Properties

Label 50.26.a.b.1.1
Level $50$
Weight $26$
Character 50.1
Self dual yes
Analytic conductor $197.998$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [50,26,Mod(1,50)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(50, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 26, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("50.1");
 
S:= CuspForms(chi, 26);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 26 \)
Character orbit: \([\chi]\) \(=\) 50.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(197.998389976\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 50.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4096.00 q^{2} -97956.0 q^{3} +1.67772e7 q^{4} -4.01228e8 q^{6} +4.08826e10 q^{7} +6.87195e10 q^{8} -8.37693e11 q^{9} -1.45062e13 q^{11} -1.64343e12 q^{12} -8.78440e13 q^{13} +1.67455e14 q^{14} +2.81475e14 q^{16} +2.65543e15 q^{17} -3.43119e15 q^{18} -1.39994e16 q^{19} -4.00470e15 q^{21} -5.94175e16 q^{22} -8.58528e16 q^{23} -6.73149e15 q^{24} -3.59809e17 q^{26} +1.65054e17 q^{27} +6.85897e17 q^{28} +2.08023e18 q^{29} +2.66353e18 q^{31} +1.15292e18 q^{32} +1.42097e18 q^{33} +1.08766e19 q^{34} -1.40542e19 q^{36} +5.13796e19 q^{37} -5.73416e19 q^{38} +8.60485e18 q^{39} +2.33560e20 q^{41} -1.64032e19 q^{42} +4.01336e19 q^{43} -2.43374e20 q^{44} -3.51653e20 q^{46} -2.79826e20 q^{47} -2.75722e19 q^{48} +3.30321e20 q^{49} -2.60115e20 q^{51} -1.47378e21 q^{52} -4.25070e20 q^{53} +6.76062e20 q^{54} +2.80943e21 q^{56} +1.37133e21 q^{57} +8.52062e21 q^{58} -8.33891e21 q^{59} +2.42979e22 q^{61} +1.09098e22 q^{62} -3.42471e22 q^{63} +4.72237e21 q^{64} +5.82030e21 q^{66} +1.24700e23 q^{67} +4.45507e22 q^{68} +8.40979e21 q^{69} -9.30490e22 q^{71} -5.75658e22 q^{72} -4.04218e22 q^{73} +2.10451e23 q^{74} -2.34871e23 q^{76} -5.93053e23 q^{77} +3.52454e22 q^{78} -8.05270e23 q^{79} +6.93600e23 q^{81} +9.56661e23 q^{82} -8.98335e21 q^{83} -6.71877e22 q^{84} +1.64387e23 q^{86} -2.03771e23 q^{87} -9.96860e23 q^{88} +3.55600e24 q^{89} -3.59129e24 q^{91} -1.44037e24 q^{92} -2.60909e23 q^{93} -1.14617e24 q^{94} -1.12936e23 q^{96} +8.66049e24 q^{97} +1.35300e24 q^{98} +1.21518e25 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4096.00 0.707107
\(3\) −97956.0 −0.106418 −0.0532090 0.998583i \(-0.516945\pi\)
−0.0532090 + 0.998583i \(0.516945\pi\)
\(4\) 1.67772e7 0.500000
\(5\) 0 0
\(6\) −4.01228e8 −0.0752489
\(7\) 4.08826e10 1.11638 0.558192 0.829712i \(-0.311495\pi\)
0.558192 + 0.829712i \(0.311495\pi\)
\(8\) 6.87195e10 0.353553
\(9\) −8.37693e11 −0.988675
\(10\) 0 0
\(11\) −1.45062e13 −1.39362 −0.696812 0.717254i \(-0.745399\pi\)
−0.696812 + 0.717254i \(0.745399\pi\)
\(12\) −1.64343e12 −0.0532090
\(13\) −8.78440e13 −1.04573 −0.522866 0.852415i \(-0.675137\pi\)
−0.522866 + 0.852415i \(0.675137\pi\)
\(14\) 1.67455e14 0.789402
\(15\) 0 0
\(16\) 2.81475e14 0.250000
\(17\) 2.65543e15 1.10541 0.552704 0.833378i \(-0.313596\pi\)
0.552704 + 0.833378i \(0.313596\pi\)
\(18\) −3.43119e15 −0.699099
\(19\) −1.39994e16 −1.45108 −0.725538 0.688182i \(-0.758409\pi\)
−0.725538 + 0.688182i \(0.758409\pi\)
\(20\) 0 0
\(21\) −4.00470e15 −0.118803
\(22\) −5.94175e16 −0.985441
\(23\) −8.58528e16 −0.816877 −0.408438 0.912786i \(-0.633926\pi\)
−0.408438 + 0.912786i \(0.633926\pi\)
\(24\) −6.73149e15 −0.0376245
\(25\) 0 0
\(26\) −3.59809e17 −0.739444
\(27\) 1.65054e17 0.211631
\(28\) 6.85897e17 0.558192
\(29\) 2.08023e18 1.09178 0.545892 0.837856i \(-0.316191\pi\)
0.545892 + 0.837856i \(0.316191\pi\)
\(30\) 0 0
\(31\) 2.66353e18 0.607347 0.303673 0.952776i \(-0.401787\pi\)
0.303673 + 0.952776i \(0.401787\pi\)
\(32\) 1.15292e18 0.176777
\(33\) 1.42097e18 0.148307
\(34\) 1.08766e19 0.781642
\(35\) 0 0
\(36\) −1.40542e19 −0.494338
\(37\) 5.13796e19 1.28313 0.641563 0.767070i \(-0.278286\pi\)
