Properties

Label 50.26.a.i.1.4
Level $50$
Weight $26$
Character 50.1
Self dual yes
Analytic conductor $197.998$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [50,26,Mod(1,50)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(50, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 26, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("50.1");
 
S:= CuspForms(chi, 26);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 26 \)
Character orbit: \([\chi]\) \(=\) 50.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(197.998389976\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 25534923283x^{3} - 31863478542482x^{2} + 141941149085067124800x + 2515032055818200956928000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{19}\cdot 3^{5}\cdot 5^{12} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-74281.7\) of defining polynomial
Character \(\chi\) \(=\) 50.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4096.00 q^{2} +598018. q^{3} +1.67772e7 q^{4} -2.44948e9 q^{6} +1.45531e10 q^{7} -6.87195e10 q^{8} -4.89664e11 q^{9} -2.61864e12 q^{11} +1.00331e13 q^{12} +1.51962e14 q^{13} -5.96094e13 q^{14} +2.81475e14 q^{16} +3.15464e15 q^{17} +2.00566e15 q^{18} -8.10963e15 q^{19} +8.70300e15 q^{21} +1.07260e16 q^{22} +9.27767e15 q^{23} -4.10955e16 q^{24} -6.22436e17 q^{26} -7.99521e17 q^{27} +2.44160e17 q^{28} +1.39333e18 q^{29} -1.42368e17 q^{31} -1.15292e18 q^{32} -1.56599e18 q^{33} -1.29214e19 q^{34} -8.21519e18 q^{36} +5.37730e19 q^{37} +3.32170e19 q^{38} +9.08759e19 q^{39} -7.26333e19 q^{41} -3.56475e19 q^{42} -3.12589e20 q^{43} -4.39335e19 q^{44} -3.80013e19 q^{46} +2.45817e19 q^{47} +1.68327e20 q^{48} -1.12928e21 q^{49} +1.88653e21 q^{51} +2.54950e21 q^{52} +6.91634e20 q^{53} +3.27484e21 q^{54} -1.00008e21 q^{56} -4.84970e21 q^{57} -5.70708e21 q^{58} +9.21095e21 q^{59} +1.19113e22 q^{61} +5.83140e20 q^{62} -7.12611e21 q^{63} +4.72237e21 q^{64} +6.41431e21 q^{66} +1.17804e23 q^{67} +5.29260e22 q^{68} +5.54821e21 q^{69} +1.28366e23 q^{71} +3.36494e22 q^{72} +2.12900e22 q^{73} -2.20254e23 q^{74} -1.36057e23 q^{76} -3.81093e22 q^{77} -3.72228e23 q^{78} -2.44555e23 q^{79} -6.32412e22 q^{81} +2.97506e23 q^{82} +4.71841e23 q^{83} +1.46012e23 q^{84} +1.28037e24 q^{86} +8.33235e23 q^{87} +1.79952e23 q^{88} -3.32650e24 q^{89} +2.21152e24 q^{91} +1.55653e23 q^{92} -8.51387e22 q^{93} -1.00687e23 q^{94} -6.89467e23 q^{96} -2.17673e24 q^{97} +4.62552e24 q^{98} +1.28225e24 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 20480 q^{2} - 723995 q^{3} + 83886080 q^{4} + 2965483520 q^{6} - 49218886190 q^{7} - 343597383680 q^{8} + 975375361390 q^{9} - 8837033983815 q^{11} - 12146620497920 q^{12} - 67609989586220 q^{13}+ \cdots - 23\!\cdots\!70 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4096.00 −0.707107
\(3\) 598018. 0.649678 0.324839 0.945769i \(-0.394690\pi\)
0.324839 + 0.945769i \(0.394690\pi\)
\(4\) 1.67772e7 0.500000
\(5\) 0 0
\(6\) −2.44948e9 −0.459392
\(7\) 1.45531e10 0.397401 0.198701 0.980060i \(-0.436328\pi\)
0.198701 + 0.980060i \(0.436328\pi\)
\(8\) −6.87195e10 −0.353553
\(9\) −4.89664e11 −0.577918
\(10\) 0 0
\(11\) −2.61864e12 −0.251575 −0.125788 0.992057i \(-0.540146\pi\)
−0.125788 + 0.992057i \(0.540146\pi\)
\(12\) 1.00331e13 0.324839
\(13\) 1.51962e14 1.80902 0.904509 0.426454i \(-0.140237\pi\)
0.904509 + 0.426454i \(0.140237\pi\)
\(14\) −5.96094e13 −0.281005
\(15\) 0 0
\(16\) 2.81475e14 0.250000
\(17\) 3.15464e15 1.31322 0.656611 0.754230i \(-0.271990\pi\)
0.656611 + 0.754230i \(0.271990\pi\)
\(18\) 2.00566e15 0.408650
\(19\) −8.10963e15 −0.840584 −0.420292 0.907389i \(-0.638072\pi\)
−0.420292 + 0.907389i \(0.638072\pi\)
\(20\) 0 0
\(21\) 8.70300e15 0.258183
\(22\) 1.07260e16 0.177890
\(23\) 9.27767e15 0.0882756 0.0441378 0.999025i \(-0.485946\pi\)
0.0441378 + 0.999025i \(0.485946\pi\)
\(24\) −4.10955e16 −0.229696
\(25\) 0 0
\(26\) −6.22436e17 −1.27917
\(27\) −7.99521e17 −1.02514
\(28\) 2.44160e17 0.198701
\(29\) 1.39333e18 0.731272 0.365636 0.930758i \(-0.380852\pi\)
0.365636 + 0.930758i \(0.380852\pi\)
\(30\) 0 0
\(31\) −1.42368e17 −0.0324633 −0.0162316 0.999868i \(-0.505167\pi\)
−0.0162316 + 0.999868i \(0.505167\pi\)
\(32\) −1.15292e18 −0.176777
\(33\) −1.56599e18 −0.163443
\(34\) −1.29214e19 −0.928588
\(35\) 0 0
\(36\) −8.21519e18 −0.288959
\(37\) 5.37730e19 1.34290 0.671449 0.741051i \(-0.265672\pi\)
0.671449 + 0.741051i \(0.265672\pi\)
\(38\) 3.32170e19 0.594382
\(39\) 9.08759e19 1.17528
\(40\) 0 0
\(41\) −7.26333e19 −0.502733 −0.251367 0.967892i \(-0.580880\pi\)
−0.251367 + 0.967892i \(0.580880\pi\)
\(42\) −3.56475e19 −0.182563
\(43\) −3.12589e20 −1.19294 −0.596469 0.802636i \(-0.703430\pi\)
−0.596469 + 0.802636i \(0.703430\pi\)
\(44\) −4.39335e19 −0.125788
\(45\) 0 0
\(46\) −3.80013e19 −0.0624203
\(47\) 2.45817e19 0.0308595 0.0154297 0.999881i \(-0.495088\pi\)
0.0154297 + 0.999881i \(0.495088\pi\)
\(48\) 1.68327e20 0.162420
\(49\) −1.12928e21 −0.842072
\(50\) 0 0
\(51\) 1.88653e21 0.853171
\(52\) 2.54950e21 0.904509
\(53\) 6.91634e20 0.193387 0.0966936 0.995314i \(-0.469173\pi\)
0.0966936 + 0.995314i \(0.469173\pi\)
\(54\) 3.27484e21 0.724883
\(55\) 0 0
\(56\) −1.00008e21 −0.140503
