Properties

Label 50.26.a.l.1.5
Level $50$
Weight $26$
Character 50.1
Self dual yes
Analytic conductor $197.998$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [50,26,Mod(1,50)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(50, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 26, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("50.1");
 
S:= CuspForms(chi, 26);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 26 \)
Character orbit: \([\chi]\) \(=\) 50.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(197.998389976\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2 x^{5} - 27590779188 x^{4} + 26487255863952 x^{3} + \cdots - 30\!\cdots\!08 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{20}\cdot 3^{4}\cdot 5^{18} \)
Twist minimal: no (minimal twist has level 10)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-115041.\) of defining polynomial
Character \(\chi\) \(=\) 50.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4096.00 q^{2} +1.01684e6 q^{3} +1.67772e7 q^{4} +4.16497e9 q^{6} -1.16326e10 q^{7} +6.87195e10 q^{8} +1.86674e11 q^{9} -5.94667e12 q^{11} +1.70597e13 q^{12} -8.19186e13 q^{13} -4.76472e13 q^{14} +2.81475e14 q^{16} +1.37679e15 q^{17} +7.64617e14 q^{18} +4.66320e15 q^{19} -1.18285e16 q^{21} -2.43576e16 q^{22} +9.70196e16 q^{23} +6.98767e16 q^{24} -3.35539e17 q^{26} -6.71739e17 q^{27} -1.95163e17 q^{28} -1.92842e18 q^{29} +5.14163e18 q^{31} +1.15292e18 q^{32} -6.04681e18 q^{33} +5.63933e18 q^{34} +3.13187e18 q^{36} -4.77086e19 q^{37} +1.91005e19 q^{38} -8.32981e19 q^{39} +1.13507e20 q^{41} -4.84495e19 q^{42} +9.41611e18 q^{43} -9.97685e19 q^{44} +3.97392e20 q^{46} -1.09883e21 q^{47} +2.86215e20 q^{48} -1.20575e21 q^{49} +1.39998e21 q^{51} -1.37437e21 q^{52} +6.11805e20 q^{53} -2.75144e21 q^{54} -7.99387e20 q^{56} +4.74172e21 q^{57} -7.89879e21 q^{58} -1.74642e22 q^{59} +2.94578e21 q^{61} +2.10601e22 q^{62} -2.17151e21 q^{63} +4.72237e21 q^{64} -2.47677e22 q^{66} -5.85392e22 q^{67} +2.30987e22 q^{68} +9.86533e22 q^{69} -2.27224e23 q^{71} +1.28281e22 q^{72} -2.69974e23 q^{73} -1.95415e23 q^{74} +7.82355e22 q^{76} +6.91753e22 q^{77} -3.41189e23 q^{78} -9.35155e23 q^{79} -8.41218e23 q^{81} +4.64926e23 q^{82} +1.71255e24 q^{83} -1.98449e23 q^{84} +3.85684e22 q^{86} -1.96089e24 q^{87} -4.08652e23 q^{88} -2.89830e24 q^{89} +9.52927e23 q^{91} +1.62772e24 q^{92} +5.22821e24 q^{93} -4.50081e24 q^{94} +1.17234e24 q^{96} +1.13099e24 q^{97} -4.93876e24 q^{98} -1.11009e24 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 24576 q^{2} - 801416 q^{3} + 100663296 q^{4} - 3282599936 q^{6} - 34007705352 q^{7} + 412316860416 q^{8} + 541468782118 q^{9} + 9861544614312 q^{11} - 13445529337856 q^{12} - 30787386783696 q^{13}+ \cdots - 20\!\cdots\!64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4096.00 0.707107
\(3\) 1.01684e6 1.10468 0.552340 0.833619i \(-0.313735\pi\)
0.552340 + 0.833619i \(0.313735\pi\)
\(4\) 1.67772e7 0.500000
\(5\) 0 0
\(6\) 4.16497e9 0.781127
\(7\) −1.16326e10 −0.317652 −0.158826 0.987307i \(-0.550771\pi\)
−0.158826 + 0.987307i \(0.550771\pi\)
\(8\) 6.87195e10 0.353553
\(9\) 1.86674e11 0.220319
\(10\) 0 0
\(11\) −5.94667e12 −0.571301 −0.285651 0.958334i \(-0.592210\pi\)
−0.285651 + 0.958334i \(0.592210\pi\)
\(12\) 1.70597e13 0.552340
\(13\) −8.19186e13 −0.975193 −0.487597 0.873069i \(-0.662126\pi\)
−0.487597 + 0.873069i \(0.662126\pi\)
\(14\) −4.76472e13 −0.224614
\(15\) 0 0
\(16\) 2.81475e14 0.250000
\(17\) 1.37679e15 0.573134 0.286567 0.958060i \(-0.407486\pi\)
0.286567 + 0.958060i \(0.407486\pi\)
\(18\) 7.64617e14 0.155789
\(19\) 4.66320e15 0.483352 0.241676 0.970357i \(-0.422303\pi\)
0.241676 + 0.970357i \(0.422303\pi\)
\(20\) 0 0
\(21\) −1.18285e16 −0.350904
\(22\) −2.43576e16 −0.403971
\(23\) 9.70196e16 0.923127 0.461563 0.887107i \(-0.347289\pi\)
0.461563 + 0.887107i \(0.347289\pi\)
\(24\) 6.98767e16 0.390564
\(25\) 0 0
\(26\) −3.35539e17 −0.689566
\(27\) −6.71739e17 −0.861298
\(28\) −1.95163e17 −0.158826
\(29\) −1.92842e18 −1.01211 −0.506053 0.862503i \(-0.668896\pi\)
−0.506053 + 0.862503i \(0.668896\pi\)
\(30\) 0 0
\(31\) 5.14163e18 1.17241 0.586205 0.810163i \(-0.300621\pi\)
0.586205 + 0.810163i \(0.300621\pi\)
\(32\) 1.15292e18 0.176777
\(33\) −6.04681e18 −0.631105
\(34\) 5.63933e18 0.405267
\(35\) 0 0
\(36\) 3.13187e18 0.110160
\(37\) −4.77086e19 −1.19145 −0.595725 0.803189i \(-0.703135\pi\)
−0.595725 + 0.803189i \(0.703135\pi\)
\(38\) 1.91005e19 0.341782
\(39\) −8.32981e19 −1.07728
\(40\) 0 0
\(41\) 1.13507e20 0.785644 0.392822 0.919615i \(-0.371499\pi\)
0.392822 + 0.919615i \(0.371499\pi\)
\(42\) −4.84495e19 −0.248127
\(43\) 9.41611e18 0.0359348 0.0179674 0.999839i \(-0.494280\pi\)
0.0179674 + 0.999839i \(0.494280\pi\)
\(44\) −9.97685e19 −0.285651
\(45\) 0 0
\(46\) 3.97392e20 0.652749
\(47\) −1.09883e21 −1.37946 −0.689728 0.724069i \(-0.742270\pi\)
−0.689728 + 0.724069i \(0.742270\pi\)
\(48\) 2.86215e20 0.276170
\(49\) −1.20575e21 −0.899097
\(50\) 0 0
\(51\) 1.39998e21 0.633130
\(52\) −1.37437e21 −0.487597
\(53\) 6.11805e20 0.171066 0.0855331 0.996335i \(-0.472741\pi\)
0.0855331 + 0.996335i \(0.472741\pi\)
\(54\) −2.75144e21 −0.609030