0.641563 + 0.767070i \(0.278286\pi\)
\(38\) −5.73416e19 −1.02607
\(39\) 8.60485e18 0.111285
\(40\) 0 0
\(41\) 2.33560e20 1.61659 0.808295 0.588778i \(-0.200391\pi\)
0.808295 + 0.588778i \(0.200391\pi\)
\(42\) −1.64032e19 −0.0840067
\(43\) 4.01336e19 0.153162 0.0765812 0.997063i \(-0.475600\pi\)
0.0765812 + 0.997063i \(0.475600\pi\)
\(44\) −2.43374e20 −0.696812
\(45\) 0 0
\(46\) −3.51653e20 −0.577619
\(47\) −2.79826e20 −0.351290 −0.175645 0.984454i \(-0.556201\pi\)
−0.175645 + 0.984454i \(0.556201\pi\)
\(48\) −2.75722e19 −0.0266045
\(49\) 3.30321e20 0.246312
\(50\) 0 0
\(51\) −2.60115e20 −0.117635
\(52\) −1.47378e21 −0.522866
\(53\) −4.25070e20 −0.118854 −0.0594268 0.998233i \(-0.518927\pi\)
−0.0594268 + 0.998233i \(0.518927\pi\)
\(54\) 6.76062e20 0.149646
\(55\) 0 0
\(56\) 2.80943e21 0.394701
\(57\) 1.37133e21 0.154421
\(58\) 8.52062e21 0.772007
\(59\) −8.33891e21 −0.610181 −0.305091 0.952323i \(-0.598687\pi\)
−0.305091 + 0.952323i \(0.598687\pi\)
\(60\) 0 0
\(61\) 2.42979e22 1.17205 0.586026 0.810292i \(-0.300692\pi\)
0.586026 + 0.810292i \(0.300692\pi\)
\(62\) 1.09098e22 0.429459
\(63\) −3.42471e22 −1.10374
\(64\) 4.72237e21 0.125000
\(65\) 0 0
\(66\) 5.82030e21 0.104869
\(67\) 1.24700e23 1.86179 0.930897 0.365282i \(-0.119027\pi\)
0.930897 + 0.365282i \(0.119027\pi\)
\(68\) 4.45507e22 0.552704
\(69\) 8.40979e21 0.0869304
\(70\) 0 0
\(71\) −9.30490e22 −0.672949 −0.336475 0.941693i \(-0.609235\pi\)
−0.336475 + 0.941693i \(0.609235\pi\)
\(72\) −5.75658e22 −0.349549
\(73\) −4.04218e22 −0.206576 −0.103288 0.994651i \(-0.532936\pi\)
−0.103288 + 0.994651i \(0.532936\pi\)
\(74\) 2.10451e23 0.907307
\(75\) 0 0
\(76\) −2.34871e23 −0.725538
\(77\) −5.93053e23 −1.55582
\(78\) 3.52454e22 0.0786902
\(79\) −8.05270e23 −1.53321 −0.766607 0.642116i \(-0.778057\pi\)
−0.766607 + 0.642116i \(0.778057\pi\)
\(80\) 0 0
\(81\) 6.93600e23 0.966154
\(82\) 9.56661e23 1.14310
\(83\) −8.98335e21 −0.00922491 −0.00461245 0.999989i \(-0.501468\pi\)
−0.00461245 + 0.999989i \(0.501468\pi\)
\(84\) −6.71877e22 −0.0594017
\(85\) 0 0
\(86\) 1.64387e23 0.108302
\(87\) −2.03771e23 −0.116185
\(88\) −9.96860e23 −0.492721
\(89\) 3.55600e24 1.52611 0.763057 0.646331i \(-0.223697\pi\)
0.763057 + 0.646331i \(0.223697\pi\)
\(90\) 0 0
\(91\) −3.59129e24 −1.16744
\(92\) −1.44037e24 −0.408438
\(93\) −2.60909e23 −0.0646327
\(94\) −1.14617e24 −0.248399
\(95\) 0 0
\(96\) −1.12936e23 −0.0188122
\(97\) 8.66049e24 1.26735 0.633674 0.773600i \(-0.281546\pi\)
0.633674 + 0.773600i \(0.281546\pi\)
\(98\) 1.35300e24 0.174169
\(99\) 1.21518e25 1.37784
\(100\) 0 0
\(101\) 7.28380e24 0.643193 0.321596 0.946877i \(-0.395781\pi\)
0.321596 + 0.946877i \(0.395781\pi\)
\(102\) −1.06543e24 −0.0831808
\(103\) −1.52392e25 −1.05317 −0.526583 0.850123i \(-0.676527\pi\)
−0.526583 + 0.850123i \(0.676527\pi\)
\(104\) −6.03659e24 −0.369722
\(105\) 0 0
\(106\) −1.74109e24 −0.0840422
\(107\) 6.27006e24 0.269138 0.134569 0.990904i \(-0.457035\pi\)
0.134569 + 0.990904i \(0.457035\pi\)
\(108\) 2.76915e24 0.105815
\(109\) −1.66220e25 −0.566047 −0.283024 0.959113i \(-0.591337\pi\)
−0.283024 + 0.959113i \(0.591337\pi\)
\(110\) 0 0
\(111\) −5.03294e24 −0.136548
\(112\) 1.15074e25 0.279096
\(113\) 4.59044e25 0.996263 0.498131 0.867102i \(-0.334020\pi\)
0.498131 + 0.867102i \(0.334020\pi\)
\(114\) 5.61696e24 0.109192
\(115\) 0 0
\(116\) 3.49005e25 0.545892
\(117\) 7.35863e25 1.03389
\(118\) −3.41562e25 −0.431463
\(119\) 1.08561e26 1.23406
\(120\) 0 0
\(121\) 1.02083e26 0.942189
\(122\) 9.95244e25 0.828766
\(123\) −2.28786e25 −0.172034
\(124\) 4.46867e25 0.303673
\(125\) 0 0
\(126\) −1.40276e26 −0.780463
\(127\) 3.66137e24 0.0184543 0.00922713 0.999957i \(-0.497063\pi\)
0.00922713 + 0.999957i \(0.497063\pi\)
