 2.00447e34i − 0.143652i
\(649\) 1.36237e34 0.0957716
\(650\) 0 0
\(651\) −1.59656e32 −0.00108000
\(652\) 8.51262e33i 0.0564896i
\(653\) 7.32271e32i 0.00476713i 0.999997 + 0.00238357i \(0.000758713\pi\)
−0.999997 + 0.00238357i \(0.999241\pi\)
\(654\) −1.20896e35 −0.772128
\(655\) 0 0
\(656\) −3.33229e34 −0.204854
\(657\) 3.81639e34i 0.230190i
\(658\) 2.26526e33i 0.0134059i
\(659\) −3.37009e35 −1.95692 −0.978460 0.206434i \(-0.933814\pi\)
−0.978460 + 0.206434i \(0.933814\pi\)
\(660\) 0 0
\(661\) 1.22749e34 0.0686275 0.0343138 0.999411i \(-0.489075\pi\)
0.0343138 + 0.999411i \(0.489075\pi\)
\(662\) 1.78326e35i 0.978343i
\(663\) − 5.86703e33i − 0.0315863i
\(664\) −1.01679e35 −0.537191
\(665\) 0 0
\(666\) −6.74944e34 −0.343431
\(667\) − 2.49283e34i − 0.124486i
\(668\) 1.41750e34i 0.0694733i
\(669\) −2.28863e35 −1.10090
\(670\) 0 0
\(671\) 2.11447e35 0.979875
\(672\) − 5.74726e32i − 0.00261424i
\(673\) 4.17789e35i 1.86538i 0.360673 + 0.932692i \(0.382547\pi\)
−0.360673 + 0.932692i \(0.617453\pi\)
\(674\) −2.44634e34 −0.107218
\(675\) 0 0
\(676\) −1.18110e35 −0.498829
\(677\) 2.87478e35i 1.19192i 0.803014 + 0.595959i \(0.203228\pi\)
−0.803014 + 0.595959i \(0.796772\pi\)
\(678\) − 2.18830e35i − 0.890707i
\(679\) −3.24527e33 −0.0129682
\(680\) 0 0
\(681\) 2.98459e35 1.14960
\(682\) 8.77688e33i 0.0331922i
\(683\) 3.52227e35i 1.30787i 0.756551 + 0.653935i \(0.226883\pi\)
−0.756551 + 0.653935i \(0.773117\pi\)
\(684\) 7.87759e34 0.287205
\(685\) 0 0
\(686\) −7.80081e33 −0.0274213
\(687\) − 3.83311e35i − 1.32310i
\(688\) 3.78681e34i 0.128357i
\(689\) −1.29321e34 −0.0430455
\(690\) 0 0
\(691\) −1.41869e35 −0.455421 −0.227711 0.973729i \(-0.573124\pi\)
−0.227711 + 0.973729i \(0.573124\pi\)
\(692\) − 1.26578e35i − 0.399053i
\(693\) − 1.68496e33i − 0.00521705i
\(694\) −3.97896e35 −1.20997
\(695\) 0 0
\(696\) 4.24380e34 0.124491
\(697\) − 2.43431e35i − 0.701400i
\(698\) − 2.95233e35i − 0.835550i
\(699\) −1.75901e35 −0.488995
\(700\) 0 0
\(701\) 4.11949e35 1.10502 0.552508 0.833508i \(-0.313671\pi\)
0.552508 + 0.833508i \(0.313671\pi\)
\(702\) 1.40467e34i 0.0370136i
\(703\) 6.15282e35i 1.59270i
\(704\) −3.15948e34 −0.0803448
\(705\) 0 0
\(706\) −2.85986e35 −0.701917
\(707\) 9.55036e33i 0.0230291i
\(708\) − 2.39795e34i − 0.0568099i
\(709\) 3.69515e35 0.860110 0.430055 0.902803i \(-0.358494\pi\)
0.430055 + 0.902803i \(0.358494\pi\)
\(710\) 0 0
\(711\) −8.91480e34 −0.200328
\(712\) 1.16657e35i 0.257579i
\(713\) − 9.07449e33i − 0.0196881i
\(714\) 4.19849e33 0.00895087
\(715\) 0 0
\(716\) −9.16700e34 −0.188718
\(717\) − 4.66674e35i − 0.944114i
\(718\) − 5.48333e35i − 1.09016i
\(719\) −2.40654e35 −0.470200 −0.235100 0.971971i \(-0.575542\pi\)
−0.235100 + 0.971971i \(0.575542\pi\)
\(720\) 0 0