\(55\) 0 0
\(56\) −7.99387e20 −0.112307
\(57\) 4.74172e21 0.533950
\(58\) −7.89879e21 −0.715667
\(59\) −1.74642e22 −1.27791 −0.638954 0.769245i \(-0.720632\pi\)
−0.638954 + 0.769245i \(0.720632\pi\)
\(60\) 0 0
\(61\) 2.94578e21 0.142095 0.0710473 0.997473i \(-0.477366\pi\)
0.0710473 + 0.997473i \(0.477366\pi\)
\(62\) 2.10601e22 0.829019
\(63\) −2.17151e21 −0.0699849
\(64\) 4.72237e21 0.125000
\(65\) 0 0
\(66\) −2.47677e22 −0.446259
\(67\) −5.85392e22 −0.874001 −0.437000 0.899461i \(-0.643959\pi\)
−0.437000 + 0.899461i \(0.643959\pi\)
\(68\) 2.30987e22 0.286567
\(69\) 9.86533e22 1.01976
\(70\) 0 0
\(71\) −2.27224e23 −1.64333 −0.821665 0.569970i \(-0.806955\pi\)
−0.821665 + 0.569970i \(0.806955\pi\)
\(72\) 1.28281e22 0.0778946
\(73\) −2.69974e23 −1.37971 −0.689853 0.723949i \(-0.742325\pi\)
−0.689853 + 0.723949i \(0.742325\pi\)
\(74\) −1.95415e23 −0.842482
\(75\) 0 0
\(76\) 7.82355e22 0.241676
\(77\) 6.91753e22 0.181475
\(78\) −3.41189e23 −0.761750
\(79\) −9.35155e23 −1.78051 −0.890257 0.455459i \(-0.849475\pi\)
−0.890257 + 0.455459i \(0.849475\pi\)
\(80\) 0 0
\(81\) −8.41218e23 −1.17178
\(82\) 4.64926e23 0.555534
\(83\) 1.71255e24 1.75860 0.879302 0.476264i \(-0.158009\pi\)
0.879302 + 0.476264i \(0.158009\pi\)
\(84\) −1.98449e23 −0.175452
\(85\) 0 0
\(86\) 3.85684e22 0.0254098
\(87\) −1.96089e24 −1.11805
\(88\) −4.08652e23 −0.201985
\(89\) −2.89830e24 −1.24385 −0.621926 0.783076i \(-0.713650\pi\)
−0.621926 + 0.783076i \(0.713650\pi\)
\(90\) 0 0
\(91\) 9.52927e23 0.309772
\(92\) 1.62772e24 0.461563
\(93\) 5.22821e24 1.29514
\(94\) −4.50081e24 −0.975422
\(95\) 0 0
\(96\) 1.17234e24 0.195282
\(97\) 1.13099e24 0.165506 0.0827529 0.996570i \(-0.473629\pi\)
0.0827529 + 0.996570i \(0.473629\pi\)
\(98\) −4.93876e24 −0.635758
\(99\) −1.11009e24 −0.125869
\(100\) 0 0
\(101\) −1.20834e25 −1.06702 −0.533510 0.845794i \(-0.679127\pi\)
−0.533510 + 0.845794i \(0.679127\pi\)
\(102\) 5.73430e24 0.447691
\(103\) 1.70464e23 0.0117806 0.00589030 0.999983i \(-0.498125\pi\)
0.00589030 + 0.999983i \(0.498125\pi\)
\(104\) −5.62940e24 −0.344783
\(105\) 0 0
\(106\) 2.50595e24 0.120962
\(107\) −1.25315e25 −0.537906 −0.268953 0.963153i \(-0.586678\pi\)
−0.268953 + 0.963153i \(0.586678\pi\)
\(108\) −1.12699e25 −0.430649
\(109\) 5.31922e25 1.81141 0.905704 0.423910i \(-0.139343\pi\)
0.905704 + 0.423910i \(0.139343\pi\)
\(110\) 0 0
\(111\) −4.85120e25 −1.31617
\(112\) −3.27429e24 −0.0794130
\(113\) −1.81999e25 −0.394991 −0.197496 0.980304i \(-0.563281\pi\)
−0.197496 + 0.980304i \(0.563281\pi\)
\(114\) 1.94221e25 0.377560
\(115\) 0 0
\(116\) −3.23535e25 −0.506053
\(117\) −1.52921e25 −0.214854
\(118\) −7.15335e25 −0.903617
\(119\) −1.60157e25 −0.182057
\(120\) 0 0
\(121\) −7.29842e25 −0.673615
\(122\) 1.20659e25 0.100476
\(123\) 1.15419e26 0.867886
\(124\) 8.62622e25 0.586205
\(125\) 0 0
\(126\) −8.89449e24 −0.0494868
\(127\) 4.54166e25 0.228912 0.114456 0.993428i \(-0.463488\pi\)
0.114456 + 0.993428i \(0.463488\pi\)
\(128\) 1.93428e25 0.0883883
\(129\) 9.57467e24 0.0396965
\(130\) 0 0
\(131\) 3.22369e26 1.10271 0.551356 0.834270i \(-0.314110\pi\)
0.551356 + 0.834270i \(0.314110\pi\)
\(132\) −1.01449e26 −0.315553
\(133\) −5.42452e25 −0.153538
\(134\) −2.39777e26 −0.618012
\(135\) 0 0
\(136\) 9.46123e25 0.202634
\(137\) 5.61602e26 1.09754 0.548771 0.835973i \(-0.315096\pi\)
0.548771 + 0.835973i \(0.315096\pi\)
\(138\) 4.04084e26 0.721079
\(139\) −7.44482e26 −1.21386 −0.606931 0.794755i \(-0.707600\pi\)
−0.606931 + 0.794755i \(0.707600\pi\)
\(140\) 0 0
\(141\) −1.11733e27 −1.52386
\(142\) −9.30710e26 −1.16201
\(143\) 4.87143e26 0.557129
\(144\) 5.25441e25 0.0550798
\(145\) 0 0
\(146\) −1.10581e27 −0.975600
\(147\) −1.22606e27 −0.993215
\(148\) −8.00418e26 −0.595725
\(149\) −9.58450e26 −0.655754 −0.327877 0.944720i \(-0.606333\pi\)
−0.327877 + 0.944720i \(0.606333\pi\)
\(150\) 0 0
\(151\) 8.90889e26 0.515955 0.257978 0.966151i \(-0.416944\pi\)
0.257978 + 0.966151i \(0.416944\pi\)
\(152\) 3.20452e26 0.170891
\(153\) 2.57011e26 0.126273
\(154\) 2.83342e26 0.128322
\(155\) 0 0
\(156\) −1.39751e27 −0.538639
\(157\) 4.44904e27 1.58314 0.791572 0.611076i \(-0.209263\pi\)
0.791572 + 0.611076i \(0.209263\pi\)
\(158\) −3.83040e27 −1.25901
\(159\) 6.22107e26 0.188974
\(160\) 0 0
\(161\) −1.12859e27 −0.293233
\(162\) −3.44563e27 −0.828573
\(163\) −1.89357e27 −0.421634 −0.210817 0.977526i \(-0.567612\pi\)
−0.210817 + 0.977526i \(0.567612\pi\)
\(164\) 1.90434e27 0.392822
\(165\) 0 0
\(166\) 7.01462e27 1.24352
\(167\) −2.78772e27 −0.458451 −0.229226 0.973373i \(-0.573619\pi\)
−0.229226 + 0.973373i \(0.573619\pi\)
\(168\) −8.12848e26 −0.124063
\(169\) −3.45751e26 −0.0489982
\(170\) 0 0
\(171\) 8.70498e26 0.106492
\(172\) 1.57976e26 0.0179674
\(173\) 1.54571e28 1.63513 0.817565 0.575836i \(-0.195323\pi\)
0.817565 + 0.575836i \(0.195323\pi\)
\(174\) −8.03180e27 −0.790583
\(175\) 0 0
\(176\) −1.67384e27 −0.142825
\(177\) −1.77583e28 −1.41168
\(178\) −1.18715e28 −0.879536
\(179\) 1.48885e28 1.02846 0.514232 0.857651i \(-0.328077\pi\)
0.514232 + 0.857651i \(0.328077\pi\)
\(180\) 0 0
\(181\) 2.99166e28 1.79858 0.899291 0.437351i \(-0.144083\pi\)
0.899291 + 0.437351i \(0.144083\pi\)