\(128\) 1.93428e25 0.0883883
\(129\) −3.93133e24 −0.0162993
\(130\) 0 0
\(131\) −1.37888e26 −0.471667 −0.235833 0.971793i \(-0.575782\pi\)
−0.235833 + 0.971793i \(0.575782\pi\)
\(132\) 2.38399e25 0.0741534
\(133\) −5.72333e26 −1.61996
\(134\) 5.10772e26 1.31649
\(135\) 0 0
\(136\) 1.82479e26 0.390821
\(137\) 4.32281e26 0.844810 0.422405 0.906407i \(-0.361186\pi\)
0.422405 + 0.906407i \(0.361186\pi\)
\(138\) 3.44465e25 0.0614691
\(139\) −4.00646e25 −0.0653245 −0.0326622 0.999466i \(-0.510399\pi\)
−0.0326622 + 0.999466i \(0.510399\pi\)
\(140\) 0 0
\(141\) 2.74107e25 0.0373836
\(142\) −3.81129e26 −0.475847
\(143\) 1.27428e27 1.45736
\(144\) −2.35790e26 −0.247169
\(145\) 0 0
\(146\) −1.65568e26 −0.146071
\(147\) −3.23570e25 −0.0262121
\(148\) 8.62007e26 0.641563
\(149\) 1.12193e27 0.767601 0.383801 0.923416i \(-0.374615\pi\)
0.383801 + 0.923416i \(0.374615\pi\)
\(150\) 0 0
\(151\) −2.65183e26 −0.153580 −0.0767900 0.997047i \(-0.524467\pi\)
−0.0767900 + 0.997047i \(0.524467\pi\)
\(152\) −9.62033e26 −0.513033
\(153\) −2.22443e27 −1.09289
\(154\) −2.42914e27 −1.10013
\(155\) 0 0
\(156\) 1.44365e26 0.0556424
\(157\) 8.32328e26 0.296175 0.148088 0.988974i \(-0.452688\pi\)
0.148088 + 0.988974i \(0.452688\pi\)
\(158\) −3.29839e27 −1.08415
\(159\) 4.16382e25 0.0126482
\(160\) 0 0
\(161\) −3.50989e27 −0.911947
\(162\) 2.84099e27 0.683174
\(163\) 7.22281e27 1.60828 0.804139 0.594442i \(-0.202627\pi\)
0.804139 + 0.594442i \(0.202627\pi\)
\(164\) 3.91848e27 0.808295
\(165\) 0 0
\(166\) −3.67958e25 −0.00652300
\(167\) −3.82503e27 −0.629041 −0.314520 0.949251i \(-0.601844\pi\)
−0.314520 + 0.949251i \(0.601844\pi\)
\(168\) −2.75201e26 −0.0420033
\(169\) 6.60156e26 0.0935542
\(170\) 0 0
\(171\) 1.17272e28 1.43464
\(172\) 6.73330e26 0.0765812
\(173\) 4.74370e27 0.501812 0.250906 0.968012i \(-0.419272\pi\)
0.250906 + 0.968012i \(0.419272\pi\)
\(174\) −8.34646e26 −0.0821555
\(175\) 0 0
\(176\) −4.08314e27 −0.348406
\(177\) 8.16846e26 0.0649343
\(178\) 1.45654e28 1.07913
\(179\) −6.99171e27 −0.482970 −0.241485 0.970405i \(-0.577635\pi\)
−0.241485 + 0.970405i \(0.577635\pi\)
\(180\) 0 0
\(181\) −6.34714e27 −0.381589 −0.190794 0.981630i \(-0.561106\pi\)
−0.190794 + 0.981630i \(0.561106\pi\)
\(182\) −1.47099e28 −0.825503
\(183\) −2.38013e27 −0.124727
\(184\) −5.89976e27 −0.288809
\(185\) 0 0
\(186\) −1.06868e27 −0.0457022
\(187\) −3.85202e28 −1.54052
\(188\) −4.69471e27 −0.175645
\(189\) 6.74785e27 0.236261
\(190\) 0 0
\(191\) −3.59244e28 −1.10274 −0.551369 0.834261i \(-0.685894\pi\)
−0.551369 + 0.834261i \(0.685894\pi\)
\(192\) −4.62584e26 −0.0133023
\(193\) 3.76264e27 0.101397 0.0506987 0.998714i \(-0.483855\pi\)
0.0506987 + 0.998714i \(0.483855\pi\)
\(194\) 3.54734e28 0.896150
\(195\) 0 0
\(196\) 5.54187e27 0.123156
\(197\) 1.84478e28 0.384696 0.192348 0.981327i \(-0.438390\pi\)
0.192348 + 0.981327i \(0.438390\pi\)
\(198\) 4.97736e28 0.974281
\(199\) 3.23533e28 0.594641 0.297321 0.954778i \(-0.403907\pi\)
0.297321 + 0.954778i \(0.403907\pi\)
\(200\) 0 0
\(201\) −1.22151e28 −0.198129
\(202\) 2.98345e28 0.454806
\(203\) 8.50453e28 1.21885
\(204\) −4.36400e27 −0.0588177
\(205\) 0 0
\(206\) −6.24198e28 −0.744701
\(207\) 7.19183e28 0.807626
\(208\) −2.47259e28 −0.261433
\(209\) 2.03079e29 2.02226
\(210\) 0 0
\(211\) 7.34820e28 0.649607 0.324803 0.945782i \(-0.394702\pi\)
0.324803 + 0.945782i \(0.394702\pi\)
\(212\) −7.13150e27 −0.0594268
\(213\) 9.11471e27 0.0716140
\(214\) 2.56822e28 0.190309
\(215\) 0 0
\(216\) 1.13424e28 0.0748228
\(217\) 1.08892e29 0.678032
\(218\) −6.80838e28 −0.400256
\(219\) 3.95956e27 0.0219834
\(220\) 0 0
\(221\) −2.33263e29 −1.15596
\(222\) −2.06149e28 −0.0965539
\(223\) 3.83771e29 1.69927 0.849634 0.527373i \(-0.176823\pi\)
0.849634 + 0.527373i \(0.176823\pi\)