\(57\) −4.84970e21 −0.546109
\(58\) −5.70708e21 −0.517087
\(59\) 9.21095e21 0.673991 0.336996 0.941506i \(-0.390589\pi\)
0.336996 + 0.941506i \(0.390589\pi\)
\(60\) 0 0
\(61\) 1.19113e22 0.574561 0.287281 0.957846i \(-0.407249\pi\)
0.287281 + 0.957846i \(0.407249\pi\)
\(62\) 5.83140e20 0.0229550
\(63\) −7.12611e21 −0.229666
\(64\) 4.72237e21 0.125000
\(65\) 0 0
\(66\) 6.41431e21 0.115572
\(67\) 1.17804e23 1.75884 0.879418 0.476050i \(-0.157932\pi\)
0.879418 + 0.476050i \(0.157932\pi\)
\(68\) 5.29260e22 0.656611
\(69\) 5.54821e21 0.0573508
\(70\) 0 0
\(71\) 1.28366e23 0.928367 0.464184 0.885739i \(-0.346348\pi\)
0.464184 + 0.885739i \(0.346348\pi\)
\(72\) 3.36494e22 0.204325
\(73\) 2.12900e22 0.108803 0.0544013 0.998519i \(-0.482675\pi\)
0.0544013 + 0.998519i \(0.482675\pi\)
\(74\) −2.20254e23 −0.949572
\(75\) 0 0
\(76\) −1.36057e23 −0.420292
\(77\) −3.81093e22 −0.0999763
\(78\) −3.72228e23 −0.831048
\(79\) −2.44555e23 −0.465627 −0.232813 0.972521i \(-0.574793\pi\)
−0.232813 + 0.972521i \(0.574793\pi\)
\(80\) 0 0
\(81\) −6.32412e22 −0.0880922
\(82\) 2.97506e23 0.355486
\(83\) 4.71841e23 0.484529 0.242264 0.970210i \(-0.422110\pi\)
0.242264 + 0.970210i \(0.422110\pi\)
\(84\) 1.46012e23 0.129092
\(85\) 0 0
\(86\) 1.28037e24 0.843535
\(87\) 8.33235e23 0.475091
\(88\) 1.79952e23 0.0889452
\(89\) −3.32650e24 −1.42762 −0.713810 0.700340i \(-0.753032\pi\)
−0.713810 + 0.700340i \(0.753032\pi\)
\(90\) 0 0
\(91\) 2.21152e24 0.718907
\(92\) 1.55653e23 0.0441378
\(93\) −8.51387e22 −0.0210907
\(94\) −1.00687e23 −0.0218209
\(95\) 0 0
\(96\) −6.89467e23 −0.114848
\(97\) −2.17673e24 −0.318535 −0.159268 0.987235i \(-0.550913\pi\)
−0.159268 + 0.987235i \(0.550913\pi\)
\(98\) 4.62552e24 0.595435
\(99\) 1.28225e24 0.145390
\(100\) 0 0
\(101\) 9.49877e23 0.0838784 0.0419392 0.999120i \(-0.486646\pi\)
0.0419392 + 0.999120i \(0.486646\pi\)
\(102\) −7.72722e24 −0.603283
\(103\) −1.58249e25 −1.09364 −0.546822 0.837249i \(-0.684163\pi\)
−0.546822 + 0.837249i \(0.684163\pi\)
\(104\) −1.04427e25 −0.639585
\(105\) 0 0
\(106\) −2.83293e24 −0.136745
\(107\) 5.57078e24 0.239121 0.119561 0.992827i \(-0.461851\pi\)
0.119561 + 0.992827i \(0.461851\pi\)
\(108\) −1.34137e25 −0.512570
\(109\) −6.15233e24 −0.209512 −0.104756 0.994498i \(-0.533406\pi\)
−0.104756 + 0.994498i \(0.533406\pi\)
\(110\) 0 0
\(111\) 3.21572e25 0.872451
\(112\) 4.09633e24 0.0993504
\(113\) −7.53762e25 −1.63589 −0.817945 0.575297i \(-0.804886\pi\)
−0.817945 + 0.575297i \(0.804886\pi\)
\(114\) 1.98644e25 0.386157
\(115\) 0 0
\(116\) 2.33762e25 0.365636
\(117\) −7.44102e25 −1.04546
\(118\) −3.77280e25 −0.476584
\(119\) 4.59097e25 0.521876
\(120\) 0 0
\(121\) −1.01490e26 −0.936710
\(122\) −4.87887e25 −0.406276
\(123\) −4.34360e25 −0.326615
\(124\) −2.38854e24 −0.0162316
\(125\) 0 0
\(126\) 2.91886e25 0.162398
\(127\) −1.42556e26 −0.718520 −0.359260 0.933238i \(-0.616971\pi\)
−0.359260 + 0.933238i \(0.616971\pi\)
\(128\) −1.93428e25 −0.0883883
\(129\) −1.86934e26 −0.775026
\(130\) 0 0
\(131\) 5.35467e26 1.83165 0.915823 0.401582i \(-0.131540\pi\)
0.915823 + 0.401582i \(0.131540\pi\)
\(132\) −2.62730e25 −0.0817214
\(133\) −1.18020e26 −0.334049
\(134\) −4.82526e26 −1.24368
\(135\) 0 0
\(136\) −2.16785e26 −0.464294
\(137\) 2.89135e26 0.565059 0.282530 0.959259i \(-0.408826\pi\)
0.282530 + 0.959259i \(0.408826\pi\)
\(138\) −2.27255e25 −0.0405531
\(139\) 5.79091e26 0.944195 0.472097 0.881546i \(-0.343497\pi\)
0.472097 + 0.881546i \(0.343497\pi\)
\(140\) 0 0
\(141\) 1.47003e25 0.0200487
\(142\) −5.25786e26 −0.656455
\(143\) −3.97934e26 −0.455104
\(144\) −1.37828e26 −0.144480
\(145\) 0 0
\(146\) −8.72037e25 −0.0769351
\(147\) −6.75327e26 −0.547076
\(148\) 9.02161e26 0.671449
\(149\) −1.63954e27 −1.12174 −0.560871 0.827903i \(-0.689534\pi\)
−0.560871 + 0.827903i \(0.689534\pi\)
\(150\) 0 0
\(151\) 8.73769e26 0.506040 0.253020 0.967461i \(-0.418576\pi\)
0.253020 + 0.967461i \(0.418576\pi\)
\(152\) 5.57289e26 0.297191
\(153\) −1.54471e27 −0.758935
\(154\) 1.56096e26 0.0706939
\(155\) 0 0
\(156\) 1.52465e27 0.587640
\(157\) 5.11473e27 1.82002 0.910011 0.414583i \(-0.136073\pi\)
0.910011 + 0.414583i \(0.136073\pi\)
\(158\) 1.00170e27 0.329248
\(159\) 4.13609e26 0.125639
\(160\) 0 0
\(161\) 1.35019e26 0.0350809
\(162\) 2.59036e26 0.0622906
\(163\) 8.90978e27 1.98391 0.991955 0.126591i \(-0.0404036\pi\)
0.991955 + 0.126591i \(0.0404036\pi\)
\(164\) −1.21858e27 −0.251367
\(165\) 0 0
\(166\) −1.93266e27 −0.342614
\(167\) −4.51191e27 −0.742002 −0.371001 0.928632i \(-0.620985\pi\)
−0.371001 + 0.928632i \(0.620985\pi\)
\(168\) −5.98066e26 −0.0912815
\(169\) 1.60360e28 2.27255
\(170\) 0 0
\(171\) 3.97099e27 0.485789
\(172\) −5.24438e27 −0.596469
\(173\) −4.73770e27 −0.501177 −0.250588 0.968094i \(-0.580624\pi\)
−0.250588 + 0.968094i \(0.580624\pi\)
\(174\) −3.41293e27 −0.335940
\(175\) 0 0
\(176\) −7.37082e26 −0.0628938
\(177\) 5.50831e27 0.437877
\(178\) 1.36253e28 1.00948
\(179\) 1.61045e28 1.11246 0.556230 0.831029i \(-0.312248\pi\)
0.556230 + 0.831029i \(0.312248\pi\)
\(180\) 0 0
\(181\) 1.83661e27 0.110417 0.0552085 0.998475i \(-0.482418\pi\)
0.0552085 + 0.998475i \(0.482418\pi\)