\(182\) 3.90319e27 0.219042
\(183\) 2.99539e27 0.156969
\(184\) 6.66713e27 0.326375
\(185\) 0 0
\(186\) 2.14148e28 0.915802
\(187\) −8.18732e27 −0.327432
\(188\) −1.84353e28 −0.689728
\(189\) 7.81408e27 0.273593
\(190\) 0 0
\(191\) 1.13139e28 0.347292 0.173646 0.984808i \(-0.444445\pi\)
0.173646 + 0.984808i \(0.444445\pi\)
\(192\) 4.80189e27 0.138085
\(193\) 6.86928e26 0.0185116 0.00925582 0.999957i \(-0.497054\pi\)
0.00925582 + 0.999957i \(0.497054\pi\)
\(194\) 4.63255e27 0.117030
\(195\) 0 0
\(196\) −2.02291e28 −0.449549
\(197\) −7.22234e28 −1.50609 −0.753044 0.657970i \(-0.771415\pi\)
−0.753044 + 0.657970i \(0.771415\pi\)
\(198\) −4.54692e27 −0.0890026
\(199\) 6.41046e28 1.17822 0.589110 0.808053i \(-0.299479\pi\)
0.589110 + 0.808053i \(0.299479\pi\)
\(200\) 0 0
\(201\) −5.95250e28 −0.965492
\(202\) −4.94936e28 −0.754497
\(203\) 2.24325e28 0.321497
\(204\) 2.34877e28 0.316565
\(205\) 0 0
\(206\) 6.98220e26 0.00833014
\(207\) 1.81110e28 0.203383
\(208\) −2.30580e28 −0.243798
\(209\) −2.77305e28 −0.276140
\(210\) 0 0
\(211\) −2.74461e28 −0.242633 −0.121317 0.992614i \(-0.538712\pi\)
−0.121317 + 0.992614i \(0.538712\pi\)
\(212\) 1.02644e28 0.0855331
\(213\) −2.31050e29 −1.81536
\(214\) −5.13290e28 −0.380357
\(215\) 0 0
\(216\) −4.61616e28 −0.304515
\(217\) −5.98106e28 −0.372419
\(218\) 2.17875e29 1.28086
\(219\) −2.74521e29 −1.52414
\(220\) 0 0
\(221\) −1.12785e29 −0.558917
\(222\) −1.98705e29 −0.930673
\(223\) −2.58596e29 −1.14502 −0.572508 0.819899i \(-0.694029\pi\)
−0.572508 + 0.819899i \(0.694029\pi\)
\(224\) −1.34115e28 −0.0561535
\(225\) 0 0
\(226\) −7.45466e28 −0.279301
\(227\) −4.86361e29 −1.72439 −0.862194 0.506578i \(-0.830910\pi\)
−0.862194 + 0.506578i \(0.830910\pi\)
\(228\) 7.95529e28 0.266975
\(229\) −4.91096e29 −1.56035 −0.780176 0.625560i \(-0.784870\pi\)
−0.780176 + 0.625560i \(0.784870\pi\)
\(230\) 0 0
\(231\) 7.03402e28 0.200472
\(232\) −1.32520e29 −0.357833
\(233\) −2.93368e29 −0.750696 −0.375348 0.926884i \(-0.622477\pi\)
−0.375348 + 0.926884i \(0.622477\pi\)
\(234\) −6.26363e28 −0.151925
\(235\) 0 0
\(236\) −2.93001e29 −0.638954
\(237\) −9.50903e29 −1.96690
\(238\) −6.56002e28 −0.128734
\(239\) −2.65452e28 −0.0494324 −0.0247162 0.999695i \(-0.507868\pi\)
−0.0247162 + 0.999695i \(0.507868\pi\)
\(240\) 0 0
\(241\) −6.46401e27 −0.0108465 −0.00542324 0.999985i \(-0.501726\pi\)
−0.00542324 + 0.999985i \(0.501726\pi\)
\(242\) −2.98943e29 −0.476318
\(243\) −2.86226e29 −0.433143
\(244\) 4.94220e28 0.0710473
\(245\) 0 0
\(246\) 4.72755e29 0.613688
\(247\) −3.82003e29 −0.471362
\(248\) 3.53330e29 0.414510
\(249\) 1.74139e30 1.94270
\(250\) 0 0
\(251\) −5.06787e29 −0.511569 −0.255785 0.966734i \(-0.582334\pi\)
−0.255785 + 0.966734i \(0.582334\pi\)
\(252\) −3.64318e28 −0.0349924
\(253\) −5.76943e29 −0.527383
\(254\) 1.86026e29 0.161865
\(255\) 0 0
\(256\) 7.92282e28 0.0625000
\(257\) −8.16135e29 −0.613194 −0.306597 0.951839i \(-0.599190\pi\)
−0.306597 + 0.951839i \(0.599190\pi\)
\(258\) 3.92178e28 0.0280697
\(259\) 5.54976e29 0.378466
\(260\) 0 0
\(261\) −3.59985e29 −0.222986
\(262\) 1.32042e30 0.779736
\(263\) −1.16241e30 −0.654505 −0.327253 0.944937i \(-0.606123\pi\)
−0.327253 + 0.944937i \(0.606123\pi\)
\(264\) −4.15533e29 −0.223129
\(265\) 0 0
\(266\) −2.22188e29 −0.108568
\(267\) −2.94711e30 −1.37406
\(268\) −9.82125e29 −0.437000
\(269\) 1.07881e30 0.458184 0.229092 0.973405i \(-0.426424\pi\)
0.229092 + 0.973405i \(0.426424\pi\)
\(270\) 0 0
\(271\) 2.07856e30 0.804723 0.402362 0.915481i \(-0.368189\pi\)
0.402362 + 0.915481i \(0.368189\pi\)
\(272\) 3.87532e29 0.143284
\(273\) 9.68974e29 0.342199
\(274\) 2.30032e30 0.776080
\(275\) 0 0
\(276\) 1.65513e30 0.509880
\(277\) −4.81866e30 −1.41883 −0.709413 0.704793i \(-0.751040\pi\)
−0.709413 + 0.704793i \(0.751040\pi\)
\(278\) −3.04940e30 −0.858330
\(279\) 9.59809e29 0.258305
\(280\) 0 0
\(281\) 3.81522e30 0.939054 0.469527 0.882918i \(-0.344424\pi\)
0.469527 + 0.882918i \(0.344424\pi\)
\(282\) −4.57660e30 −1.07753
\(283\) 3.50448e30 0.789392 0.394696 0.918812i \(-0.370850\pi\)
0.394696 + 0.918812i \(0.370850\pi\)
\(284\) −3.81219e30 −0.821665
\(285\) 0 0
\(286\) 1.99534e30 0.393950
\(287\) −1.32039e30 −0.249561
\(288\) 2.15220e29 0.0389473
\(289\) −3.87508e30 −0.671517
\(290\) 0 0
\(291\) 1.15004e30 0.182831
\(292\) −4.52942e30 −0.689853
\(293\) −1.01157e30 −0.147622 −0.0738111 0.997272i \(-0.523516\pi\)
−0.0738111 + 0.997272i \(0.523516\pi\)
\(294\) −5.02192e30 −0.702309
\(295\) 0 0
\(296\) −3.27851e30 −0.421241
\(297\) 3.99461e30 0.492061
\(298\) −3.92581e30 −0.463688
\(299\) −7.94771e30 −0.900227
\(300\) 0 0
\(301\) −1.09534e29 −0.0114148
\(302\) 3.64908e30 0.364835
\(303\) −1.22869e31 −1.17872
\(304\) 1.31257e30 0.120838
\(305\) 0 0
\(306\) 1.05272e30 0.0892882
\(307\) 1.27764e31 1.04035 0.520174 0.854060i \(-0.325867\pi\)
0.520174 + 0.854060i \(0.325867\pi\)
\(308\) 1.16057e30 0.0907375
\(309\) 1.73334e29 0.0130138
\(310\) 0 0
\(311\) −1.19771e31 −0.829556 −0.414778 0.909923i \(-0.636141\pi\)
−0.414778 + 0.909923i \(0.636141\pi\)
\(312\) −5.72420e30 −0.380875
\(313\) 2.39996e31 1.53426 0.767130 0.641492i \(-0.221684\pi\)
0.767130 + 0.641492i \(0.221684\pi\)