\(224\) 4.71345e28 0.197351
\(225\) 0 0
\(226\) 1.88024e29 0.704464
\(227\) −2.86396e28 −0.101541 −0.0507707 0.998710i \(-0.516168\pi\)
−0.0507707 + 0.998710i \(0.516168\pi\)
\(228\) 2.30071e28 0.0772104
\(229\) 5.18014e29 1.64588 0.822939 0.568129i \(-0.192333\pi\)
0.822939 + 0.568129i \(0.192333\pi\)
\(230\) 0 0
\(231\) 5.80931e28 0.165567
\(232\) 1.42952e29 0.386004
\(233\) 1.11488e29 0.285285 0.142643 0.989774i \(-0.454440\pi\)
0.142643 + 0.989774i \(0.454440\pi\)
\(234\) 3.01410e29 0.731070
\(235\) 0 0
\(236\) −1.39904e29 −0.305091
\(237\) 7.88810e28 0.163162
\(238\) 4.44665e29 0.872612
\(239\) 9.81417e29 1.82759 0.913797 0.406170i \(-0.133136\pi\)
0.913797 + 0.406170i \(0.133136\pi\)
\(240\) 0 0
\(241\) −1.00294e30 −1.68292 −0.841459 0.540320i \(-0.818303\pi\)
−0.841459 + 0.540320i \(0.818303\pi\)
\(242\) 4.18134e29 0.666228
\(243\) −2.07791e29 −0.314447
\(244\) 4.07652e29 0.586026
\(245\) 0 0
\(246\) −9.37107e28 −0.121647
\(247\) 1.22977e30 1.51744
\(248\) 1.83037e29 0.214730
\(249\) 8.79973e26 0.000981697 0
\(250\) 0 0
\(251\) 1.14894e30 1.15978 0.579892 0.814694i \(-0.303095\pi\)
0.579892 + 0.814694i \(0.303095\pi\)
\(252\) −5.74571e29 −0.551870
\(253\) 1.24540e30 1.13842
\(254\) 1.49970e28 0.0130491
\(255\) 0 0
\(256\) 7.92282e28 0.0625000
\(257\) −1.28454e30 −0.965123 −0.482562 0.875862i \(-0.660294\pi\)
−0.482562 + 0.875862i \(0.660294\pi\)
\(258\) −1.61027e28 −0.0115253
\(259\) 2.10053e30 1.43246
\(260\) 0 0
\(261\) −1.74259e30 −1.07942
\(262\) −5.64789e29 −0.333519
\(263\) 2.47079e30 1.39120 0.695598 0.718431i \(-0.255140\pi\)
0.695598 + 0.718431i \(0.255140\pi\)
\(264\) 9.76484e28 0.0524344
\(265\) 0 0
\(266\) −2.34428e30 −1.14548
\(267\) −3.48332e29 −0.162406
\(268\) 2.09212e30 0.930897
\(269\) 8.32933e29 0.353758 0.176879 0.984233i \(-0.443400\pi\)
0.176879 + 0.984233i \(0.443400\pi\)
\(270\) 0 0
\(271\) −3.89840e29 −0.150928 −0.0754641 0.997149i \(-0.524044\pi\)
−0.0754641 + 0.997149i \(0.524044\pi\)
\(272\) 7.47436e29 0.276352
\(273\) 3.51789e29 0.124236
\(274\) 1.77062e30 0.597371
\(275\) 0 0
\(276\) 1.41093e29 0.0434652
\(277\) −5.75822e30 −1.69548 −0.847738 0.530416i \(-0.822036\pi\)
−0.847738 + 0.530416i \(0.822036\pi\)
\(278\) −1.64105e29 −0.0461914
\(279\) −2.23122e30 −0.600469
\(280\) 0 0
\(281\) −7.34745e29 −0.180846 −0.0904228 0.995903i \(-0.528822\pi\)
−0.0904228 + 0.995903i \(0.528822\pi\)
\(282\) 1.12274e29 0.0264342
\(283\) 1.15692e30 0.260600 0.130300 0.991475i \(-0.458406\pi\)
0.130300 + 0.991475i \(0.458406\pi\)
\(284\) −1.56110e30 −0.336475
\(285\) 0 0
\(286\) 5.21947e30 1.03051
\(287\) 9.54854e30 1.80473
\(288\) −9.65795e29 −0.174775
\(289\) 1.28066e30 0.221927
\(290\) 0 0
\(291\) −8.48347e29 −0.134869
\(292\) −6.78165e29 −0.103288
\(293\) 9.96443e29 0.145414 0.0727072 0.997353i \(-0.476836\pi\)
0.0727072 + 0.997353i \(0.476836\pi\)
\(294\) −1.32534e29 −0.0185347
\(295\) 0 0
\(296\) 3.53078e30 0.453653
\(297\) −2.39431e30 −0.294934
\(298\) 4.59541e30 0.542776
\(299\) 7.54165e30 0.854233
\(300\) 0 0
\(301\) 1.64077e30 0.170988
\(302\) −1.08619e30 −0.108597
\(303\) −7.13492e29 −0.0684473
\(304\) −3.94049e30 −0.362769
\(305\) 0 0
\(306\) −9.11127e30 −0.772790
\(307\) −1.11603e31 −0.908755 −0.454378 0.890809i \(-0.650138\pi\)
−0.454378 + 0.890809i \(0.650138\pi\)
\(308\) −9.94977e30 −0.777910
\(309\) 1.49277e30 0.112076
\(310\) 0 0
\(311\) −8.47315e30 −0.586867 −0.293434 0.955979i \(-0.594798\pi\)
−0.293434 + 0.955979i \(0.594798\pi\)
\(312\) 5.91321e29 0.0393451
\(313\) 1.15783e31 0.740184 0.370092 0.928995i \(-0.379326\pi\)
0.370092 + 0.928995i \(0.379326\pi\)
\(314\) 3.40921e30 0.209427
\(315\) 0 0
\(316\) −1.35102e31 −0.766607
\(317\) 1.97191e31 1.07559 0.537796 0.843075i \(-0.319257\pi\)
0.537796 + 0.843075i \(0.319257\pi\)