\(721\) 1.03293e34 0.0194931
\(722\) − 3.36883e35i − 0.624834i
\(723\) 1.94818e35i 0.355141i
\(724\) 4.60282e35 0.824693
\(725\) 0 0
\(726\) −1.82807e35 −0.316436
\(727\) − 2.82511e34i − 0.0480680i −0.999711 0.0240340i \(-0.992349\pi\)
0.999711 0.0240340i \(-0.00765099\pi\)
\(728\) 1.98393e32i 0 0.000331805i
\(729\) −6.05157e35 −0.994888
\(730\) 0 0
\(731\) −2.76634e35 −0.439479
\(732\) − 3.72175e35i − 0.581244i
\(733\) − 1.13647e36i − 1.74486i −0.488743 0.872428i \(-0.662544\pi\)
0.488743 0.872428i \(-0.337456\pi\)
\(734\) 2.71963e35 0.410495
\(735\) 0 0
\(736\) 3.26662e34 0.0476568
\(737\) 3.33822e35i 0.478819i
\(738\) 1.71956e35i 0.242500i
\(739\) 7.59548e35 1.05317 0.526587 0.850121i \(-0.323472\pi\)
0.526587 + 0.850121i \(0.323472\pi\)
\(740\) 0 0
\(741\) 3.77804e34 0.0506453
\(742\) − 9.25428e33i − 0.0121982i
\(743\) 2.06273e35i 0.267352i 0.991025 + 0.133676i \(0.0426781\pi\)
−0.991025 + 0.133676i \(0.957322\pi\)
\(744\) 1.54484e34 0.0196890
\(745\) 0 0
\(746\) −8.95193e35 −1.10327
\(747\) 5.24691e35i 0.635911i
\(748\) − 2.30807e35i − 0.275092i
\(749\) −2.37073e34 −0.0277881
\(750\) 0 0
\(751\) −7.61805e34 −0.0863664 −0.0431832 0.999067i \(-0.513750\pi\)
−0.0431832 + 0.999067i \(0.513750\pi\)
\(752\) − 2.19189e35i − 0.244397i
\(753\) − 1.04595e36i − 1.14703i
\(754\) −1.46494e34 −0.0158008
\(755\) 0 0
\(756\) −1.00519e34 −0.0104888
\(757\) 1.93605e36i 1.98709i 0.113428 + 0.993546i \(0.463817\pi\)
−0.113428 + 0.993546i \(0.536183\pi\)
\(758\) − 6.09530e35i − 0.615362i
\(759\) −1.33056e35 −0.132134
\(760\) 0 0
\(761\) 1.19339e36 1.14677 0.573383 0.819288i \(-0.305631\pi\)
0.573383 + 0.819288i \(0.305631\pi\)
\(762\) − 7.19527e35i − 0.680158i
\(763\) 2.98642e34i 0.0277711i
\(764\) 4.25364e35 0.389129
\(765\) 0 0
\(766\) 8.57374e35 0.759121
\(767\) 8.27761e33i 0.00721046i
\(768\) 5.56110e34i 0.0476590i
\(769\) 9.68810e35 0.816882 0.408441 0.912785i \(-0.366073\pi\)
0.408441 + 0.912785i \(0.366073\pi\)
\(770\) 0 0
\(771\) 5.11899e35 0.417835
\(772\) 7.82616e34i 0.0628540i
\(773\) 8.25175e35i 0.652082i 0.945356 + 0.326041i \(0.105715\pi\)
−0.945356 + 0.326041i \(0.894285\pi\)
\(774\) 1.95410e35 0.151945
\(775\) 0 0
\(776\) 3.14015e35 0.236417
\(777\) − 2.31641e34i − 0.0171614i
\(778\) − 1.14248e36i − 0.832923i
\(779\) 1.56756e36 1.12462
\(780\) 0 0
\(781\) 7.81861e35 0.543240
\(782\) 2.38633e35i 0.163172i
\(783\) − 7.42239e35i − 0.499484i
\(784\) 3.77335e35 0.249906
\(785\) 0 0
\(786\) −9.85801e35 −0.632423
\(787\) 8.02076e35i 0.506444i 0.967408 + 0.253222i \(0.0814903\pi\)
−0.967408 + 0.253222i \(0.918510\pi\)
\(788\) 1.92561e35i 0.119672i
\(789\) −4.12975e35 −0.252616
\(790\) 0 0
\(791\) −5.40562e34 −0.0320361
\(792\) 1.63038e35i 0.0951097i
\(793\) 1.28473e35i 0.0737729i