\(314\) 1.82233e31 1.11945
\(315\) 0 0
\(316\) −1.56893e31 −0.890257
\(317\) 5.21982e30 0.284718 0.142359 0.989815i \(-0.454531\pi\)
0.142359 + 0.989815i \(0.454531\pi\)
\(318\) 2.54815e30 0.133625
\(319\) 1.14677e31 0.578217
\(320\) 0 0
\(321\) −1.27425e31 −0.594214
\(322\) −4.62271e30 −0.207347
\(323\) 6.42025e30 0.277026
\(324\) −1.41133e31 −0.585889
\(325\) 0 0
\(326\) −7.75605e30 −0.298140
\(327\) 5.40879e31 2.00103
\(328\) 7.80017e30 0.277767
\(329\) 1.27823e31 0.438187
\(330\) 0 0
\(331\) 2.99801e31 0.952759 0.476379 0.879240i \(-0.341949\pi\)
0.476379 + 0.879240i \(0.341949\pi\)
\(332\) 2.87319e31 0.879302
\(333\) −8.90596e30 −0.262499
\(334\) −1.14185e31 −0.324174
\(335\) 0 0
\(336\) −3.32943e30 −0.0877260
\(337\) −2.25223e31 −0.571792 −0.285896 0.958261i \(-0.592291\pi\)
−0.285896 + 0.958261i \(0.592291\pi\)
\(338\) −1.41620e30 −0.0346469
\(339\) −1.85063e31 −0.436339
\(340\) 0 0
\(341\) −3.05756e31 −0.669800
\(342\) 3.56556e30 0.0753011
\(343\) 2.96262e31 0.603252
\(344\) 6.47070e29 0.0127049
\(345\) 0 0
\(346\) 6.33124e31 1.15621
\(347\) 1.77495e31 0.312656 0.156328 0.987705i \(-0.450034\pi\)
0.156328 + 0.987705i \(0.450034\pi\)
\(348\) −3.28983e31 −0.559027
\(349\) 6.99151e31 1.14618 0.573091 0.819492i \(-0.305744\pi\)
0.573091 + 0.819492i \(0.305744\pi\)
\(350\) 0 0
\(351\) 5.50279e31 0.839932
\(352\) −6.85604e30 −0.100993
\(353\) 5.98918e31 0.851498 0.425749 0.904841i \(-0.360011\pi\)
0.425749 + 0.904841i \(0.360011\pi\)
\(354\) −7.27381e31 −0.998208
\(355\) 0 0
\(356\) −4.86255e31 −0.621926
\(357\) −1.62854e31 −0.201115
\(358\) 6.09835e31 0.727234
\(359\) 2.70071e31 0.311027 0.155513 0.987834i \(-0.450297\pi\)
0.155513 + 0.987834i \(0.450297\pi\)
\(360\) 0 0
\(361\) −7.13311e31 −0.766371
\(362\) 1.22538e32 1.27179
\(363\) −7.42132e31 −0.744129
\(364\) 1.59875e31 0.154886
\(365\) 0 0
\(366\) 1.22691e31 0.110994
\(367\) 1.68905e32 1.47678 0.738392 0.674372i \(-0.235585\pi\)
0.738392 + 0.674372i \(0.235585\pi\)
\(368\) 2.73086e31 0.230782
\(369\) 2.11889e31 0.173093
\(370\) 0 0
\(371\) −7.11689e30 −0.0543396
\(372\) 8.77149e31 0.647570
\(373\) 5.83575e31 0.416616 0.208308 0.978063i \(-0.433204\pi\)
0.208308 + 0.978063i \(0.433204\pi\)
\(374\) −3.35352e31 −0.231530
\(375\) 0 0
\(376\) −7.55111e31 −0.487711
\(377\) 1.57973e32 0.986998
\(378\) 3.20065e31 0.193460
\(379\) −1.51743e32 −0.887399 −0.443700 0.896176i \(-0.646334\pi\)
−0.443700 + 0.896176i \(0.646334\pi\)
\(380\) 0 0
\(381\) 4.61814e31 0.252874
\(382\) 4.63416e31 0.245572
\(383\) −2.03117e32 −1.04174 −0.520872 0.853635i \(-0.674393\pi\)
−0.520872 + 0.853635i \(0.674393\pi\)
\(384\) 1.96685e31 0.0976409
\(385\) 0 0
\(386\) 2.81366e30 0.0130897
\(387\) 1.75774e30 0.00791714
\(388\) 1.89749e31 0.0827529
\(389\) 4.00318e32 1.69058 0.845289 0.534310i \(-0.179428\pi\)
0.845289 + 0.534310i \(0.179428\pi\)
\(390\) 0 0
\(391\) 1.33576e32 0.529076
\(392\) −8.28586e31 −0.317879
\(393\) 3.27798e32 1.21815
\(394\) −2.95827e32 −1.06496
\(395\) 0 0
\(396\) −1.86242e31 −0.0629343
\(397\) −9.71109e31 −0.317970 −0.158985 0.987281i \(-0.550822\pi\)
−0.158985 + 0.987281i \(0.550822\pi\)
\(398\) 2.62573e32 0.833127
\(399\) −5.51586e31 −0.169610
\(400\) 0 0
\(401\) 1.47073e32 0.424842 0.212421 0.977178i \(-0.431865\pi\)
0.212421 + 0.977178i \(0.431865\pi\)
\(402\) −2.43814e32 −0.682706
\(403\) −4.21195e32 −1.14333
\(404\) −2.02726e32 −0.533510
\(405\) 0 0
\(406\) 9.18836e31 0.227333
\(407\) 2.83708e32 0.680676
\(408\) 9.62056e31 0.223845
\(409\) −4.55653e32 −1.02824 −0.514118 0.857720i \(-0.671881\pi\)
−0.514118 + 0.857720i \(0.671881\pi\)
\(410\) 0 0
\(411\) 5.71059e32 1.21243
\(412\) 2.85991e30 0.00589030
\(413\) 2.03155e32 0.405930
\(414\) 7.41828e31 0.143813
\(415\) 0 0
\(416\) −9.44457e31 −0.172391
\(417\) −7.57019e32 −1.34093
\(418\) −1.13584e32 −0.195260
\(419\) 1.07085e33 1.78670 0.893350 0.449361i \(-0.148348\pi\)
0.893350 + 0.449361i \(0.148348\pi\)
\(420\) 0 0
\(421\) 4.34132e32 0.682489 0.341244 0.939975i \(-0.389152\pi\)
0.341244 + 0.939975i \(0.389152\pi\)
\(422\) −1.12419e32 −0.171568
\(423\) −2.05123e32 −0.303921
\(424\) 4.20429e31 0.0604811
\(425\) 0 0
\(426\) −9.46382e32 −1.28365
\(427\) −3.42671e31 −0.0451366
\(428\) −2.10244e32 −0.268953
\(429\) 4.95346e32 0.615450
\(430\) 0 0
\(431\) −7.49364e32 −0.878470 −0.439235 0.898372i \(-0.644750\pi\)
−0.439235 + 0.898372i \(0.644750\pi\)
\(432\) −1.89078e32 −0.215325
\(433\) 3.10398e32 0.343416 0.171708 0.985148i \(-0.445072\pi\)
0.171708 + 0.985148i \(0.445072\pi\)
\(434\) −2.44984e32 −0.263340
\(435\) 0 0
\(436\) 8.92417e32 0.905704
\(437\) 4.52421e32 0.446195
\(438\) −1.12444e33 −1.07773
\(439\) 3.93993e32 0.367013 0.183507 0.983018i \(-0.441255\pi\)
0.183507 + 0.983018i \(0.441255\pi\)
\(440\) 0 0
\(441\) −2.25082e32 −0.198088
\(442\) −4.61966e32 −0.395214
\(443\) −1.28865e33 −1.07174 −0.535869 0.844301i \(-0.680016\pi\)
−0.535869 + 0.844301i \(0.680016\pi\)
\(444\) −8.13897e32 −0.658085
\(445\) 0 0
\(446\) −1.05921e33 −0.809649
\(447\) −9.74590e32 −0.724399
\(448\) −5.49335e31 −0.0397065
\(449\) 2.64778e33 1.86124 0.930619 0.365990i \(-0.119269\pi\)
0.930619 + 0.365990i \(0.119269\pi\)