\(318\) 1.70550e29 0.00894361
\(319\) −3.01763e31 −1.52154
\(320\) 0 0
\(321\) −6.14190e29 −0.0286411
\(322\) −1.43765e31 −0.644844
\(323\) −3.71744e31 −1.60403
\(324\) 1.16367e31 0.483077
\(325\) 0 0
\(326\) 2.95846e31 1.13722
\(327\) 1.62823e30 0.0602376
\(328\) 1.60501e31 0.571551
\(329\) −1.14400e31 −0.392174
\(330\) 0 0
\(331\) 4.77112e31 1.51625 0.758124 0.652110i \(-0.226116\pi\)
0.758124 + 0.652110i \(0.226116\pi\)
\(332\) −1.50716e29 −0.00461245
\(333\) −4.30403e31 −1.26859
\(334\) −1.56673e31 −0.444799
\(335\) 0 0
\(336\) −1.12722e30 −0.0297008
\(337\) 3.28717e31 0.834542 0.417271 0.908782i \(-0.362987\pi\)
0.417271 + 0.908782i \(0.362987\pi\)
\(338\) 2.70400e30 0.0661528
\(339\) −4.49661e30 −0.106020
\(340\) 0 0
\(341\) −3.86378e31 −0.846413
\(342\) 4.80347e31 1.01445
\(343\) −4.13220e31 −0.841405
\(344\) 2.75796e30 0.0541511
\(345\) 0 0
\(346\) 1.94302e31 0.354834
\(347\) −3.13233e31 −0.551759 −0.275879 0.961192i \(-0.588969\pi\)
−0.275879 + 0.961192i \(0.588969\pi\)
\(348\) −3.41871e30 −0.0580927
\(349\) 3.37807e31 0.553796 0.276898 0.960899i \(-0.410694\pi\)
0.276898 + 0.960899i \(0.410694\pi\)
\(350\) 0 0
\(351\) −1.44990e31 −0.221309
\(352\) −1.67245e31 −0.246360
\(353\) −4.38482e31 −0.623401 −0.311701 0.950180i \(-0.600899\pi\)
−0.311701 + 0.950180i \(0.600899\pi\)
\(354\) 3.34580e30 0.0459155
\(355\) 0 0
\(356\) 5.96599e31 0.763057
\(357\) −1.06342e31 −0.131326
\(358\) −2.86380e31 −0.341512
\(359\) −1.50427e32 −1.73239 −0.866193 0.499710i \(-0.833440\pi\)
−0.866193 + 0.499710i \(0.833440\pi\)
\(360\) 0 0
\(361\) 1.02907e32 1.10562
\(362\) −2.59979e31 −0.269824
\(363\) −9.99968e30 −0.100266
\(364\) −6.02519e31 −0.583719
\(365\) 0 0
\(366\) −9.74901e30 −0.0881956
\(367\) 6.93296e31 0.606168 0.303084 0.952964i \(-0.401984\pi\)
0.303084 + 0.952964i \(0.401984\pi\)
\(368\) −2.41654e31 −0.204219
\(369\) −1.95651e32 −1.59828
\(370\) 0 0
\(371\) −1.73780e31 −0.132686
\(372\) −4.37733e30 −0.0323163
\(373\) −6.14410e31 −0.438630 −0.219315 0.975654i \(-0.570382\pi\)
−0.219315 + 0.975654i \(0.570382\pi\)
\(374\) −1.57779e32 −1.08931
\(375\) 0 0
\(376\) −1.92295e31 −0.124200
\(377\) −1.82736e32 −1.14171
\(378\) 2.76392e31 0.167062
\(379\) 6.25980e31 0.366075 0.183038 0.983106i \(-0.441407\pi\)
0.183038 + 0.983106i \(0.441407\pi\)
\(380\) 0 0
\(381\) −3.58653e29 −0.00196387
\(382\) −1.47146e32 −0.779754
\(383\) −1.95859e32 −1.00452 −0.502260 0.864716i \(-0.667498\pi\)
−0.502260 + 0.864716i \(0.667498\pi\)
\(384\) −1.89474e30 −0.00940612
\(385\) 0 0
\(386\) 1.54118e31 0.0716988
\(387\) −3.36196e31 −0.151428
\(388\) 1.45299e32 0.633674
\(389\) −5.55896e31 −0.234760 −0.117380 0.993087i \(-0.537450\pi\)
−0.117380 + 0.993087i \(0.537450\pi\)
\(390\) 0 0
\(391\) −2.27976e32 −0.902982
\(392\) 2.26995e31 0.0870845
\(393\) 1.35070e31 0.0501939
\(394\) 7.55624e31 0.272021
\(395\) 0 0
\(396\) 2.03873e32 0.688921
\(397\) 4.00706e32 1.31203 0.656017 0.754746i \(-0.272240\pi\)
0.656017 + 0.754746i \(0.272240\pi\)
\(398\) 1.32519e32 0.420475
\(399\) 5.60635e31 0.172393
\(400\) 0 0
\(401\) −2.79804e32 −0.808258 −0.404129 0.914702i \(-0.632425\pi\)
−0.404129 + 0.914702i \(0.632425\pi\)
\(402\) −5.00331e31 −0.140098
\(403\) −2.33975e32 −0.635122
\(404\) 1.22202e32 0.321596
\(405\) 0 0
\(406\) 3.48346e32 0.861856
\(407\) −7.45324e32 −1.78820
\(408\) −1.78750e31 −0.0415904
\(409\) −7.22159e32 −1.62964 −0.814820 0.579715i \(-0.803164\pi\)
−0.814820 + 0.579715i \(0.803164\pi\)
\(410\) 0 0
\(411\) −4.23445e31 −0.0899030
\(412\) −2.55672e32 −0.526583
\(413\) −3.40916e32 −0.681196
\(414\) 2.94577e32 0.571078
\(415\) 0 0
\(416\) −1.01277e32 −0.184861
\(417\) 3.92457e30 0.00695170
\(418\) 8.31811e32 1.42995
\(419\) 5.13071e32 0.856057 0.428028 0.903765i \(-0.359208\pi\)
0.428028 + 0.903765i \(0.359208\pi\)