\(182\) −9.05837e27 −0.508344
\(183\) 7.12317e27 0.373280
\(184\) −6.37557e26 −0.0312102
\(185\) 0 0
\(186\) 3.48728e26 0.0149134
\(187\) −8.26087e27 −0.330374
\(188\) 4.12412e26 0.0154297
\(189\) −1.16355e28 −0.407392
\(190\) 0 0
\(191\) −8.82845e27 −0.270999 −0.135499 0.990777i \(-0.543264\pi\)
−0.135499 + 0.990777i \(0.543264\pi\)
\(192\) 2.82406e27 0.0812098
\(193\) 4.86040e28 1.30980 0.654901 0.755714i \(-0.272710\pi\)
0.654901 + 0.755714i \(0.272710\pi\)
\(194\) 8.91587e27 0.225238
\(195\) 0 0
\(196\) −1.89461e28 −0.421036
\(197\) −8.10600e28 −1.69036 −0.845179 0.534484i \(-0.820506\pi\)
−0.845179 + 0.534484i \(0.820506\pi\)
\(198\) −5.25211e27 −0.102806
\(199\) 2.19750e28 0.403893 0.201946 0.979397i \(-0.435273\pi\)
0.201946 + 0.979397i \(0.435273\pi\)
\(200\) 0 0
\(201\) 7.04489e28 1.14268
\(202\) −3.89069e27 −0.0593110
\(203\) 2.02772e28 0.290608
\(204\) 3.16507e28 0.426586
\(205\) 0 0
\(206\) 6.48189e28 0.773323
\(207\) −4.54294e27 −0.0510161
\(208\) 4.27735e28 0.452255
\(209\) 2.12362e28 0.211470
\(210\) 0 0
\(211\) 1.16957e29 1.03394 0.516971 0.856003i \(-0.327059\pi\)
0.516971 + 0.856003i \(0.327059\pi\)
\(212\) 1.16037e28 0.0966936
\(213\) 7.67650e28 0.603140
\(214\) −2.28179e28 −0.169084
\(215\) 0 0
\(216\) 5.49427e28 0.362441
\(217\) −2.07190e27 −0.0129009
\(218\) 2.52000e28 0.148147
\(219\) 1.27318e28 0.0706867
\(220\) 0 0
\(221\) 4.79385e29 2.37564
\(222\) −1.31716e29 −0.616916
\(223\) −1.81556e29 −0.803898 −0.401949 0.915662i \(-0.631667\pi\)
−0.401949 + 0.915662i \(0.631667\pi\)
\(224\) −1.67786e28 −0.0702513
\(225\) 0 0
\(226\) 3.08741e29 1.15675
\(227\) −2.82277e29 −1.00081 −0.500406 0.865791i \(-0.666816\pi\)
−0.500406 + 0.865791i \(0.666816\pi\)
\(228\) −8.13645e28 −0.273054
\(229\) −6.39963e28 −0.203335 −0.101667 0.994818i \(-0.532418\pi\)
−0.101667 + 0.994818i \(0.532418\pi\)
\(230\) 0 0
\(231\) −2.27900e28 −0.0649524
\(232\) −9.57488e28 −0.258544
\(233\) 5.09485e29 1.30371 0.651856 0.758342i \(-0.273990\pi\)
0.651856 + 0.758342i \(0.273990\pi\)
\(234\) 3.04784e29 0.739255
\(235\) 0 0
\(236\) 1.54534e29 0.336996
\(237\) −1.46248e29 −0.302507
\(238\) −1.88046e29 −0.369022
\(239\) −2.78735e29 −0.519060 −0.259530 0.965735i \(-0.583568\pi\)
−0.259530 + 0.965735i \(0.583568\pi\)
\(240\) 0 0
\(241\) 1.16488e30 1.95465 0.977326 0.211741i \(-0.0679133\pi\)
0.977326 + 0.211741i \(0.0679133\pi\)
\(242\) 4.15702e29 0.662354
\(243\) 6.39606e29 0.967907
\(244\) 1.99838e29 0.287281
\(245\) 0 0
\(246\) 1.77914e29 0.230951
\(247\) −1.23235e30 −1.52063
\(248\) 9.78347e27 0.0114775
\(249\) 2.82169e29 0.314788
\(250\) 0 0
\(251\) 9.82414e29 0.991684 0.495842 0.868413i \(-0.334860\pi\)
0.495842 + 0.868413i \(0.334860\pi\)
\(252\) −1.19556e29 −0.114833
\(253\) −2.42949e28 −0.0222080
\(254\) 5.83909e29 0.508070
\(255\) 0 0
\(256\) 7.92282e28 0.0625000
\(257\) −1.90279e30 −1.42964 −0.714821 0.699308i \(-0.753492\pi\)
−0.714821 + 0.699308i \(0.753492\pi\)
\(258\) 7.65681e29 0.548026
\(259\) 7.82563e29 0.533669
\(260\) 0 0
\(261\) −6.82263e29 −0.422615
\(262\) −2.19327e30 −1.29517
\(263\) 2.16480e30 1.21891 0.609454 0.792821i \(-0.291389\pi\)
0.609454 + 0.792821i \(0.291389\pi\)
\(264\) 1.07614e29 0.0577858
\(265\) 0 0
\(266\) 4.83410e29 0.236208
\(267\) −1.98930e30 −0.927493
\(268\) 1.97642e30 0.879418
\(269\) 2.85539e30 1.21272 0.606362 0.795189i \(-0.292628\pi\)
0.606362 + 0.795189i \(0.292628\pi\)
\(270\) 0 0
\(271\) 3.91860e30 1.51710 0.758551 0.651614i \(-0.225908\pi\)
0.758551 + 0.651614i \(0.225908\pi\)
\(272\) 8.87951e29 0.328305
\(273\) 1.32252e30 0.467058
\(274\) −1.18430e30 −0.399557
\(275\) 0 0
\(276\) 9.30835e28 0.0286754
\(277\) 4.65569e30 1.37084 0.685421 0.728147i \(-0.259618\pi\)
0.685421 + 0.728147i \(0.259618\pi\)
\(278\) −2.37196e30 −0.667646
\(279\) 6.97126e28 0.0187611
\(280\) 0 0
\(281\) 1.40228e30 0.345148 0.172574 0.984997i \(-0.444792\pi\)
0.172574 + 0.984997i \(0.444792\pi\)
\(282\) −6.02123e28 −0.0141766
\(283\) 5.44976e30 1.22757 0.613785 0.789473i \(-0.289646\pi\)
0.613785 + 0.789473i \(0.289646\pi\)
\(284\) 2.15362e30 0.464184
\(285\) 0 0
\(286\) 1.62994e30 0.321807
\(287\) −1.05704e30 −0.199787
\(288\) 5.64544e29 0.102162
\(289\) 4.18111e30 0.724550
\(290\) 0 0
\(291\) −1.30172e30 −0.206945
\(292\) 3.57186e29 0.0544013
\(293\) −1.13376e30 −0.165454 −0.0827268 0.996572i \(-0.526363\pi\)
−0.0827268 + 0.996572i \(0.526363\pi\)
\(294\) 2.76614e30 0.386841
\(295\) 0 0
\(296\) −3.69525e30 −0.474786
\(297\) 2.09366e30 0.257900
\(298\) 6.71555e30 0.793191
\(299\) 1.40985e30 0.159692
\(300\) 0 0
\(301\) −4.54914e30 −0.474076
\(302\) −3.57896e30 −0.357824
\(303\) 5.68043e29 0.0544940
\(304\) −2.28266e30 −0.210146
\(305\) 0 0
\(306\) 6.32714e30 0.536648
\(307\) 1.74515e31 1.42103 0.710515 0.703682i \(-0.248462\pi\)
0.710515 + 0.703682i \(0.248462\pi\)
\(308\) −6.39368e29 −0.0499882
\(309\) −9.46358e30 −0.710517
\(310\) 0 0
\(311\) 1.83900e31 1.27373 0.636865 0.770975i \(-0.280231\pi\)
0.636865 + 0.770975i \(0.280231\pi\)
\(312\) −6.24495e30 −0.415524
\(313\) −5.22205e30 −0.333839 −0.166919 0.985971i \(-0.553382\pi\)
−0.166919 + 0.985971i \(0.553382\pi\)
\(314\) −2.09499e31 −1.28695
\(315\) 0 0