\(794\) 1.73246e36 0.979279
\(795\) 0 0
\(796\) 1.71471e36 0.939243
\(797\) 8.65699e35i 0.466807i 0.972380 + 0.233404i \(0.0749864\pi\)
−0.972380 + 0.233404i \(0.925014\pi\)
\(798\) 2.70359e34i 0.0143518i
\(799\) 1.60122e36 0.836789
\(800\) 0 0
\(801\) 6.01984e35 0.304915
\(802\) 1.06246e36i 0.529824i
\(803\) 7.20038e35i 0.353518i
\(804\) 5.87570e35 0.284027
\(805\) 0 0
\(806\) −5.33273e33 −0.00249897
\(807\) − 8.59226e35i − 0.396450i
\(808\) − 9.24101e35i − 0.419834i
\(809\) 3.72457e36 1.66617 0.833086 0.553144i \(-0.186572\pi\)
0.833086 + 0.553144i \(0.186572\pi\)
\(810\) 0 0
\(811\) 6.42225e35 0.278565 0.139282 0.990253i \(-0.455520\pi\)
0.139282 + 0.990253i \(0.455520\pi\)
\(812\) − 1.04832e34i − 0.00447758i
\(813\) − 1.07817e36i − 0.453476i
\(814\) −1.27342e36 −0.527431
\(815\) 0 0
\(816\) −4.06249e35 −0.163180
\(817\) − 1.78137e36i − 0.704657i
\(818\) 2.99560e36i 1.16699i
\(819\) 1.02376e33 0.000392781 0
\(820\) 0 0
\(821\) −2.68244e36 −0.998254 −0.499127 0.866529i \(-0.666346\pi\)
−0.499127 + 0.866529i \(0.666346\pi\)
\(822\) 4.15258e35i 0.152202i
\(823\) 8.11664e35i 0.293007i 0.989210 + 0.146504i \(0.0468020\pi\)
−0.989210 + 0.146504i \(0.953198\pi\)
\(824\) −9.99476e35 −0.355371
\(825\) 0 0
\(826\) −5.92351e33 −0.00204328
\(827\) − 1.42939e36i − 0.485661i −0.970069 0.242830i \(-0.921924\pi\)
0.970069 0.242830i \(-0.0780758\pi\)
\(828\) − 1.68567e35i − 0.0564147i
\(829\) 1.47702e36 0.486915 0.243458 0.969912i \(-0.421718\pi\)
0.243458 + 0.969912i \(0.421718\pi\)
\(830\) 0 0
\(831\) 3.03668e35 0.0971374
\(832\) − 1.91966e34i − 0.00604900i
\(833\) 2.75651e36i 0.855652i
\(834\) −1.41825e36 −0.433687
\(835\) 0 0
\(836\) 1.48626e36 0.441080
\(837\) − 2.70193e35i − 0.0789960i
\(838\) − 2.55989e36i − 0.737344i
\(839\) −3.59874e36 −1.02124 −0.510618 0.859808i \(-0.670583\pi\)
−0.510618 + 0.859808i \(0.670583\pi\)
\(840\) 0 0
\(841\) −2.85628e36 −0.786775
\(842\) 1.02878e36i 0.279204i
\(843\) − 2.55261e36i − 0.682559i
\(844\) −2.43306e36 −0.641020
\(845\) 0 0
\(846\) −1.13108e36 −0.289310
\(847\) 4.51578e34i 0.0113813i
\(848\) 8.95452e35i 0.222379i
\(849\) −5.88823e36 −1.44092
\(850\) 0 0
\(851\) 1.31660e36 0.312848
\(852\) − 1.37618e36i − 0.322240i
\(853\) − 2.51059e36i − 0.579312i −0.957131 0.289656i \(-0.906459\pi\)
0.957131 0.289656i \(-0.0935409\pi\)
\(854\) −9.19361e34 −0.0209056
\(855\) 0 0
\(856\) 2.29394e36 0.506594
\(857\) − 1.62785e36i − 0.354286i −0.984185 0.177143i \(-0.943314\pi\)
0.984185 0.177143i \(-0.0566855\pi\)
\(858\) 7.81921e34i 0.0167715i
\(859\) −1.44920e36 −0.306348 −0.153174 0.988199i \(-0.548949\pi\)
−0.153174 + 0.988199i \(0.548949\pi\)
\(860\) 0 0
\(861\) −5.90153e34 −0.0121178
\(862\) 6.36440e36i 1.28800i