\(420\) 0 0
\(421\) −1.30991e32 −0.205927 −0.102964 0.994685i \(-0.532833\pi\)
−0.102964 + 0.994685i \(0.532833\pi\)
\(422\) 3.00982e32 0.459341
\(423\) 2.34409e32 0.347311
\(424\) −2.92106e31 −0.0420211
\(425\) 0 0
\(426\) 3.73338e31 0.0506387
\(427\) 9.93364e32 1.30846
\(428\) 1.05194e32 0.134569
\(429\) −1.24824e32 −0.155089
\(430\) 0 0
\(431\) 4.25042e32 0.498271 0.249135 0.968469i \(-0.419854\pi\)
0.249135 + 0.968469i \(0.419854\pi\)
\(432\) 4.64586e31 0.0529077
\(433\) −2.18224e32 −0.241437 −0.120719 0.992687i \(-0.538520\pi\)
−0.120719 + 0.992687i \(0.538520\pi\)
\(434\) 4.46023e32 0.479441
\(435\) 0 0
\(436\) −2.78871e32 −0.283024
\(437\) 1.20189e33 1.18535
\(438\) 1.62183e31 0.0155446
\(439\) 1.96041e33 1.82617 0.913084 0.407771i \(-0.133694\pi\)
0.913084 + 0.407771i \(0.133694\pi\)
\(440\) 0 0
\(441\) −2.76708e32 −0.243523
\(442\) −9.55446e32 −0.817387
\(443\) 1.81076e33 1.50596 0.752980 0.658043i \(-0.228615\pi\)
0.752980 + 0.658043i \(0.228615\pi\)
\(444\) −8.44387e31 −0.0682739
\(445\) 0 0
\(446\) 1.57193e33 1.20156
\(447\) −1.09899e32 −0.0816866
\(448\) 1.93063e32 0.139548
\(449\) 1.96738e33 1.38296 0.691480 0.722396i \(-0.256959\pi\)
0.691480 + 0.722396i \(0.256959\pi\)
\(450\) 0 0
\(451\) −3.38807e33 −2.25292
\(452\) 7.70148e32 0.498131
\(453\) 2.59763e31 0.0163437
\(454\) −1.17308e32 −0.0718006
\(455\) 0 0
\(456\) 9.42369e31 0.0545960
\(457\) 6.51681e32 0.367352 0.183676 0.982987i \(-0.441200\pi\)
0.183676 + 0.982987i \(0.441200\pi\)
\(458\) 2.12178e33 1.16381
\(459\) 4.38289e32 0.233939
\(460\) 0 0
\(461\) −3.73344e32 −0.188733 −0.0943666 0.995538i \(-0.530083\pi\)
−0.0943666 + 0.995538i \(0.530083\pi\)
\(462\) 2.37949e32 0.117074
\(463\) −3.92901e33 −1.88157 −0.940787 0.338999i \(-0.889912\pi\)
−0.940787 + 0.338999i \(0.889912\pi\)
\(464\) 5.85533e32 0.272946
\(465\) 0 0
\(466\) 4.56655e32 0.201727
\(467\) 2.19321e33 0.943235 0.471618 0.881803i \(-0.343670\pi\)
0.471618 + 0.881803i \(0.343670\pi\)
\(468\) 1.23457e33 0.516944
\(469\) 5.09807e33 2.07848
\(470\) 0 0
\(471\) −8.15315e31 −0.0315184
\(472\) −5.73045e32 −0.215732
\(473\) −5.82187e32 −0.213451
\(474\) 3.23097e32 0.115373
\(475\) 0 0
\(476\) 1.82135e33 0.617030
\(477\) 3.56079e32 0.117508
\(478\) 4.01989e33 1.29230
\(479\) −4.26617e33 −1.33612 −0.668058 0.744110i \(-0.732874\pi\)
−0.668058 + 0.744110i \(0.732874\pi\)
\(480\) 0 0
\(481\) −4.51339e33 −1.34180
\(482\) −4.10805e33 −1.19000
\(483\) 3.43815e32 0.0970477
\(484\) 1.71268e33 0.471095
\(485\) 0 0
\(486\) −8.51111e32 −0.222348
\(487\) −2.19049e33 −0.557737 −0.278869 0.960329i \(-0.589959\pi\)
−0.278869 + 0.960329i \(0.589959\pi\)
\(488\) 1.66974e33 0.414383
\(489\) −7.07517e32 −0.171150
\(490\) 0 0
\(491\) −1.06443e32 −0.0244681 −0.0122340 0.999925i \(-0.503894\pi\)
−0.0122340 + 0.999925i \(0.503894\pi\)
\(492\) −3.83839e32 −0.0860172
\(493\) 5.52390e33 1.20687
\(494\) 5.03712e33 1.07299
\(495\) 0 0
\(496\) 7.49718e32 0.151837
\(497\) −3.80409e33 −0.751269
\(498\) 3.60437e30 0.000694165 0
\(499\) −3.46371e33 −0.650555 −0.325278 0.945619i \(-0.605458\pi\)
−0.325278 + 0.945619i \(0.605458\pi\)
\(500\) 0 0
\(501\) 3.74684e32 0.0669413
\(502\) 4.70607e33 0.820090
\(503\) −1.02261e34 −1.73824 −0.869121 0.494599i \(-0.835315\pi\)
−0.869121 + 0.494599i \(0.835315\pi\)
\(504\) −2.35344e33 −0.390231
\(505\) 0 0
\(506\) 5.10116e33 0.804984
\(507\) −6.46663e31 −0.00995585
\(508\) 6.14275e31 0.00922713
\(509\) −2.69685e33 −0.395261 −0.197630 0.980277i \(-0.563325\pi\)
−0.197630 + 0.980277i \(0.563325\pi\)
\(510\) 0 0
\(511\) −1.65255e33 −0.230618
\(512\) 3.24519e32 0.0441942
\(513\) −2.31066e33 −0.307093
\(514\) −5.26147e33 −0.682445
\(515\) 0 0
\(516\) −6.59567e31 −0.00814963
\(517\) 4.05922e33 0.489566
\(518\) 8.60379e33 1.01290