\(450\) 0 0
\(451\) −6.74991e32 −0.448839
\(452\) −3.05343e32 −0.197496
\(453\) 9.05891e32 0.569966
\(454\) −1.99213e33 −1.21933
\(455\) 0 0
\(456\) 3.25849e32 0.188780
\(457\) −3.41528e33 −1.92519 −0.962594 0.270947i \(-0.912663\pi\)
−0.962594 + 0.270947i \(0.912663\pi\)
\(458\) −2.01153e33 −1.10334
\(459\) −9.24844e32 −0.493639
\(460\) 0 0
\(461\) −3.55950e33 −1.79940 −0.899700 0.436510i \(-0.856214\pi\)
−0.899700 + 0.436510i \(0.856214\pi\)
\(462\) 2.88113e32 0.141755
\(463\) 2.37447e33 1.13712 0.568558 0.822643i \(-0.307501\pi\)
0.568558 + 0.822643i \(0.307501\pi\)
\(464\) −5.42801e32 −0.253026
\(465\) 0 0
\(466\) −1.20164e33 −0.530822
\(467\) −1.47044e33 −0.632392 −0.316196 0.948694i \(-0.602406\pi\)
−0.316196 + 0.948694i \(0.602406\pi\)
\(468\) −2.56558e32 −0.107427
\(469\) 6.80964e32 0.277628
\(470\) 0 0
\(471\) 4.52396e33 1.74887
\(472\) −1.20013e33 −0.451808
\(473\) −5.59945e31 −0.0205296
\(474\) −3.89490e33 −1.39081
\(475\) 0 0
\(476\) −2.68698e32 −0.0910286
\(477\) 1.14208e32 0.0376892
\(478\) −1.08729e32 −0.0349540
\(479\) −1.56346e33 −0.489657 −0.244829 0.969566i \(-0.578732\pi\)
−0.244829 + 0.969566i \(0.578732\pi\)
\(480\) 0 0
\(481\) 3.90823e33 1.16189
\(482\) −2.64766e31 −0.00766962
\(483\) −1.14760e33 −0.323929
\(484\) −1.22447e33 −0.336807
\(485\) 0 0
\(486\) −1.17238e33 −0.306278
\(487\) −4.18200e33 −1.06481 −0.532405 0.846490i \(-0.678711\pi\)
−0.532405 + 0.846490i \(0.678711\pi\)
\(488\) 2.02432e32 0.0502380
\(489\) −1.92545e33 −0.465771
\(490\) 0 0
\(491\) 4.13591e32 0.0950719 0.0475360 0.998870i \(-0.484863\pi\)
0.0475360 + 0.998870i \(0.484863\pi\)
\(492\) 1.93641e33 0.433943
\(493\) −2.65502e33 −0.580072
\(494\) −1.56468e33 −0.333303
\(495\) 0 0
\(496\) 1.44724e33 0.293103
\(497\) 2.64321e33 0.522007
\(498\) 7.13275e33 1.37369
\(499\) 5.19785e33 0.976264 0.488132 0.872770i \(-0.337679\pi\)
0.488132 + 0.872770i \(0.337679\pi\)
\(500\) 0 0
\(501\) −2.83466e33 −0.506442
\(502\) −2.07580e33 −0.361734
\(503\) −3.59933e33 −0.611817 −0.305909 0.952061i \(-0.598960\pi\)
−0.305909 + 0.952061i \(0.598960\pi\)
\(504\) −1.49225e32 −0.0247434
\(505\) 0 0
\(506\) −2.36316e33 −0.372916
\(507\) −3.51573e32 −0.0541273
\(508\) 7.61964e32 0.114456
\(509\) 1.19327e34 1.74891 0.874453 0.485109i \(-0.161220\pi\)
0.874453 + 0.485109i \(0.161220\pi\)
\(510\) 0 0
\(511\) 3.14051e33 0.438267
\(512\) 3.24519e32 0.0441942
\(513\) −3.13245e33 −0.416310
\(514\) −3.34289e33 −0.433594
\(515\) 0 0
\(516\) 1.60636e32 0.0198483
\(517\) 6.53438e33 0.788085
\(518\) 2.27318e33 0.267616
\(519\) 1.57174e34 1.80630
\(520\) 0 0
\(521\) 1.63355e34 1.78921 0.894605 0.446859i \(-0.147457\pi\)
0.894605 + 0.446859i \(0.147457\pi\)
\(522\) −1.47450e33 −0.157675
\(523\) −9.46552e33 −0.988265 −0.494133 0.869387i \(-0.664514\pi\)
−0.494133 + 0.869387i \(0.664514\pi\)
\(524\) 5.40846e33 0.551356
\(525\) 0 0
\(526\) −4.76124e33 −0.462805
\(527\) 7.07895e33 0.671949
\(528\) −1.70202e33 −0.157776
\(529\) −1.63297e33 −0.147837
\(530\) 0 0
\(531\) −3.26012e33 −0.281548
\(532\) −9.10083e32 −0.0767689
\(533\) −9.29836e33 −0.766155
\(534\) −1.20714e34 −0.971607
\(535\) 0 0
\(536\) −4.02278e33 −0.309006
\(537\) 1.51393e34 1.13612
\(538\) 4.41879e33 0.323985
\(539\) 7.17020e33 0.513655
\(540\) 0 0
\(541\) 1.13679e34 0.777528 0.388764 0.921337i \(-0.372902\pi\)
0.388764 + 0.921337i \(0.372902\pi\)
\(542\) 8.51379e33 0.569025
\(543\) 3.04204e34 1.98686
\(544\) 1.58733e33 0.101317
\(545\) 0 0
\(546\) 3.96892e33 0.241971
\(547\) −2.60600e34 −1.55286 −0.776430 0.630204i \(-0.782971\pi\)
−0.776430 + 0.630204i \(0.782971\pi\)
\(548\) 9.42211e33 0.548771
\(549\) 5.49901e32 0.0313062
\(550\) 0 0
\(551\) −8.99258e33 −0.489203
\(552\) 6.77940e33 0.360540
\(553\) 1.08783e34 0.565584
\(554\) −1.97372e34 −1.00326
\(555\) 0 0
\(556\) −1.24903e34 −0.606931
\(557\) 3.30593e34 1.57074 0.785368 0.619029i \(-0.212474\pi\)
0.785368 + 0.619029i \(0.212474\pi\)
\(558\) 3.93138e33 0.182649
\(559\) −7.71354e32 −0.0350434
\(560\) 0 0
\(561\) −8.32519e33 −0.361708
\(562\) 1.56271e34 0.664011
\(563\) 1.77408e34 0.737255 0.368628 0.929577i \(-0.379828\pi\)
0.368628 + 0.929577i \(0.379828\pi\)
\(564\) −1.87458e34 −0.761929
\(565\) 0 0
\(566\) 1.43543e34 0.558184
\(567\) 9.78556e33 0.372218
\(568\) −1.56147e34 −0.581005
\(569\) −3.24647e34 −1.18170 −0.590851 0.806781i \(-0.701208\pi\)
−0.590851 + 0.806781i \(0.701208\pi\)
\(570\) 0 0
\(571\) −1.08523e34 −0.378068 −0.189034 0.981971i \(-0.560536\pi\)
−0.189034 + 0.981971i \(0.560536\pi\)
\(572\) 8.17290e33 0.278565
\(573\) 1.15044e34 0.383646
\(574\) −5.40830e33 −0.176467
\(575\) 0 0
\(576\) 8.81543e32 0.0275399
\(577\) 5.40061e34 1.65099 0.825497 0.564406i \(-0.190895\pi\)
0.825497 + 0.564406i \(0.190895\pi\)
\(578\) −1.58723e34 −0.474834
\(579\) 6.98496e32 0.0204495
\(580\) 0 0
\(581\) −1.99215e34 −0.558625
\(582\) 4.71056e33 0.129281
\(583\) −3.63820e33 −0.0977304
\(584\) −1.85525e34 −0.487800
\(585\) 0 0
\(586\) −4.14340e33 −0.104385
\(587\) −5.41910e34 −1.33644 −0.668222 0.743962i \(-0.732944\pi\)
−0.668222 + 0.743962i \(0.732944\pi\)
\(588\) −2.05698e34 −0.496608
\(589\) 2.39764e34 0.566687
\(590\) 0 0
\(591\) −7.34396e34 −1.66375