\(863\) − 5.15478e36i − 1.02819i −0.857732 0.514097i \(-0.828127\pi\)
0.857732 0.514097i \(-0.171873\pi\)
\(864\) 9.72634e35 0.191217
\(865\) 0 0
\(866\) −4.43796e36 −0.847637
\(867\) 1.08272e36i 0.203835i
\(868\) − 3.81614e33i 0 0.000708154i
\(869\) −1.68196e36 −0.307657
\(870\) 0 0
\(871\) −2.02826e35 −0.0360494
\(872\) − 2.88968e36i − 0.506284i
\(873\) − 1.62041e36i − 0.279864i
\(874\) −1.53666e36 −0.261629
\(875\) 0 0
\(876\) 1.26736e36 0.209700
\(877\) − 1.01431e37i − 1.65453i −0.561810 0.827266i \(-0.689895\pi\)
0.561810 0.827266i \(-0.310105\pi\)
\(878\) 6.81602e36i 1.09610i
\(879\) −6.11132e36 −0.968890
\(880\) 0 0
\(881\) −3.63479e36 −0.560120 −0.280060 0.959983i \(-0.590354\pi\)
−0.280060 + 0.959983i \(0.590354\pi\)
\(882\) − 1.94716e36i − 0.295831i
\(883\) − 4.65240e36i − 0.696896i −0.937328 0.348448i \(-0.886709\pi\)
0.937328 0.348448i \(-0.113291\pi\)
\(884\) 1.40235e35 0.0207111
\(885\) 0 0
\(886\) −1.54589e36 −0.221952
\(887\) 9.05035e35i 0.128121i 0.997946 + 0.0640604i \(0.0204050\pi\)
−0.997946 + 0.0640604i \(0.979595\pi\)
\(888\) 2.24138e36i 0.312862i
\(889\) −1.77741e35 −0.0244633
\(890\) 0 0
\(891\) −1.95154e36 −0.261159
\(892\) − 5.47034e36i − 0.721861i
\(893\) 1.03110e37i 1.34170i
\(894\) −4.33679e36 −0.556480
\(895\) 0 0
\(896\) 1.37373e34 0.00171415
\(897\) − 8.08434e34i − 0.00994808i
\(898\) 8.84413e36i 1.07325i
\(899\) 2.81785e35 0.0337227
\(900\) 0 0
\(901\) −6.54146e36 −0.761403
\(902\) 3.24429e36i 0.372424i
\(903\) 6.70648e34i 0.00759273i
\(904\) 5.23052e36 0.584036
\(905\) 0 0
\(906\) 4.88991e35 0.0531127
\(907\) − 3.58423e36i − 0.383977i −0.981397 0.191988i \(-0.938506\pi\)
0.981397 0.191988i \(-0.0614936\pi\)
\(908\) 7.13385e36i 0.753791i
\(909\) −4.76862e36 −0.496986
\(910\) 0 0
\(911\) 5.15388e36 0.522582 0.261291 0.965260i \(-0.415852\pi\)
0.261291 + 0.965260i \(0.415852\pi\)
\(912\) − 2.61602e36i − 0.261641i
\(913\) 9.89934e36i 0.976611i
\(914\) 3.54356e34 0.00344836
\(915\) 0 0
\(916\) 9.16200e36 0.867555
\(917\) 2.43517e35i 0.0227464i
\(918\) 7.10528e36i 0.654708i
\(919\) −1.45442e36 −0.132205 −0.0661023 0.997813i \(-0.521056\pi\)
−0.0661023 + 0.997813i \(0.521056\pi\)
\(920\) 0 0
\(921\) −2.27655e36 −0.201387
\(922\) 1.29086e37i 1.12653i
\(923\) 4.75049e35i 0.0408994i
\(924\) −5.59548e34 −0.00475267
\(925\) 0 0
\(926\) 1.20307e37 0.994614
\(927\) 5.15758e36i 0.420678i
\(928\) 1.01436e36i 0.0816289i
\(929\) −1.48492e37 −1.17898 −0.589491 0.807775i \(-0.700672\pi\)
−0.589491 + 0.807775i \(0.700672\pi\)
\(930\) 0 0
\(931\) −1.77504e37 −1.37194
\(932\) − 4.20444e36i − 0.320634i
\(933\) − 8.73845e35i − 0.0657528i
\(934\) −9.34208e36 −0.693598
\(935\) 0 0
\(936\) −9.90602e34 −0.00716063
\(937\) 4.13990e36i 0.295288i 0.989041 + 0.147644i \(0.0471689\pi\)