\(519\) −4.64674e32 −0.0534018
\(520\) 0 0
\(521\) −9.39972e33 −1.02954 −0.514770 0.857328i \(-0.672123\pi\)
−0.514770 + 0.857328i \(0.672123\pi\)
\(522\) −7.13767e33 −0.763265
\(523\) 4.23584e33 0.442250 0.221125 0.975245i \(-0.429027\pi\)
0.221125 + 0.975245i \(0.429027\pi\)
\(524\) −2.31338e33 −0.235833
\(525\) 0 0
\(526\) 1.01203e34 0.983724
\(527\) 7.07281e33 0.671366
\(528\) 3.99968e32 0.0370767
\(529\) −3.67507e33 −0.332713
\(530\) 0 0
\(531\) 6.98544e33 0.603271
\(532\) −9.60216e33 −0.809979
\(533\) −2.05168e34 −1.69052
\(534\) −1.42677e33 −0.114839
\(535\) 0 0
\(536\) 8.56932e33 0.658244
\(537\) 6.84880e32 0.0513968
\(538\) 3.41170e33 0.250145
\(539\) −4.79172e33 −0.343267
\(540\) 0 0
\(541\) 3.36042e33 0.229841 0.114921 0.993375i \(-0.463339\pi\)
0.114921 + 0.993375i \(0.463339\pi\)
\(542\) −1.59678e33 −0.106722
\(543\) 6.21740e32 0.0406080
\(544\) 3.06150e33 0.195410
\(545\) 0 0
\(546\) 1.44093e33 0.0878484
\(547\) 1.80091e33 0.107313 0.0536563 0.998559i \(-0.482912\pi\)
0.0536563 + 0.998559i \(0.482912\pi\)
\(548\) 7.25247e33 0.422405
\(549\) −2.03542e34 −1.15878
\(550\) 0 0
\(551\) −2.91220e34 −1.58426
\(552\) 5.77917e32 0.0307345
\(553\) −3.29216e34 −1.71166
\(554\) −2.35857e34 −1.19888
\(555\) 0 0
\(556\) −6.72172e32 −0.0326622
\(557\) −3.61276e34 −1.71652 −0.858261 0.513214i \(-0.828455\pi\)
−0.858261 + 0.513214i \(0.828455\pi\)
\(558\) −9.13909e33 −0.424596
\(559\) −3.52550e33 −0.160167
\(560\) 0 0
\(561\) 3.77328e33 0.163940
\(562\) −3.00952e33 −0.127877
\(563\) −2.65943e34 −1.10518 −0.552591 0.833452i \(-0.686361\pi\)
−0.552591 + 0.833452i \(0.686361\pi\)
\(564\) 4.59875e32 0.0186918
\(565\) 0 0
\(566\) 4.73876e33 0.184272
\(567\) 2.83562e34 1.07860
\(568\) −6.39428e33 −0.237923
\(569\) 7.96966e33 0.290093 0.145046 0.989425i \(-0.453667\pi\)
0.145046 + 0.989425i \(0.453667\pi\)
\(570\) 0 0
\(571\) 4.13744e34 1.44139 0.720693 0.693254i \(-0.243824\pi\)
0.720693 + 0.693254i \(0.243824\pi\)
\(572\) 2.13789e34 0.728678
\(573\) 3.51901e33 0.117351
\(574\) 3.91108e34 1.27614
\(575\) 0 0
\(576\) −3.95589e33 −0.123584
\(577\) 3.07665e34 0.940548 0.470274 0.882520i \(-0.344155\pi\)
0.470274 + 0.882520i \(0.344155\pi\)
\(578\) 5.24558e33 0.156926
\(579\) −3.68573e32 −0.0107905
\(580\) 0 0
\(581\) −3.67263e32 −0.0102985
\(582\) −3.47483e33 −0.0953666
\(583\) 6.16617e33 0.165637
\(584\) −2.77776e33 −0.0730356
\(585\) 0 0
\(586\) 4.08143e33 0.102824
\(587\) 2.58213e34 0.636798 0.318399 0.947957i \(-0.396855\pi\)
0.318399 + 0.947957i \(0.396855\pi\)
\(588\) −5.42860e32 −0.0131060
\(589\) −3.72879e34 −0.881307
\(590\) 0 0
\(591\) −1.80708e33 −0.0409386
\(592\) 1.44621e34 0.320781
\(593\) −4.00098e34 −0.868925 −0.434463 0.900690i \(-0.643062\pi\)
−0.434463 + 0.900690i \(0.643062\pi\)
\(594\) −9.80710e33 −0.208550
\(595\) 0 0
\(596\) 1.88228e34 0.383801
\(597\) −3.16920e33 −0.0632806
\(598\) 3.08906e34 0.604034
\(599\) −2.84196e34 −0.544230 −0.272115 0.962265i \(-0.587723\pi\)
−0.272115 + 0.962265i \(0.587723\pi\)
\(600\) 0 0
\(601\) −1.02008e34 −0.187371 −0.0936856 0.995602i \(-0.529865\pi\)
−0.0936856 + 0.995602i \(0.529865\pi\)
\(602\) 6.72058e33 0.120907
\(603\) −1.04460e35 −1.84071
\(604\) −4.44904e33 −0.0767900
\(605\) 0 0
\(606\) −2.92246e33 −0.0483996
\(607\) −7.37377e34 −1.19628 −0.598138 0.801393i \(-0.704092\pi\)
−0.598138 + 0.801393i \(0.704092\pi\)
\(608\) −1.61402e34 −0.256516
\(609\) −8.33070e33 −0.129708
\(610\) 0 0
\(611\) 2.45811e34 0.367355
\(612\) −3.73198e34 −0.546445
\(613\) 9.86145e34 1.41477 0.707384 0.706830i \(-0.249875\pi\)
0.707384 + 0.706830i \(0.249875\pi\)
\(614\) −4.57127e34 −0.642587
\(615\) 0 0
\(616\) −4.07543e34 −0.550065
\(617\) 6.22897e34 0.823857 0.411928 0.911216i \(-0.364855\pi\)
0.411928 + 0.911216i \(0.364855\pi\)