\(592\) −1.34288e34 −0.297862
\(593\) 3.87147e34 0.840799 0.420400 0.907339i \(-0.361890\pi\)
0.420400 + 0.907339i \(0.361890\pi\)
\(594\) 1.63619e34 0.347939
\(595\) 0 0
\(596\) −1.60801e34 −0.327877
\(597\) 6.51841e34 1.30156
\(598\) −3.25538e34 −0.636557
\(599\) 9.20898e33 0.176350 0.0881751 0.996105i \(-0.471896\pi\)
0.0881751 + 0.996105i \(0.471896\pi\)
\(600\) 0 0
\(601\) 3.98144e34 0.731324 0.365662 0.930748i \(-0.380843\pi\)
0.365662 + 0.930748i \(0.380843\pi\)
\(602\) −4.48651e32 −0.00807147
\(603\) −1.09277e34 −0.192559
\(604\) 1.49466e34 0.257978
\(605\) 0 0
\(606\) −5.03271e34 −0.833478
\(607\) −3.32966e34 −0.540184 −0.270092 0.962835i \(-0.587054\pi\)
−0.270092 + 0.962835i \(0.587054\pi\)
\(608\) 5.37630e33 0.0854454
\(609\) 2.28103e34 0.355152
\(610\) 0 0
\(611\) 9.00147e34 1.34524
\(612\) 4.31193e33 0.0631363
\(613\) −5.68278e34 −0.815277 −0.407639 0.913143i \(-0.633648\pi\)
−0.407639 + 0.913143i \(0.633648\pi\)
\(614\) 5.23321e34 0.735637
\(615\) 0 0
\(616\) 4.75369e33 0.0641611
\(617\) −9.70987e33 −0.128425 −0.0642124 0.997936i \(-0.520454\pi\)
−0.0642124 + 0.997936i \(0.520454\pi\)
\(618\) 7.09978e32 0.00920214
\(619\) 3.18717e34 0.404829 0.202415 0.979300i \(-0.435121\pi\)
0.202415 + 0.979300i \(0.435121\pi\)
\(620\) 0 0
\(621\) −6.51718e34 −0.795087
\(622\) −4.90581e34 −0.586584
\(623\) 3.37148e34 0.395112
\(624\) −2.34463e34 −0.269319
\(625\) 0 0
\(626\) 9.83022e34 1.08489
\(627\) −2.81975e34 −0.305046
\(628\) 7.46425e34 0.791572
\(629\) −6.56848e34 −0.682860
\(630\) 0 0
\(631\) 1.18827e35 1.18726 0.593632 0.804737i \(-0.297693\pi\)
0.593632 + 0.804737i \(0.297693\pi\)
\(632\) −6.42634e34 −0.629506
\(633\) −2.79083e34 −0.268032
\(634\) 2.13804e34 0.201326
\(635\) 0 0
\(636\) 1.04372e34 0.0944868
\(637\) 9.87734e34 0.876793
\(638\) 4.69715e34 0.408861
\(639\) −4.24168e34 −0.362057
\(640\) 0 0
\(641\) 1.95210e35 1.60242 0.801212 0.598381i \(-0.204189\pi\)
0.801212 + 0.598381i \(0.204189\pi\)
\(642\) −5.21934e34 −0.420173
\(643\) −5.50965e34 −0.434998 −0.217499 0.976061i \(-0.569790\pi\)
−0.217499 + 0.976061i \(0.569790\pi\)
\(644\) −1.89346e34 −0.146617
\(645\) 0 0
\(646\) 2.62973e34 0.195887
\(647\) −1.62013e35 −1.18371 −0.591855 0.806045i \(-0.701604\pi\)
−0.591855 + 0.806045i \(0.701604\pi\)
\(648\) −5.78080e34 −0.414286
\(649\) 1.03854e35 0.730070
\(650\) 0 0
\(651\) −6.08178e34 −0.411404
\(652\) −3.17688e34 −0.210817
\(653\) 6.88298e34 0.448086 0.224043 0.974579i \(-0.428074\pi\)
0.224043 + 0.974579i \(0.428074\pi\)
\(654\) 2.21544e35 1.41494
\(655\) 0 0
\(656\) 3.19495e34 0.196411
\(657\) −5.03972e34 −0.303976
\(658\) 5.23562e34 0.309845
\(659\) −8.31458e34 −0.482806 −0.241403 0.970425i \(-0.577608\pi\)
−0.241403 + 0.970425i \(0.577608\pi\)
\(660\) 0 0
\(661\) −9.81505e34 −0.548749 −0.274375 0.961623i \(-0.588471\pi\)
−0.274375 + 0.961623i \(0.588471\pi\)
\(662\) 1.22798e35 0.673702
\(663\) −1.14684e35 −0.617424
\(664\) 1.17686e35 0.621761
\(665\) 0 0
\(666\) −3.64788e34 −0.185615
\(667\) −1.87094e35 −0.934302
\(668\) −4.67702e34 −0.229226
\(669\) −2.62951e35 −1.26488
\(670\) 0 0
\(671\) −1.75176e34 −0.0811788
\(672\) −1.36373e34 −0.0620317
\(673\) −1.38294e34 −0.0617470 −0.0308735 0.999523i \(-0.509829\pi\)
−0.0308735 + 0.999523i \(0.509829\pi\)
\(674\) −9.22512e34 −0.404318
\(675\) 0 0
\(676\) −5.80074e33 −0.0244991
\(677\) −3.23088e35 −1.33956 −0.669780 0.742559i \(-0.733612\pi\)
−0.669780 + 0.742559i \(0.733612\pi\)
\(678\) −7.58020e34 −0.308538
\(679\) −1.31564e34 −0.0525732
\(680\) 0 0
\(681\) −4.94551e35 −1.90490
\(682\) −1.25238e35 −0.473620
\(683\) −4.94645e35 −1.83669 −0.918343 0.395785i \(-0.870473\pi\)
−0.918343 + 0.395785i \(0.870473\pi\)
\(684\) 1.46045e34 0.0532459
\(685\) 0 0
\(686\) 1.21349e35 0.426564
\(687\) −4.99365e35 −1.72369
\(688\) 2.65040e33 0.00898371
\(689\) −5.01182e34 −0.166823
\(690\) 0 0
\(691\) −3.23399e35 −1.03816 −0.519079 0.854726i \(-0.673725\pi\)
−0.519079 + 0.854726i \(0.673725\pi\)
\(692\) 2.59328e35 0.817565
\(693\) 1.29132e34 0.0399824
\(694\) 7.27017e34 0.221081
\(695\) 0 0
\(696\) −1.34751e35 −0.395292
\(697\) 1.56276e35 0.450279
\(698\) 2.86372e35 0.810472
\(699\) −2.98308e35 −0.829279
\(700\) 0 0
\(701\) 3.02063e35 0.810256 0.405128 0.914260i \(-0.367227\pi\)
0.405128 + 0.914260i \(0.367227\pi\)
\(702\) 2.25394e35 0.593922
\(703\) −2.22475e35 −0.575890
\(704\) −2.80823e34 −0.0714127
\(705\) 0 0
\(706\) 2.45317e35 0.602100
\(707\) 1.40562e35 0.338941
\(708\) −2.97935e35 −0.705840
\(709\) −4.34959e35 −1.01244 −0.506222 0.862403i \(-0.668958\pi\)
−0.506222 + 0.862403i \(0.668958\pi\)
\(710\) 0 0
\(711\) −1.74569e35 −0.392281
\(712\) −1.99170e35 −0.439768
\(713\) 4.98839e35 1.08228
\(714\) −6.67049e34 −0.142210
\(715\) 0 0
\(716\) 2.49788e35 0.514232
\(717\) −2.69922e34 −0.0546071
\(718\) 1.10621e35 0.219929
\(719\) −2.50423e35 −0.489286 −0.244643 0.969613i \(-0.578671\pi\)
−0.244643 + 0.969613i \(0.578671\pi\)
\(720\) 0 0
\(721\) −1.98294e33 −0.00374213
\(722\) −2.92172e35 −0.541906
\(723\) −6.57286e33 −0.0119819
\(724\) 5.01917e35 0.899291
\(725\) 0 0
\(726\) −3.03977e35 −0.526179
\(727\) 6.25077e34 0.106354 0.0531770 0.998585i \(-0.483065\pi\)