\(316\) −4.10295e30 −0.232813
\(317\) −1.02145e31 −0.557158 −0.278579 0.960413i \(-0.589863\pi\)
−0.278579 + 0.960413i \(0.589863\pi\)
\(318\) −1.69414e30 −0.0888405
\(319\) −3.64863e30 −0.183970
\(320\) 0 0
\(321\) 3.33142e30 0.155352
\(322\) −5.53036e29 −0.0248059
\(323\) −2.55829e31 −1.10387
\(324\) −1.06101e30 −0.0440461
\(325\) 0 0
\(326\) −3.64945e31 −1.40284
\(327\) −3.67920e30 −0.136115
\(328\) 4.99132e30 0.177743
\(329\) 3.57739e29 0.0122636
\(330\) 0 0
\(331\) −4.70386e31 −1.49487 −0.747436 0.664334i \(-0.768715\pi\)
−0.747436 + 0.664334i \(0.768715\pi\)
\(332\) 7.91618e30 0.242264
\(333\) −2.63307e31 −0.776085
\(334\) 1.84808e31 0.524675
\(335\) 0 0
\(336\) 2.44968e30 0.0645458
\(337\) 6.26572e30 0.159073 0.0795367 0.996832i \(-0.474656\pi\)
0.0795367 + 0.996832i \(0.474656\pi\)
\(338\) −6.56836e31 −1.60693
\(339\) −4.50763e31 −1.06280
\(340\) 0 0
\(341\) 3.72812e29 0.00816695
\(342\) −1.62652e31 −0.343504
\(343\) −3.59511e31 −0.732042
\(344\) 2.14810e31 0.421768
\(345\) 0 0
\(346\) 1.94056e31 0.354386
\(347\) 5.96085e31 1.05000 0.525000 0.851102i \(-0.324065\pi\)
0.525000 + 0.851102i \(0.324065\pi\)
\(348\) 1.39794e31 0.237546
\(349\) −4.14342e31 −0.679268 −0.339634 0.940558i \(-0.610303\pi\)
−0.339634 + 0.940558i \(0.610303\pi\)
\(350\) 0 0
\(351\) −1.21497e32 −1.85450
\(352\) 3.01909e30 0.0444726
\(353\) 6.99904e30 0.0995073 0.0497536 0.998762i \(-0.484156\pi\)
0.0497536 + 0.998762i \(0.484156\pi\)
\(354\) −2.25620e31 −0.309626
\(355\) 0 0
\(356\) −5.58094e31 −0.713810
\(357\) 2.74548e31 0.339051
\(358\) −6.59640e31 −0.786627
\(359\) −1.15020e31 −0.132462 −0.0662312 0.997804i \(-0.521097\pi\)
−0.0662312 + 0.997804i \(0.521097\pi\)
\(360\) 0 0
\(361\) −2.73104e31 −0.293419
\(362\) −7.52277e30 −0.0780766
\(363\) −6.06927e31 −0.608560
\(364\) 3.71031e31 0.359453
\(365\) 0 0
\(366\) −2.91765e31 −0.263949
\(367\) 8.40201e31 0.734611 0.367306 0.930100i \(-0.380280\pi\)
0.367306 + 0.930100i \(0.380280\pi\)
\(368\) 2.61143e30 0.0220689
\(369\) 3.55659e31 0.290539
\(370\) 0 0
\(371\) 1.00654e31 0.0768524
\(372\) −1.42839e30 −0.0105453
\(373\) −9.28607e31 −0.662936 −0.331468 0.943466i \(-0.607544\pi\)
−0.331468 + 0.943466i \(0.607544\pi\)
\(374\) 3.38365e31 0.233610
\(375\) 0 0
\(376\) −1.68924e30 −0.0109105
\(377\) 2.11733e32 1.32288
\(378\) 4.76590e31 0.288069
\(379\) −2.04933e32 −1.19845 −0.599226 0.800580i \(-0.704525\pi\)
−0.599226 + 0.800580i \(0.704525\pi\)
\(380\) 0 0
\(381\) −8.52510e31 −0.466807
\(382\) 3.61613e31 0.191625
\(383\) 2.43020e32 1.24640 0.623200 0.782063i \(-0.285832\pi\)
0.623200 + 0.782063i \(0.285832\pi\)
\(384\) −1.15673e31 −0.0574240
\(385\) 0 0
\(386\) −1.99082e32 −0.926171
\(387\) 1.53064e32 0.689421
\(388\) −3.65194e31 −0.159268
\(389\) −1.98585e32 −0.838640 −0.419320 0.907838i \(-0.637732\pi\)
−0.419320 + 0.907838i \(0.637732\pi\)
\(390\) 0 0
\(391\) 2.92677e31 0.115925
\(392\) 7.76033e31 0.297717
\(393\) 3.20219e32 1.18998
\(394\) 3.32022e32 1.19526
\(395\) 0 0
\(396\) 2.15127e31 0.0726949
\(397\) 9.28363e31 0.303974 0.151987 0.988382i \(-0.451433\pi\)
0.151987 + 0.988382i \(0.451433\pi\)
\(398\) −9.00098e31 −0.285595
\(399\) −7.05781e31 −0.217024
\(400\) 0 0
\(401\) −4.87975e32 −1.40959 −0.704796 0.709410i \(-0.748961\pi\)
−0.704796 + 0.709410i \(0.748961\pi\)
\(402\) −2.88559e32 −0.807995
\(403\) −2.16346e31 −0.0587266
\(404\) 1.59363e31 0.0419392
\(405\) 0 0
\(406\) −8.30555e31 −0.205491
\(407\) −1.40812e32 −0.337840
\(408\) −1.29641e32 −0.301642
\(409\) −3.05167e32 −0.688646 −0.344323 0.938851i \(-0.611892\pi\)
−0.344323 + 0.938851i \(0.611892\pi\)
\(410\) 0 0
\(411\) 1.72908e32 0.367107
\(412\) −2.65498e32 −0.546822
\(413\) 1.34048e32 0.267845
\(414\) 1.86079e31 0.0360738
\(415\) 0 0
\(416\) −1.75200e32 −0.319792
\(417\) 3.46306e32 0.613423
\(418\) −8.69835e31 −0.149532
\(419\) 1.13245e33 1.88949 0.944743 0.327811i \(-0.106311\pi\)
0.944743 + 0.327811i \(0.106311\pi\)
\(420\) 0 0
\(421\) 1.20520e33 1.89466 0.947331 0.320257i \(-0.103769\pi\)
0.947331 + 0.320257i \(0.103769\pi\)
\(422\) −4.79057e32 −0.731108
\(423\) −1.20368e31 −0.0178342
\(424\) −4.75287e31 −0.0683727
\(425\) 0 0
\(426\) −3.14429e32 −0.426484
\(427\) 1.73346e32 0.228331
\(428\) 9.34621e31 0.119561
\(429\) −2.37972e32 −0.295671
\(430\) 0 0
\(431\) 1.58506e33 1.85814 0.929071 0.369901i \(-0.120608\pi\)
0.929071 + 0.369901i \(0.120608\pi\)
\(432\) −2.25045e32 −0.256285
\(433\) 2.62028e32 0.289900 0.144950 0.989439i \(-0.453698\pi\)
0.144950 + 0.989439i \(0.453698\pi\)
\(434\) 8.48649e30 0.00912235
\(435\) 0 0
\(436\) −1.03219e32 −0.104756
\(437\) −7.52384e31 −0.0742030
\(438\) −5.21494e31 −0.0499830
\(439\) 6.01248e32 0.560076 0.280038 0.959989i \(-0.409653\pi\)
0.280038 + 0.959989i \(0.409653\pi\)
\(440\) 0 0
\(441\) 5.52966e32 0.486649
\(442\) −1.96356e33 −1.67983
\(443\) −1.09376e33 −0.909656 −0.454828 0.890579i \(-0.650299\pi\)
−0.454828 + 0.890579i \(0.650299\pi\)
\(444\) 5.39508e32 0.436225
\(445\) 0 0
\(446\) 7.43655e32 0.568442
\(447\) −9.80472e32 −0.728771
\(448\) 6.87250e31 0.0496752
\(449\) −7.47845e32 −0.525693 −0.262846 0.964838i \(-0.584661\pi\)
−0.262846 + 0.964838i \(0.584661\pi\)
\(450\) 0 0