−0.989041 + 0.147644i \(0.952831\pi\)
\(938\) − 1.45144e35i − 0.0102156i
\(939\) 1.63840e37 1.13789
\(940\) 0 0
\(941\) 3.04574e36 0.205979 0.102989 0.994682i \(-0.467159\pi\)
0.102989 + 0.994682i \(0.467159\pi\)
\(942\) 9.46450e36i 0.631628i
\(943\) − 3.35430e36i − 0.220905i
\(944\) 5.73164e35 0.0372502
\(945\) 0 0
\(946\) 3.68680e36 0.233352
\(947\) 1.93836e37i 1.21076i 0.795935 + 0.605382i \(0.206980\pi\)
−0.795935 + 0.605382i \(0.793020\pi\)
\(948\) 2.96046e36i 0.182497i
\(949\) −4.37487e35 −0.0266157
\(950\) 0 0
\(951\) −1.48417e37 −0.879480
\(952\) 1.00353e35i 0.00586908i
\(953\) 7.72509e35i 0.0445905i 0.999751 + 0.0222952i \(0.00709738\pi\)
−0.999751 + 0.0222952i \(0.992903\pi\)
\(954\) 4.62079e36 0.263246
\(955\) 0 0
\(956\) 1.11546e37 0.619055
\(957\) − 4.13172e36i − 0.226325i
\(958\) − 3.26522e36i − 0.176540i
\(959\) 1.02579e35 0.00547425
\(960\) 0 0
\(961\) −1.91302e37 −0.994667
\(962\) − 7.73713e35i − 0.0397092i
\(963\) − 1.18374e37i − 0.599690i
\(964\) −4.65659e36 −0.232866
\(965\) 0 0
\(966\) 5.78521e34 0.00281907
\(967\) − 6.95372e36i − 0.334492i −0.985915 0.167246i \(-0.946513\pi\)
0.985915 0.167246i \(-0.0534874\pi\)
\(968\) − 4.36951e36i − 0.207487i
\(969\) 1.91105e37 0.895830
\(970\) 0 0
\(971\) 2.67539e37 1.22221 0.611106 0.791549i \(-0.290725\pi\)
0.611106 + 0.791549i \(0.290725\pi\)
\(972\) − 8.55729e36i − 0.385930i
\(973\) 3.50341e35i 0.0155984i
\(974\) −3.00038e36 −0.131883
\(975\) 0 0
\(976\) 8.89581e36 0.381121
\(977\) 2.82491e37i 1.19488i 0.801915 + 0.597438i \(0.203815\pi\)
−0.801915 + 0.597438i \(0.796185\pi\)
\(978\) − 1.45876e36i − 0.0609184i
\(979\) 1.13576e37 0.468278
\(980\) 0 0
\(981\) −1.49116e37 −0.599323
\(982\) 9.65226e36i 0.383032i
\(983\) − 3.52532e37i − 1.38127i −0.723203 0.690636i \(-0.757331\pi\)
0.723203 0.690636i \(-0.242669\pi\)
\(984\) 5.71037e36 0.220915
\(985\) 0 0
\(986\) −7.41013e36 −0.279489
\(987\) − 3.88186e35i − 0.0144569i
\(988\) 9.03037e35i 0.0332081i
\(989\) −3.81182e36 −0.138413
\(990\) 0 0
\(991\) −1.01549e36 −0.0359547 −0.0179774 0.999838i \(-0.505723\pi\)
−0.0179774 + 0.999838i \(0.505723\pi\)
\(992\) 3.69253e35i 0.0129100i
\(993\) − 3.05588e37i − 1.05505i
\(994\) −3.39948e35 −0.0115900
\(995\) 0 0
\(996\) 1.74241e37 0.579308
\(997\) − 5.04007e37i − 1.65481i −0.561608 0.827403i \(-0.689817\pi\)
0.561608 0.827403i \(-0.310183\pi\)
\(998\) 4.57509e36i 0.148343i
\(999\) 3.92016e37 1.25526
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 50.26.b.c.49.2 4
5.2 odd 4 50.26.a.e.1.2 2
5.3 odd 4 10.26.a.c.1.1 2
5.4 even 2 inner 50.26.b.c.49.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.26.a.c.1.1 2 5.3 odd 4
50.26.a.e.1.2 2 5.2 odd 4
50.26.b.c.49.2 4 1.1 even 1 trivial
50.26.b.c.49.3 4 5.4 even 2 inner