0.0531770 + 0.998585i \(0.483065\pi\)
\(728\) 6.54847e34 0.109521
\(729\) 4.21708e35 0.693294
\(730\) 0 0
\(731\) 1.29640e34 0.0205955
\(732\) 5.02542e34 0.0784845
\(733\) 8.87732e35 1.36296 0.681479 0.731838i \(-0.261337\pi\)
0.681479 + 0.731838i \(0.261337\pi\)
\(734\) 6.91835e35 1.04424
\(735\) 0 0
\(736\) 1.11856e35 0.163187
\(737\) 3.48113e35 0.499318
\(738\) 8.67896e34 0.122395
\(739\) −6.31553e35 −0.875698 −0.437849 0.899048i \(-0.644260\pi\)
−0.437849 + 0.899048i \(0.644260\pi\)
\(740\) 0 0
\(741\) −3.88435e35 −0.520704
\(742\) −2.91508e34 −0.0384239
\(743\) 1.51703e35 0.196623 0.0983113 0.995156i \(-0.468656\pi\)
0.0983113 + 0.995156i \(0.468656\pi\)
\(744\) 3.59280e35 0.457901
\(745\) 0 0
\(746\) 2.39032e35 0.294592
\(747\) 3.19689e35 0.387455
\(748\) −1.37360e35 −0.163716
\(749\) 1.45774e35 0.170867
\(750\) 0 0
\(751\) 1.36888e36 1.55191 0.775954 0.630789i \(-0.217269\pi\)
0.775954 + 0.630789i \(0.217269\pi\)
\(752\) −3.09293e35 −0.344864
\(753\) −5.15322e35 −0.565121
\(754\) 6.47058e35 0.697913
\(755\) 0 0
\(756\) 1.31099e35 0.136797
\(757\) 1.53344e36 1.57386 0.786931 0.617040i \(-0.211669\pi\)
0.786931 + 0.617040i \(0.211669\pi\)
\(758\) −6.21540e35 −0.627486
\(759\) −5.86659e35 −0.582590
\(760\) 0 0
\(761\) −1.14959e36 −1.10467 −0.552337 0.833621i \(-0.686264\pi\)
−0.552337 + 0.833621i \(0.686264\pi\)
\(762\) 1.89159e35 0.178809
\(763\) −6.18764e35 −0.575398
\(764\) 1.89815e35 0.173646
\(765\) 0 0
\(766\) −8.31967e35 −0.736625
\(767\) 1.43065e36 1.24621
\(768\) 8.05623e34 0.0690425
\(769\) 1.22160e36 1.03003 0.515015 0.857181i \(-0.327786\pi\)
0.515015 + 0.857181i \(0.327786\pi\)
\(770\) 0 0
\(771\) −8.29879e35 −0.677384
\(772\) 1.15247e34 0.00925582
\(773\) 6.78971e35 0.536547 0.268273 0.963343i \(-0.413547\pi\)
0.268273 + 0.963343i \(0.413547\pi\)
\(774\) 7.19971e33 0.00559826
\(775\) 0 0
\(776\) 7.77212e34 0.0585151
\(777\) 5.64322e35 0.418084
\(778\) 1.63970e36 1.19542
\(779\) 5.29307e35 0.379743
\(780\) 0 0
\(781\) 1.35123e36 0.938837
\(782\) 5.47126e35 0.374113
\(783\) 1.29539e36 0.871725
\(784\) −3.39389e35 −0.224774
\(785\) 0 0
\(786\) 1.34266e36 0.861359
\(787\) 9.85723e35 0.622402 0.311201 0.950344i \(-0.399269\pi\)
0.311201 + 0.950344i \(0.399269\pi\)
\(788\) −1.21171e36 −0.753044
\(789\) −1.18199e36 −0.723019
\(790\) 0 0
\(791\) 2.11712e35 0.125470
\(792\) −7.62847e34 −0.0445013
\(793\) −2.41314e35 −0.138570
\(794\) −3.97766e35 −0.224839
\(795\) 0 0
\(796\) 1.07550e36 0.589110
\(797\) −1.15299e36 −0.621722 −0.310861 0.950455i \(-0.600617\pi\)
−0.310861 + 0.950455i \(0.600617\pi\)
\(798\) −2.25930e35 −0.119933
\(799\) −1.51286e36 −0.790613
\(800\) 0 0
\(801\) −5.41038e35 −0.274045
\(802\) 6.02410e35 0.300409
\(803\) 1.60545e36 0.788228
\(804\) −9.98663e35 −0.482746
\(805\) 0 0
\(806\) −1.72522e36 −0.808454
\(807\) 1.09697e36 0.506147
\(808\) −8.30366e35 −0.377248
\(809\) −1.76491e36 −0.789526 −0.394763 0.918783i \(-0.629173\pi\)
−0.394763 + 0.918783i \(0.629173\pi\)
\(810\) 0 0
\(811\) 3.26639e36 1.41680 0.708398 0.705814i \(-0.249418\pi\)
0.708398 + 0.705814i \(0.249418\pi\)
\(812\) 3.76355e35 0.160749
\(813\) 2.11356e36 0.888962
\(814\) 1.16207e36 0.481311
\(815\) 0 0
\(816\) 3.94058e35 0.158283
\(817\) 4.39092e34 0.0173692
\(818\) −1.86635e36 −0.727072
\(819\) 1.77887e35 0.0682488
\(820\) 0 0
\(821\) 8.67287e35 0.322755 0.161378 0.986893i \(-0.448406\pi\)
0.161378 + 0.986893i \(0.448406\pi\)
\(822\) 2.33906e36 0.857320
\(823\) −1.77728e36 −0.641589 −0.320794 0.947149i \(-0.603950\pi\)
−0.320794 + 0.947149i \(0.603950\pi\)
\(824\) 1.17142e34 0.00416507
\(825\) 0 0
\(826\) 8.32121e35 0.287036
\(827\) −1.78322e36 −0.605880 −0.302940 0.953010i \(-0.597968\pi\)
−0.302940 + 0.953010i \(0.597968\pi\)
\(828\) 3.03853e35 0.101691
\(829\) −2.64368e36 −0.871521 −0.435760 0.900063i \(-0.643521\pi\)
−0.435760 + 0.900063i \(0.643521\pi\)
\(830\) 0 0
\(831\) −4.89981e36 −1.56735
\(832\) −3.86850e35 −0.121899
\(833\) −1.66007e36 −0.515303
\(834\) −3.10075e36 −0.948180
\(835\) 0 0
\(836\) −4.65240e35 −0.138070
\(837\) −3.45383e36 −1.00980
\(838\) 4.38619e36 1.26339
\(839\) 6.66972e36 1.89271 0.946354 0.323133i \(-0.104736\pi\)
0.946354 + 0.323133i \(0.104736\pi\)
\(840\) 0 0
\(841\) 8.84259e34 0.0243573
\(842\) 1.77820e36 0.482593
\(843\) 3.87947e36 1.03735
\(844\) −4.60469e35 −0.121317
\(845\) 0 0
\(846\) −8.40185e35 −0.214904
\(847\) 8.48997e35 0.213975
\(848\) 1.72208e35 0.0427666
\(849\) 3.56349e36 0.872026
\(850\) 0 0
\(851\) −4.62867e36 −1.09986
\(852\) −3.87638e36 −0.907678
\(853\) −5.04065e36 −1.16312 −0.581559 0.813504i \(-0.697557\pi\)
−0.581559 + 0.813504i \(0.697557\pi\)
\(854\) −1.40358e35 −0.0319164
\(855\) 0 0
\(856\) −8.61159e35 −0.190178
\(857\) 1.92537e36 0.419038 0.209519 0.977805i \(-0.432810\pi\)
0.209519 + 0.977805i \(0.432810\pi\)
\(858\) 2.02894e36 0.435189
\(859\) 4.40642e36 0.931474 0.465737 0.884923i \(-0.345789\pi\)
0.465737 + 0.884923i \(0.345789\pi\)
\(860\) 0 0
\(861\) −1.34262e36 −0.275686
\(862\) −3.06940e36 −0.621172
\(863\) −8.01223e36 −1.59815 −0.799077 0.601229i \(-0.794678\pi\)
−0.799077 + 0.601229i \(0.794678\pi\)
\(864\) −7.74462e35 −0.152257
\(865\) 0 0