\(451\) 1.90201e32 0.126475
\(452\) −1.26460e33 −0.817945
\(453\) 5.22529e32 0.328763
\(454\) 1.15621e33 0.707681
\(455\) 0 0
\(456\) 3.33269e32 0.193079
\(457\) −4.45068e32 −0.250885 −0.125442 0.992101i \(-0.540035\pi\)
−0.125442 + 0.992101i \(0.540035\pi\)
\(458\) 2.62129e32 0.143779
\(459\) −2.52220e33 −1.34623
\(460\) 0 0
\(461\) 3.01850e33 1.52591 0.762957 0.646449i \(-0.223747\pi\)
0.762957 + 0.646449i \(0.223747\pi\)
\(462\) 9.33480e31 0.0459283
\(463\) 3.41535e33 1.63559 0.817793 0.575513i \(-0.195198\pi\)
0.817793 + 0.575513i \(0.195198\pi\)
\(464\) 3.92187e32 0.182818
\(465\) 0 0
\(466\) −2.08685e33 −0.921864
\(467\) 4.56176e33 1.96187 0.980937 0.194326i \(-0.0622518\pi\)
0.980937 + 0.194326i \(0.0622518\pi\)
\(468\) −1.24840e33 −0.522732
\(469\) 1.71441e33 0.698964
\(470\) 0 0
\(471\) 3.05870e33 1.18243
\(472\) −6.32971e32 −0.238292
\(473\) 8.18559e32 0.300114
\(474\) 5.99032e32 0.213905
\(475\) 0 0
\(476\) 7.70237e32 0.260938
\(477\) −3.38668e32 −0.111762
\(478\) 1.14170e33 0.367031
\(479\) −5.85782e33 −1.83460 −0.917301 0.398194i \(-0.869637\pi\)
−0.917301 + 0.398194i \(0.869637\pi\)
\(480\) 0 0
\(481\) 8.17145e33 2.42933
\(482\) −4.77136e33 −1.38215
\(483\) 8.07435e31 0.0227913
\(484\) −1.70272e33 −0.468355
\(485\) 0 0
\(486\) −2.61982e33 −0.684414
\(487\) −4.33198e32 −0.110300 −0.0551499 0.998478i \(-0.517564\pi\)
−0.0551499 + 0.998478i \(0.517564\pi\)
\(488\) −8.18538e32 −0.203138
\(489\) 5.32821e33 1.28890
\(490\) 0 0
\(491\) −3.36826e33 −0.774261 −0.387131 0.922025i \(-0.626534\pi\)
−0.387131 + 0.922025i \(0.626534\pi\)
\(492\) −7.28735e32 −0.163307
\(493\) 4.39545e33 0.960321
\(494\) 5.04773e33 1.07525
\(495\) 0 0
\(496\) −4.00731e31 −0.00811581
\(497\) 1.86812e33 0.368935
\(498\) −1.15577e33 −0.222589
\(499\) 2.86948e33 0.538947 0.269474 0.963008i \(-0.413150\pi\)
0.269474 + 0.963008i \(0.413150\pi\)
\(500\) 0 0
\(501\) −2.69820e33 −0.482062
\(502\) −4.02397e33 −0.701226
\(503\) 5.60647e33 0.952994 0.476497 0.879176i \(-0.341906\pi\)
0.476497 + 0.879176i \(0.341906\pi\)
\(504\) 4.89703e32 0.0811990
\(505\) 0 0
\(506\) 9.95119e31 0.0157034
\(507\) 9.58983e33 1.47643
\(508\) −2.39169e33 −0.359260
\(509\) −5.45018e33 −0.798802 −0.399401 0.916776i \(-0.630782\pi\)
−0.399401 + 0.916776i \(0.630782\pi\)
\(510\) 0 0
\(511\) 3.09835e32 0.0432383
\(512\) −3.24519e32 −0.0441942
\(513\) 6.48382e33 0.861715
\(514\) 7.79384e33 1.01091
\(515\) 0 0
\(516\) −3.13623e33 −0.387513
\(517\) −6.43706e31 −0.00776347
\(518\) −3.20538e33 −0.377361
\(519\) −2.83323e33 −0.325604
\(520\) 0 0
\(521\) −6.07119e33 −0.664970 −0.332485 0.943108i \(-0.607887\pi\)
−0.332485 + 0.943108i \(0.607887\pi\)
\(522\) 2.79455e33 0.298834
\(523\) −5.31876e33 −0.555315 −0.277657 0.960680i \(-0.589558\pi\)
−0.277657 + 0.960680i \(0.589558\pi\)
\(524\) 8.98364e33 0.915823
\(525\) 0 0
\(526\) −8.86702e33 −0.861898
\(527\) −4.49120e32 −0.0426314
\(528\) −4.40788e32 −0.0408607
\(529\) −1.09597e34 −0.992207
\(530\) 0 0
\(531\) −4.51027e33 −0.389512
\(532\) −1.98005e33 −0.167025
\(533\) −1.10375e34 −0.909453
\(534\) 8.14819e33 0.655837
\(535\) 0 0
\(536\) −8.09544e33 −0.621842
\(537\) 9.63077e33 0.722740
\(538\) −1.16957e34 −0.857525
\(539\) 2.95717e33 0.211844
\(540\) 0 0
\(541\) −4.32128e33 −0.295561 −0.147780 0.989020i \(-0.547213\pi\)
−0.147780 + 0.989020i \(0.547213\pi\)
\(542\) −1.60506e34 −1.07275
\(543\) 1.09833e33 0.0717355
\(544\) −3.63705e33 −0.232147
\(545\) 0 0
\(546\) −5.41706e33 −0.330260
\(547\) 1.33475e34 0.795350 0.397675 0.917526i \(-0.369817\pi\)
0.397675 + 0.917526i \(0.369817\pi\)
\(548\) 4.85089e33 0.282530
\(549\) −5.83253e33 −0.332049
\(550\) 0 0
\(551\) −1.12994e34 −0.614695
\(552\) −3.81270e32 −0.0202766
\(553\) −3.55903e33 −0.185041
\(554\) −1.90697e34 −0.969332
\(555\) 0 0
\(556\) 9.71553e33 0.472097
\(557\) 3.10182e34 1.47376 0.736879 0.676025i \(-0.236299\pi\)
0.736879 + 0.676025i \(0.236299\pi\)
\(558\) −2.85543e32 −0.0132661
\(559\) −4.75017e34 −2.15805
\(560\) 0 0
\(561\) −4.94014e33 −0.214637
\(562\) −5.74373e33 −0.244056
\(563\) −2.24681e34 −0.933707 −0.466853 0.884335i \(-0.654612\pi\)
−0.466853 + 0.884335i \(0.654612\pi\)
\(564\) 2.46630e32 0.0100244
\(565\) 0 0
\(566\) −2.23222e34 −0.868024
\(567\) −9.20354e32 −0.0350080
\(568\) −8.82123e33 −0.328227
\(569\) −1.20893e34 −0.440047 −0.220024 0.975495i \(-0.570613\pi\)
−0.220024 + 0.975495i \(0.570613\pi\)
\(570\) 0 0
\(571\) 1.23143e34 0.429003 0.214501 0.976724i \(-0.431187\pi\)
0.214501 + 0.976724i \(0.431187\pi\)
\(572\) −6.67623e33 −0.227552
\(573\) −5.27957e33 −0.176062
\(574\) 4.32963e33 0.141271
\(575\) 0 0
\(576\) −2.31237e33 −0.0722398
\(577\) 5.40970e33 0.165377 0.0826886 0.996575i \(-0.473649\pi\)
0.0826886 + 0.996575i \(0.473649\pi\)
\(578\) −1.71258e34 −0.512334
\(579\) 2.90661e34 0.850950
\(580\) 0 0
\(581\) 6.86674e33 0.192552
\(582\) 5.33185e33 0.146332
\(583\) −1.81114e33 −0.0486514
\(584\) −1.46304e33 −0.0384675
\(585\) 0 0
\(586\) 4.64388e33 0.116993
\(587\) 3.54869e34 0.875168 0.437584 0.899178i \(-0.355834\pi\)
0.437584 + 0.899178i \(0.355834\pi\)
\(588\) −1.13301e34 −0.273538
\(589\) 1.15455e33 0.0272881
\(590\) 0 0
\(591\) −4.84753e34 −1.09819
