Properties

Label 50.26.a.i
Level $50$
Weight $26$
Character orbit 50.a
Self dual yes
Analytic conductor $197.998$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [50,26,Mod(1,50)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(50, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 26, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("50.1");
 
S:= CuspForms(chi, 26);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 26 \)
Character orbit: \([\chi]\) \(=\) 50.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(197.998389976\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 25534923283x^{3} - 31863478542482x^{2} + 141941149085067124800x + 2515032055818200956928000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{19}\cdot 3^{5}\cdot 5^{12} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 4096 q^{2} + ( - \beta_1 - 144799) q^{3} + 16777216 q^{4} + (4096 \beta_1 + 593096704) q^{6} + (\beta_{2} + 12450 \beta_1 - 9843777238) q^{7} - 68719476736 q^{8} + (\beta_{3} - 9 \beta_{2} + \cdots + 195075072278) q^{9}+ \cdots + (71837333568 \beta_{4} + \cdots - 46\!\cdots\!34) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 20480 q^{2} - 723995 q^{3} + 83886080 q^{4} + 2965483520 q^{6} - 49218886190 q^{7} - 343597383680 q^{8} + 975375361390 q^{9} - 8837033983815 q^{11} - 12146620497920 q^{12} - 67609989586220 q^{13}+ \cdots - 23\!\cdots\!70 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 25534923283x^{3} - 31863478542482x^{2} + 141941149085067124800x + 2515032055818200956928000 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 10\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 2500 \nu^{4} - 209270750 \nu^{3} + 28890521825550 \nu^{2} + \cdots + 77\!\cdots\!40 ) / 1693111372659 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 2500 \nu^{4} - 209270750 \nu^{3} + 47702870410650 \nu^{2} + \cdots - 11\!\cdots\!80 ) / 188123485851 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 31647500 \nu^{4} + 5650407128000 \nu^{3} + \cdots - 44\!\cdots\!40 ) / 22010447844567 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 10 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} - 9\beta_{2} + 18721\beta _1 + 1021396931320 ) / 100 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 1326\beta_{4} - 311855\beta_{3} + 1515477\beta_{2} + 720874921947\beta _1 + 9559043562744600 ) / 500 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( - 554986029 \beta_{4} + 419429477738 \beta_{3} - 4927548353754 \beta_{2} + \cdots + 36\!\cdots\!00 ) / 2500 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
121829.
107996.
−18822.3
−74281.7
−136720.
−4096.00 −1.36309e6 1.67772e7 0 5.58321e9 −6.14282e10 −6.87195e10 1.01072e12 0
1.2 −4096.00 −1.22475e6 1.67772e7 0 5.01659e9 5.40343e10 −6.87195e10 6.52735e11 0
1.3 −4096.00 43423.8 1.67772e7 0 −1.77864e8 1.17021e10 −6.87195e10 −8.45403e11 0
1.4 −4096.00 598018. 1.67772e7 0 −2.44948e9 1.45531e10 −6.87195e10 −4.89664e11 0
1.5 −4096.00 1.22241e6 1.67772e7 0 −5.00697e9 −6.80801e10 −6.87195e10 6.46987e11 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 50.26.a.i 5
5.b even 2 1 50.26.a.j yes 5
5.c odd 4 2 50.26.b.h 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
50.26.a.i 5 1.a even 1 1 trivial
50.26.a.j yes 5 5.b even 2 1
50.26.b.h 10 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{5} + 723995 T_{3}^{4} - 2343824824290 T_{3}^{3} + \cdots - 52\!\cdots\!01 \) acting on \(S_{26}^{\mathrm{new}}(\Gamma_0(50))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 4096)^{5} \) Copy content Toggle raw display
$3$ \( T^{5} + \cdots - 52\!\cdots\!01 \) Copy content Toggle raw display
$5$ \( T^{5} \) Copy content Toggle raw display
$7$ \( T^{5} + \cdots - 38\!\cdots\!32 \) Copy content Toggle raw display
$11$ \( T^{5} + \cdots + 14\!\cdots\!43 \) Copy content Toggle raw display
$13$ \( T^{5} + \cdots + 51\!\cdots\!24 \) Copy content Toggle raw display
$17$ \( T^{5} + \cdots + 79\!\cdots\!43 \) Copy content Toggle raw display
$19$ \( T^{5} + \cdots - 23\!\cdots\!25 \) Copy content Toggle raw display
$23$ \( T^{5} + \cdots + 65\!\cdots\!24 \) Copy content Toggle raw display
$29$ \( T^{5} + \cdots - 21\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{5} + \cdots + 23\!\cdots\!68 \) Copy content Toggle raw display
$37$ \( T^{5} + \cdots + 76\!\cdots\!68 \) Copy content Toggle raw display
$41$ \( T^{5} + \cdots + 55\!\cdots\!43 \) Copy content Toggle raw display
$43$ \( T^{5} + \cdots - 27\!\cdots\!76 \) Copy content Toggle raw display
$47$ \( T^{5} + \cdots + 11\!\cdots\!68 \) Copy content Toggle raw display
$53$ \( T^{5} + \cdots - 90\!\cdots\!76 \) Copy content Toggle raw display
$59$ \( T^{5} + \cdots + 27\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{5} + \cdots - 43\!\cdots\!32 \) Copy content Toggle raw display
$67$ \( T^{5} + \cdots + 42\!\cdots\!93 \) Copy content Toggle raw display
$71$ \( T^{5} + \cdots - 22\!\cdots\!32 \) Copy content Toggle raw display
$73$ \( T^{5} + \cdots - 41\!\cdots\!51 \) Copy content Toggle raw display
$79$ \( T^{5} + \cdots + 10\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{5} + \cdots + 38\!\cdots\!49 \) Copy content Toggle raw display
$89$ \( T^{5} + \cdots + 20\!\cdots\!25 \) Copy content Toggle raw display
$97$ \( T^{5} + \cdots + 23\!\cdots\!68 \) Copy content Toggle raw display
show more
show less