\(866\) 1.27139e36 0.242831
\(867\) −3.94033e36 −0.741812
\(868\) −1.00346e36 −0.186209
\(869\) 5.56106e36 1.01721
\(870\) 0 0
\(871\) 4.79545e36 0.852319
\(872\) 3.65534e36 0.640430
\(873\) 2.11127e35 0.0364641
\(874\) 1.85312e36 0.315508
\(875\) 0 0
\(876\) −4.60569e36 −0.762068
\(877\) 4.46078e36 0.727639 0.363820 0.931469i \(-0.381472\pi\)
0.363820 + 0.931469i \(0.381472\pi\)
\(878\) 1.61379e36 0.259518
\(879\) −1.02861e36 −0.163075
\(880\) 0 0
\(881\) 3.24157e36 0.499525 0.249762 0.968307i \(-0.419648\pi\)
0.249762 + 0.968307i \(0.419648\pi\)
\(882\) −9.21937e35 −0.140070
\(883\) 4.92118e35 0.0737157 0.0368579 0.999321i \(-0.488265\pi\)
0.0368579 + 0.999321i \(0.488265\pi\)
\(884\) −1.89221e36 −0.279458
\(885\) 0 0
\(886\) −5.27831e36 −0.757833
\(887\) −1.07566e37 −1.52276 −0.761380 0.648306i \(-0.775478\pi\)
−0.761380 + 0.648306i \(0.775478\pi\)
\(888\) −3.33372e36 −0.465337
\(889\) −5.28314e35 −0.0727143
\(890\) 0 0
\(891\) 5.00244e36 0.669439
\(892\) −4.33853e36 −0.572508
\(893\) −5.12407e36 −0.666763
\(894\) −3.99192e36 −0.512228
\(895\) 0 0
\(896\) −2.25007e35 −0.0280767
\(897\) −8.08154e36 −0.994463
\(898\) 1.08453e37 1.31609
\(899\) −9.91520e36 −1.18660
\(900\) 0 0
\(901\) 8.42327e35 0.0980439
\(902\) −2.76476e36 −0.317377
\(903\) −1.11378e35 −0.0126097
\(904\) −1.25069e36 −0.139651
\(905\) 0 0
\(906\) 3.71053e36 0.403026
\(907\) −5.76079e35 −0.0617151 −0.0308575 0.999524i \(-0.509824\pi\)
−0.0308575 + 0.999524i \(0.509824\pi\)
\(908\) −8.15978e36 −0.862194
\(909\) −2.25566e36 −0.235085
\(910\) 0 0
\(911\) −2.28818e36 −0.232012 −0.116006 0.993249i \(-0.537009\pi\)
−0.116006 + 0.993249i \(0.537009\pi\)
\(912\) 1.33468e36 0.133487
\(913\) −1.01840e37 −1.00469
\(914\) −1.39890e37 −1.36131
\(915\) 0 0
\(916\) −8.23922e36 −0.780176
\(917\) −3.75000e36 −0.350279
\(918\) −3.78816e36 −0.349056
\(919\) 3.48143e36 0.316457 0.158228 0.987403i \(-0.449422\pi\)
0.158228 + 0.987403i \(0.449422\pi\)
\(920\) 0 0
\(921\) 1.29915e37 1.14925
\(922\) −1.45797e37 −1.27237
\(923\) 1.86139e37 1.60256
\(924\) 1.18011e36 0.100236
\(925\) 0 0
\(926\) 9.72584e36 0.804063
\(927\) 3.18212e34 0.00259549
\(928\) −2.22331e36 −0.178917
\(929\) −4.39451e36 −0.348910 −0.174455 0.984665i \(-0.555816\pi\)
−0.174455 + 0.984665i \(0.555816\pi\)
\(930\) 0 0
\(931\) −5.62265e36 −0.434581
\(932\) −4.92190e36 −0.375348
\(933\) −1.21788e37 −0.916394
\(934\) −6.02292e36 −0.447168
\(935\) 0 0
\(936\) −1.05086e36 −0.0759623
\(937\) −2.04937e37 −1.46176 −0.730878 0.682508i \(-0.760889\pi\)
−0.730878 + 0.682508i \(0.760889\pi\)
\(938\) 2.78923e36 0.196313
\(939\) 2.44037e37 1.69487
\(940\) 0 0
\(941\) −7.85670e36 −0.531337 −0.265668 0.964064i \(-0.585593\pi\)
−0.265668 + 0.964064i \(0.585593\pi\)
\(942\) 1.85301e37 1.23664
\(943\) 1.10124e37 0.725249
\(944\) −4.91574e36 −0.319477
\(945\) 0 0
\(946\) −2.29353e35 −0.0145166
\(947\) 7.10609e36 0.443870 0.221935 0.975061i \(-0.428763\pi\)
0.221935 + 0.975061i \(0.428763\pi\)
\(948\) −1.59535e37 −0.983449
\(949\) 2.21159e37 1.34548
\(950\) 0 0
\(951\) 5.30772e36 0.314522
\(952\) −1.10059e36 −0.0643670
\(953\) 1.19839e37 0.691729 0.345864 0.938285i \(-0.387586\pi\)
0.345864 + 0.938285i \(0.387586\pi\)
\(954\) 4.67796e35 0.0266503
\(955\) 0 0
\(956\) −4.45354e35 −0.0247162
\(957\) 1.16608e37 0.638745
\(958\) −6.40392e36 −0.346240
\(959\) −6.53289e36 −0.348637
\(960\) 0 0
\(961\) 7.20357e36 0.374546
\(962\) 1.60081e37 0.821583
\(963\) −2.33931e36 −0.118511
\(964\) −1.08448e35 −0.00542324
\(965\) 0 0
\(966\) −4.70055e36 −0.229052
\(967\) 3.63759e37 1.74978 0.874890 0.484322i \(-0.160934\pi\)
0.874890 + 0.484322i \(0.160934\pi\)
\(968\) −5.01544e36 −0.238159
\(969\) 6.52836e36 0.306025
\(970\) 0 0
\(971\) −2.46036e36 −0.112398 −0.0561990 0.998420i \(-0.517898\pi\)
−0.0561990 + 0.998420i \(0.517898\pi\)
\(972\) −4.80208e36 −0.216572
\(973\) 8.66027e36 0.385586
\(974\) −1.71295e37 −0.752934
\(975\) 0 0
\(976\) 8.29163e35 0.0355236
\(977\) −7.12253e36 −0.301268 −0.150634 0.988590i \(-0.548131\pi\)
−0.150634 + 0.988590i \(0.548131\pi\)
\(978\) −7.88666e36 −0.329350
\(979\) 1.72353e37 0.710614
\(980\) 0 0
\(981\) 9.92960e36 0.399088
\(982\) 1.69407e36 0.0672260
\(983\) 3.14802e37 1.23344 0.616720 0.787183i \(-0.288461\pi\)
0.616720 + 0.787183i \(0.288461\pi\)
\(984\) 7.93152e36 0.306844
\(985\) 0 0
\(986\) −1.08750e37 −0.410173
\(987\) 1.29975e37 0.484057
\(988\) −6.40894e36 −0.235681
\(989\) 9.13547e35 0.0331724
\(990\) 0 0
\(991\) 2.04047e37 0.722454 0.361227 0.932478i \(-0.382358\pi\)
0.361227 + 0.932478i \(0.382358\pi\)
\(992\) 5.92790e36 0.207255
\(993\) 3.04849e37 1.05249
\(994\) 1.08266e37 0.369115
\(995\) 0 0
\(996\) 2.92157e37 0.971348
\(997\) −1.06204e37 −0.348700 −0.174350 0.984684i \(-0.555782\pi\)
−0.174350 + 0.984684i \(0.555782\pi\)
\(998\) 2.12904e37 0.690323
\(999\) 3.20478e37 1.02619
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 50.26.a.l.1.5 6
5.2 odd 4 10.26.b.a.9.8 yes 12
5.3 odd 4 10.26.b.a.9.5 12
5.4 even 2 50.26.a.k.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.26.b.a.9.5 12 5.3 odd 4
10.26.b.a.9.8 yes 12 5.2 odd 4
50.26.a.k.1.2 6 5.4 even 2
50.26.a.l.1.5 6 1.1 even 1 trivial