\(592\) 1.51358e34 0.335724
\(593\) −2.30822e34 −0.501294 −0.250647 0.968079i \(-0.580643\pi\)
−0.250647 + 0.968079i \(0.580643\pi\)
\(594\) −8.57563e33 −0.182362
\(595\) 0 0
\(596\) −2.75069e34 −0.560871
\(597\) 1.31415e34 0.262400
\(598\) −5.77476e33 −0.112919
\(599\) −5.42443e34 −1.03877 −0.519384 0.854541i \(-0.673839\pi\)
−0.519384 + 0.854541i \(0.673839\pi\)
\(600\) 0 0
\(601\) 6.07959e34 1.11672 0.558358 0.829600i \(-0.311431\pi\)
0.558358 + 0.829600i \(0.311431\pi\)
\(602\) 1.86333e34 0.335222
\(603\) −5.76844e34 −1.01646
\(604\) 1.46594e34 0.253020
\(605\) 0 0
\(606\) −2.32670e33 −0.0385330
\(607\) 2.92200e34 0.474047 0.237023 0.971504i \(-0.423828\pi\)
0.237023 + 0.971504i \(0.423828\pi\)
\(608\) 9.34976e33 0.148596
\(609\) 1.21261e34 0.188802
\(610\) 0 0
\(611\) 3.73548e33 0.0558253
\(612\) −2.59159e34 −0.379467
\(613\) 5.85284e34 0.839674 0.419837 0.907600i \(-0.362087\pi\)
0.419837 + 0.907600i \(0.362087\pi\)
\(614\) −7.14814e34 −1.00482
\(615\) 0 0
\(616\) 2.61885e33 0.0353470
\(617\) −6.82025e34 −0.902061 −0.451030 0.892509i \(-0.648943\pi\)
−0.451030 + 0.892509i \(0.648943\pi\)
\(618\) 3.87628e34 0.502411
\(619\) 9.49546e34 1.20610 0.603049 0.797704i \(-0.293952\pi\)
0.603049 + 0.797704i \(0.293952\pi\)
\(620\) 0 0
\(621\) −7.41769e33 −0.0904948
\(622\) −7.53256e34 −0.900664
\(623\) −4.84108e34 −0.567338
\(624\) 2.55793e34 0.293820
\(625\) 0 0
\(626\) 2.13895e34 0.236059
\(627\) 1.26996e34 0.137387
\(628\) 8.58109e34 0.910011
\(629\) 1.69634e35 1.76352
\(630\) 0 0
\(631\) −1.61402e35 −1.61265 −0.806327 0.591471i \(-0.798548\pi\)
−0.806327 + 0.591471i \(0.798548\pi\)
\(632\) 1.68057e34 0.164624
\(633\) 6.99425e34 0.671730
\(634\) 4.18388e34 0.393970
\(635\) 0 0
\(636\) 6.93921e33 0.0628197
\(637\) −1.71607e35 −1.52332
\(638\) 1.49448e34 0.130086
\(639\) −6.28560e34 −0.536520
\(640\) 0 0
\(641\) 1.81108e35 1.48666 0.743331 0.668924i \(-0.233245\pi\)
0.743331 + 0.668924i \(0.233245\pi\)
\(642\) −1.36455e34 −0.109850
\(643\) 4.05766e34 0.320360 0.160180 0.987088i \(-0.448793\pi\)
0.160180 + 0.987088i \(0.448793\pi\)
\(644\) 2.26524e33 0.0175404
\(645\) 0 0
\(646\) 1.04788e35 0.780555
\(647\) −1.36523e35 −0.997473 −0.498737 0.866754i \(-0.666202\pi\)
−0.498737 + 0.866754i \(0.666202\pi\)
\(648\) 4.34590e33 0.0311453
\(649\) −2.41202e34 −0.169559
\(650\) 0 0
\(651\) −1.23903e33 −0.00838146
\(652\) 1.49481e35 0.991955
\(653\) 2.42856e35 1.58101 0.790506 0.612455i \(-0.209818\pi\)
0.790506 + 0.612455i \(0.209818\pi\)
\(654\) 1.50700e34 0.0962480
\(655\) 0 0
\(656\) −2.04444e34 −0.125683
\(657\) −1.04249e34 −0.0628790
\(658\) −1.46530e33 −0.00867167
\(659\) 1.97195e35 1.14506 0.572529 0.819884i \(-0.305962\pi\)
0.572529 + 0.819884i \(0.305962\pi\)
\(660\) 0 0
\(661\) 1.13646e35 0.635384 0.317692 0.948194i \(-0.397092\pi\)
0.317692 + 0.948194i \(0.397092\pi\)
\(662\) 1.92670e35 1.05703
\(663\) 2.86681e35 1.54340
\(664\) −3.24247e34 −0.171307
\(665\) 0 0
\(666\) 1.07850e35 0.548775
\(667\) 1.29268e34 0.0645535
\(668\) −7.56974e34 −0.371001
\(669\) −1.08574e35 −0.522275
\(670\) 0 0
\(671\) −3.11914e34 −0.144545
\(672\) −1.00339e34 −0.0456408
\(673\) −6.16466e34 −0.275246 −0.137623 0.990485i \(-0.543946\pi\)
−0.137623 + 0.990485i \(0.543946\pi\)
\(674\) −2.56644e34 −0.112482
\(675\) 0 0
\(676\) 2.69040e35 1.13627
\(677\) −3.87398e35 −1.60620 −0.803099 0.595845i \(-0.796817\pi\)
−0.803099 + 0.595845i \(0.796817\pi\)
\(678\) 1.84633e35 0.751514
\(679\) −3.16781e34 −0.126586
\(680\) 0 0
\(681\) −1.68807e35 −0.650206
\(682\) −1.52704e33 −0.00577490
\(683\) −2.57159e35 −0.954866 −0.477433 0.878668i \(-0.658433\pi\)
−0.477433 + 0.878668i \(0.658433\pi\)
\(684\) 6.66221e34 0.242894
\(685\) 0 0
\(686\) 1.47256e35 0.517632
\(687\) −3.82709e34 −0.132102
\(688\) −8.79860e34 −0.298235
\(689\) 1.05102e35 0.349841
\(690\) 0 0
\(691\) 5.38796e35 1.72961 0.864806 0.502107i \(-0.167442\pi\)
0.864806 + 0.502107i \(0.167442\pi\)
\(692\) −7.94854e34 −0.250588
\(693\) 1.86608e34 0.0577782
\(694\) −2.44156e35 −0.742463
\(695\) 0 0
\(696\) −5.72595e34 −0.167970
\(697\) −2.29132e35 −0.660200
\(698\) 1.69714e35 0.480315
\(699\) 3.04681e35 0.846994
\(700\) 0 0
\(701\) 2.98227e35 0.799966 0.399983 0.916522i \(-0.369016\pi\)
0.399983 + 0.916522i \(0.369016\pi\)
\(702\) 4.97651e35 1.31133
\(703\) −4.36079e35 −1.12882
\(704\) −1.23662e34 −0.0314469
\(705\) 0 0
\(706\) −2.86681e34 −0.0703623
\(707\) 1.38236e34 0.0333334
\(708\) 9.24141e34 0.218939
\(709\) 1.71720e35 0.399709 0.199854 0.979826i \(-0.435953\pi\)
0.199854 + 0.979826i \(0.435953\pi\)
\(710\) 0 0
\(711\) 1.19750e35 0.269094
\(712\) 2.28595e35 0.504740
\(713\) −1.32085e33 −0.00286571
\(714\) −1.12455e35 −0.239746
\(715\) 0 0
\(716\) 2.70189e35 0.556230
\(717\) −1.66688e35 −0.337222
\(718\) 4.71122e34 0.0936650
\(719\) −5.06044e35 −0.988728 −0.494364 0.869255i \(-0.664599\pi\)
−0.494364 + 0.869255i \(0.664599\pi\)
\(720\) 0 0
\(721\) −2.30301e35 −0.434616
\(722\) 1.11864e35 0.207479
\(723\) 6.96621e35 1.26989
\(724\) 3.08133e34 0.0552085
\(725\) 0 0
\(726\) 2.48597e35 0.430317
\(727\) −9.39720e35 −1.59889 −0.799445 0.600739i \(-0.794873\pi\)
−0.799445 + 0.600739i \(0.794873\pi\)
\(728\) −1.51974e35 −0.254172
\(729\) 4.36079e35 0.716921
\(730\) 0 0
\(731\) −9.86105e35 −1.56659
\(732\) 1.19507e35 0.186640
\(733\) −1.16413e36 −1.78732 −0.893659 0.448747i \(-0.851870\pi\)
−0.893659 + 0.448747i \(0.851870\pi\)
\(734\) −3.44146e35 −0.519449
\(735\) 0 0
\(736\) −1.06964e34 −0.0156051
\(737\) −3.08487e35 −0.442479
\(738\) −1.45678e35 −0.205442
\(739\) −3.05798e35 −0.424012 −0.212006 0.977268i \(-0.568000\pi\)
−0.212006 + 0.977268i \(0.568000\pi\)
\(740\) 0 0
\(741\) −7.36970e35 −0.987921
\(742\) −4.12279e34 −0.0543428
\(743\) −1.03102e36 −1.33630 −0.668152 0.744025i \(-0.732914\pi\)
−0.668152 + 0.744025i \(0.732914\pi\)
\(744\) 5.85069e33 0.00745668
\(745\) 0 0
\(746\) 3.80357e35 0.468767
\(747\) −2.31043e35 −0.280018
\(748\) −1.38594e35 −0.165187
\(749\) 8.10720e34 0.0950272
\(750\) 0 0
\(751\) −1.09969e36 −1.24672 −0.623362 0.781933i \(-0.714234\pi\)
−0.623362 + 0.781933i \(0.714234\pi\)
\(752\) 6.91913e33 0.00771486
\(753\) 5.87501e35 0.644275
\(754\) −8.67259e35 −0.935420
\(755\) 0 0
\(756\) −1.95211e35 −0.203696
\(757\) 7.01440e35 0.719933 0.359967 0.932965i \(-0.382788\pi\)
0.359967 + 0.932965i \(0.382788\pi\)
\(758\) 8.39404e35 0.847434
\(759\) −1.45288e34 −0.0144280
\(760\) 0 0
\(761\) −5.24100e34 −0.0503624 −0.0251812 0.999683i \(-0.508016\pi\)
−0.0251812 + 0.999683i \(0.508016\pi\)
\(762\) 3.49188e35 0.330082
\(763\) −8.95354e34 −0.0832603
\(764\) −1.48117e35 −0.135499
\(765\) 0 0
\(766\) −9.95410e35 −0.881337
\(767\) 1.39971e36 1.21926
\(768\) 4.73798e34 0.0406049
\(769\) 9.50588e35 0.801517 0.400759 0.916184i \(-0.368747\pi\)
0.400759 + 0.916184i \(0.368747\pi\)
\(770\) 0 0
\(771\) −1.13790e36 −0.928807
\(772\) 8.15440e35 0.654901
\(773\) −1.18680e36 −0.937852 −0.468926 0.883238i \(-0.655359\pi\)
−0.468926 + 0.883238i \(0.655359\pi\)
\(774\) −6.26948e35 −0.487494
\(775\) 0 0
\(776\) 1.49584e35 0.112619
\(777\) 4.67986e35 0.346713
\(778\) 8.13403e35 0.593008
\(779\) 5.89029e35 0.422589
\(780\) 0 0
\(781\) −3.36144e35 −0.233554
\(782\) −1.19880e35 −0.0819717
\(783\) −1.11400e36 −0.749655
\(784\) −3.17863e35 −0.210518
\(785\) 0 0
\(786\) −1.31162e36 −0.841443
\(787\) 9.20091e35 0.580961 0.290480 0.956881i \(-0.406185\pi\)
0.290480 + 0.956881i \(0.406185\pi\)
\(788\) −1.35996e36 −0.845179
\(789\) 1.29459e36 0.791898
\(790\) 0 0
\(791\) −1.09696e36 −0.650105
\(792\) −8.81158e34 −0.0514031
\(793\) 1.81006e36 1.03939
\(794\) −3.80257e35 −0.214942
\(795\) 0 0
\(796\) 3.68680e35 0.201946
\(797\) −4.72101e35 −0.254569 −0.127285 0.991866i \(-0.540626\pi\)
−0.127285 + 0.991866i \(0.540626\pi\)
\(798\) 2.89088e35 0.153459
\(799\) 7.75463e34 0.0405253
\(800\) 0 0
\(801\) 1.62887e36 0.825047
\(802\) 1.99875e36 0.996732
\(803\) −5.57508e34 −0.0273720
\(804\) 1.18194e36 0.571339
\(805\) 0 0
\(806\) 8.86152e34 0.0415260
\(807\) 1.70757e36 0.787880
\(808\) −6.52750e34 −0.0296555
\(809\) −3.41733e36 −1.52873 −0.764364 0.644785i \(-0.776947\pi\)
−0.764364 + 0.644785i \(0.776947\pi\)
\(810\) 0 0
\(811\) −2.85674e36 −1.23911 −0.619555 0.784953i \(-0.712687\pi\)
−0.619555 + 0.784953i \(0.712687\pi\)
\(812\) 3.40196e35 0.145304
\(813\) 2.34339e36 0.985627
\(814\) 5.76767e35 0.238889
\(815\) 0 0
\(816\) 5.31011e35 0.213293
\(817\) 2.53498e36 1.00276
\(818\) 1.24996e36 0.486946
\(819\) −1.08290e36 −0.415469
\(820\) 0 0
\(821\) −6.54545e35 −0.243585 −0.121792 0.992556i \(-0.538864\pi\)
−0.121792 + 0.992556i \(0.538864\pi\)
\(822\) −7.08231e35 −0.259584
\(823\) −1.62716e36 −0.587399 −0.293700 0.955898i \(-0.594887\pi\)
−0.293700 + 0.955898i \(0.594887\pi\)
\(824\) 1.08748e36 0.386662
\(825\) 0 0
\(826\) −5.49059e35 −0.189395
\(827\) −2.75985e36 −0.937707 −0.468853 0.883276i \(-0.655333\pi\)
−0.468853 + 0.883276i \(0.655333\pi\)
\(828\) −7.62178e34 −0.0255081
\(829\) −4.58088e36 −1.51014 −0.755070 0.655644i \(-0.772397\pi\)
−0.755070 + 0.655644i \(0.772397\pi\)
\(830\) 0 0
\(831\) 2.78419e36 0.890606
\(832\) 7.17620e35 0.226127
\(833\) −3.56246e36 −1.10583
\(834\) −1.41847e36 −0.433755
\(835\) 0 0
\(836\) 3.56285e35 0.105735
\(837\) 1.13826e35 0.0332794
\(838\) −4.63852e36 −1.33607
\(839\) 5.08460e36 1.44289 0.721444 0.692473i \(-0.243479\pi\)
0.721444 + 0.692473i \(0.243479\pi\)
\(840\) 0 0
\(841\) −1.68900e36 −0.465242
\(842\) −4.93648e36 −1.33973
\(843\) 8.38586e35 0.224235
\(844\) 1.96222e36 0.516971
\(845\) 0 0
\(846\) 4.93025e34 0.0126107
\(847\) −1.47699e36 −0.372250
\(848\) 1.94678e35 0.0483468
\(849\) 3.25905e36 0.797526
\(850\) 0 0
\(851\) 4.98888e35 0.118545
\(852\) 1.28790e36 0.301570
\(853\) −1.45784e36 −0.336394 −0.168197 0.985753i \(-0.553794\pi\)
−0.168197 + 0.985753i \(0.553794\pi\)
\(854\) −7.10026e35 −0.161455
\(855\) 0 0
\(856\) −3.82821e35 −0.0845422
\(857\) −4.83711e36 −1.05275 −0.526375 0.850252i \(-0.676449\pi\)
−0.526375 + 0.850252i \(0.676449\pi\)
\(858\) 9.74732e35 0.209071
\(859\) −7.94888e36 −1.68032 −0.840159 0.542341i \(-0.817538\pi\)
−0.840159 + 0.542341i \(0.817538\pi\)
\(860\) 0 0
\(861\) −6.32127e35 −0.129797
\(862\) −6.49239e36 −1.31391
\(863\) 6.70455e36 1.33732 0.668659 0.743569i \(-0.266869\pi\)
0.668659 + 0.743569i \(0.266869\pi\)
\(864\) 9.21785e35 0.181221
\(865\) 0 0
\(866\) −1.07327e36 −0.204990
\(867\) 2.50038e36 0.470724
\(868\) −3.47607e34 −0.00645047
\(869\) 6.40402e35 0.117140
\(870\) 0 0
\(871\) 1.79017e37 3.18177
\(872\) 4.22785e35 0.0740736
\(873\) 1.06586e36 0.184087
\(874\) 3.08177e35 0.0524695
\(875\) 0 0
\(876\) 2.13604e35 0.0353433
\(877\) 1.44057e36 0.234984 0.117492 0.993074i \(-0.462515\pi\)
0.117492 + 0.993074i \(0.462515\pi\)
\(878\) −2.46271e36 −0.396034
\(879\) −6.78009e35 −0.107492
\(880\) 0 0
\(881\) 2.54210e36 0.391736 0.195868 0.980630i \(-0.437248\pi\)
0.195868 + 0.980630i \(0.437248\pi\)
\(882\) −2.26495e36 −0.344113
\(883\) 5.66424e36 0.848463 0.424232 0.905554i \(-0.360544\pi\)
0.424232 + 0.905554i \(0.360544\pi\)
\(884\) 8.04274e36 1.18782
\(885\) 0 0
\(886\) 4.48006e36 0.643224
\(887\) −5.48781e36 −0.776879 −0.388440 0.921474i \(-0.626986\pi\)
−0.388440 + 0.921474i \(0.626986\pi\)
\(888\) −2.20983e36 −0.308458
\(889\) −2.07463e36 −0.285541
\(890\) 0 0
\(891\) 1.65606e35 0.0221618
\(892\) −3.04601e36 −0.401949
\(893\) −1.99348e35 −0.0259399
\(894\) 4.01601e36 0.515319
\(895\) 0 0
\(896\) −2.81498e35 −0.0351257
\(897\) 8.43117e35 0.103749
\(898\) 3.06317e36 0.371721
\(899\) −1.98366e35 −0.0237395
\(900\) 0 0
\(901\) 2.18185e36 0.253960
\(902\) −7.79062e35 −0.0894314
\(903\) −2.72046e36 −0.307997
\(904\) 5.17981e36 0.578374
\(905\) 0 0
\(906\) −2.14028e36 −0.232471
\(907\) −1.51562e36 −0.162367 −0.0811836 0.996699i \(-0.525870\pi\)
−0.0811836 + 0.996699i \(0.525870\pi\)
\(908\) −4.73583e36 −0.500406
\(909\) −4.65120e35 −0.0484749
\(910\) 0 0
\(911\) 1.29981e37 1.31796 0.658978 0.752162i \(-0.270989\pi\)
0.658978 + 0.752162i \(0.270989\pi\)
\(912\) −1.36507e36 −0.136527
\(913\) −1.23558e36 −0.121895
\(914\) 1.82300e36 0.177402
\(915\) 0 0
\(916\) −1.07368e36 −0.101667
\(917\) 7.79269e36 0.727899
\(918\) 1.03309e37 0.951931
\(919\) 1.24307e37 1.12993 0.564965 0.825115i \(-0.308890\pi\)
0.564965 + 0.825115i \(0.308890\pi\)
\(920\) 0 0
\(921\) 1.04363e37 0.923212
\(922\) −1.23638e37 −1.07898
\(923\) 1.95067e37 1.67943
\(924\) −3.82354e35 −0.0324762
\(925\) 0 0
\(926\) −1.39893e37 −1.15653
\(927\) 7.74889e36 0.632037
\(928\) −1.60640e36 −0.129272
\(929\) −3.66569e36 −0.291044 −0.145522 0.989355i \(-0.546486\pi\)
−0.145522 + 0.989355i \(0.546486\pi\)
\(930\) 0 0
\(931\) 9.15801e36 0.707832
\(932\) 8.54773e36 0.651856
\(933\) 1.09976e37 0.827515
\(934\) −1.86850e37 −1.38725
\(935\) 0 0
\(936\) 5.11343e36 0.369628
\(937\) 2.02379e37 1.44351 0.721756 0.692147i \(-0.243335\pi\)
0.721756 + 0.692147i \(0.243335\pi\)
\(938\) −7.02224e36 −0.494242
\(939\) −3.12288e36 −0.216888
\(940\) 0 0
\(941\) 1.25574e36 0.0849241 0.0424621 0.999098i \(-0.486480\pi\)
0.0424621 + 0.999098i \(0.486480\pi\)
\(942\) −1.25284e37 −0.836104
\(943\) −6.73867e35 −0.0443791
\(944\) 2.59265e36 0.168498
\(945\) 0 0
\(946\) −3.35282e36 −0.212212
\(947\) 6.83841e36 0.427150 0.213575 0.976927i \(-0.431489\pi\)
0.213575 + 0.976927i \(0.431489\pi\)
\(948\) −2.45364e36 −0.151254
\(949\) 3.23527e36 0.196826
\(950\) 0 0
\(951\) −6.10847e36 −0.361973
\(952\) −3.15489e36 −0.184511
\(953\) 1.56146e37 0.901301 0.450650 0.892701i \(-0.351192\pi\)
0.450650 + 0.892701i \(0.351192\pi\)
\(954\) 1.38718e36 0.0790277
\(955\) 0 0
\(956\) −4.67639e36 −0.259530
\(957\) −2.18195e36 −0.119521
\(958\) 2.39936e37 1.29726
\(959\) 4.20781e36 0.224555
\(960\) 0 0
\(961\) −1.92125e37 −0.998946
\(962\) −3.34703e37 −1.71779
\(963\) −2.72781e36 −0.138193
\(964\) 1.95435e37 0.977326
\(965\) 0 0
\(966\) −3.30726e35 −0.0161159
\(967\) 2.05955e37 0.990699 0.495349 0.868694i \(-0.335040\pi\)
0.495349 + 0.868694i \(0.335040\pi\)
\(968\) 6.97432e36 0.331177
\(969\) −1.52990e37 −0.717162
\(970\) 0 0
\(971\) −1.82125e37 −0.832012 −0.416006 0.909362i \(-0.636570\pi\)
−0.416006 + 0.909362i \(0.636570\pi\)
\(972\) 1.07308e37 0.483954
\(973\) 8.42755e36 0.375224
\(974\) 1.77438e36 0.0779938
\(975\) 0 0
\(976\) 3.35273e36 0.143640
\(977\) −3.37630e37 −1.42810 −0.714051 0.700094i \(-0.753141\pi\)
−0.714051 + 0.700094i \(0.753141\pi\)
\(978\) −2.18243e37 −0.911392
\(979\) 8.71091e36 0.359153
\(980\) 0 0
\(981\) 3.01257e36 0.121081
\(982\) 1.37964e37 0.547485
\(983\) −4.70453e37 −1.84331 −0.921653 0.388014i \(-0.873161\pi\)
−0.921653 + 0.388014i \(0.873161\pi\)
\(984\) 2.98490e36 0.115476
\(985\) 0 0
\(986\) −1.80038e37 −0.679050
\(987\) 2.13934e35 0.00796739
\(988\) −2.06755e37 −0.760316
\(989\) −2.90010e36 −0.105307
\(990\) 0 0
\(991\) 6.93324e35 0.0245480 0.0122740 0.999925i \(-0.496093\pi\)
0.0122740 + 0.999925i \(0.496093\pi\)
\(992\) 1.64139e35 0.00573875
\(993\) −2.81299e37 −0.971186
\(994\) −7.65181e36 −0.260876
\(995\) 0 0
\(996\) 4.73401e36 0.157394
\(997\) 2.90656e37 0.954310 0.477155 0.878819i \(-0.341668\pi\)
0.477155 + 0.878819i \(0.341668\pi\)
\(998\) −1.17534e37 −0.381093
\(999\) −4.29926e37 −1.37666
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 50.26.a.i.1.4 5
5.2 odd 4 50.26.b.h.49.2 10
5.3 odd 4 50.26.b.h.49.9 10
5.4 even 2 50.26.a.j.1.2 yes 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
50.26.a.i.1.4 5 1.1 even 1 trivial
50.26.a.j.1.2 yes 5 5.4 even 2
50.26.b.h.49.2 10 5.2 odd 4
50.26.b.h.49.9 10 5.3 odd 4