\(618\) 6.11440e33 0.0792497
\(619\) −1.66187e34 −0.211089 −0.105544 0.994415i \(-0.533659\pi\)
−0.105544 + 0.994415i \(0.533659\pi\)
\(620\) 0 0
\(621\) −1.41704e34 −0.172876
\(622\) −3.47060e34 −0.414978
\(623\) 1.45379e35 1.70373
\(624\) 2.42205e33 0.0278212
\(625\) 0 0
\(626\) 4.74246e34 0.523389
\(627\) −1.98928e34 −0.215204
\(628\) 1.39641e34 0.148088
\(629\) 1.36435e35 1.41838
\(630\) 0 0
\(631\) −5.71133e34 −0.570650 −0.285325 0.958431i \(-0.592102\pi\)
−0.285325 + 0.958431i \(0.592102\pi\)
\(632\) −5.53377e34 −0.542073
\(633\) −7.19801e33 −0.0691299
\(634\) 8.07696e34 0.760558
\(635\) 0 0
\(636\) 6.98573e32 0.00632409
\(637\) −2.90168e34 −0.257576
\(638\) −1.23602e35 −1.07589
\(639\) 7.79465e34 0.665328
\(640\) 0 0
\(641\) 1.28313e34 0.105329 0.0526643 0.998612i \(-0.483229\pi\)
0.0526643 + 0.998612i \(0.483229\pi\)
\(642\) −2.51572e33 −0.0202523
\(643\) 1.37614e35 1.08649 0.543246 0.839574i \(-0.317195\pi\)
0.543246 + 0.839574i \(0.317195\pi\)
\(644\) −5.88862e34 −0.455974
\(645\) 0 0
\(646\) −1.52266e35 −1.13422
\(647\) −9.39917e34 −0.686730 −0.343365 0.939202i \(-0.611567\pi\)
−0.343365 + 0.939202i \(0.611567\pi\)
\(648\) 4.76638e34 0.341587
\(649\) 1.20966e35 0.850364
\(650\) 0 0
\(651\) −1.06666e34 −0.0721549
\(652\) 1.21179e35 0.804139
\(653\) 1.48718e35 0.968164 0.484082 0.875023i \(-0.339154\pi\)
0.484082 + 0.875023i \(0.339154\pi\)
\(654\) 6.66921e33 0.0425944
\(655\) 0 0
\(656\) 6.57412e34 0.404148
\(657\) 3.38611e34 0.204237
\(658\) −4.68584e34 −0.277309
\(659\) −1.21873e35 −0.707683 −0.353842 0.935305i \(-0.615125\pi\)
−0.353842 + 0.935305i \(0.615125\pi\)
\(660\) 0 0
\(661\) 2.07522e35 1.16023 0.580117 0.814533i \(-0.303007\pi\)
0.580117 + 0.814533i \(0.303007\pi\)
\(662\) 1.95425e35 1.07215
\(663\) 2.28495e34 0.123015
\(664\) −6.17331e32 −0.00326150
\(665\) 0 0
\(666\) −1.76293e35 −0.897032
\(667\) −1.78594e35 −0.891852
\(668\) −6.41733e34 −0.314520
\(669\) −3.75927e34 −0.180833
\(670\) 0 0
\(671\) −3.52471e35 −1.63340
\(672\) −4.61710e33 −0.0210017
\(673\) 2.63064e34 0.117455 0.0587277 0.998274i \(-0.481296\pi\)
0.0587277 + 0.998274i \(0.481296\pi\)
\(674\) 1.34642e35 0.590110
\(675\) 0 0
\(676\) 1.10756e34 0.0467771
\(677\) −1.31255e35 −0.544198 −0.272099 0.962269i \(-0.587718\pi\)
−0.272099 + 0.962269i \(0.587718\pi\)
\(678\) −1.84181e34 −0.0749677
\(679\) 3.54064e35 1.41485
\(680\) 0 0
\(681\) 2.80542e33 0.0108058
\(682\) −1.58260e35 −0.598505
\(683\) 4.53998e35 1.68576 0.842879 0.538104i \(-0.180859\pi\)
0.842879 + 0.538104i \(0.180859\pi\)
\(684\) 1.96750e35 0.717321
\(685\) 0 0
\(686\) −1.69255e35 −0.594963
\(687\) −5.07426e34 −0.175151
\(688\) 1.12966e34 0.0382906
\(689\) 3.73399e34 0.124289
\(690\) 0 0
\(691\) 1.42914e35 0.458773 0.229387 0.973335i \(-0.426328\pi\)
0.229387 + 0.973335i \(0.426328\pi\)
\(692\) 7.95860e34 0.250906
\(693\) 4.96796e35 1.53820
\(694\) −1.28300e35 −0.390152
\(695\) 0 0
\(696\) −1.40030e34 −0.0410778
\(697\) 6.20201e35 1.78699
\(698\) 1.38366e35 0.391593
\(699\) −1.09209e34 −0.0303595
\(700\) 0 0
\(701\) 4.38686e35 1.17673 0.588367 0.808594i \(-0.299771\pi\)
0.588367 + 0.808594i \(0.299771\pi\)
\(702\) −5.93879e34 −0.156489
\(703\) −7.19285e35 −1.86191
\(704\) −6.85037e34 −0.174203
\(705\) 0 0
\(706\) −1.79602e35 −0.440811
\(707\) 2.97781e35 0.718050
\(708\) 1.37044e34 0.0324672
\(709\) 3.53471e35 0.822766 0.411383 0.911463i \(-0.365046\pi\)
0.411383 + 0.911463i \(0.365046\pi\)
\(710\) 0 0
\(711\) 6.74569e35 1.51585
\(712\) 2.44367e35 0.539563
\(713\) −2.28672e35 −0.496127
\(714\) −4.35576e34 −0.0928617
\(715\) 0 0
\(716\) −1.17301e35 −0.241485
\(717\) −9.61357e34 −0.194489
\(718\) −6.16148e35 −1.22498
\(719\) 8.06410e35 1.57560 0.787798 0.615934i \(-0.211221\pi\)
0.787798 + 0.615934i \(0.211221\pi\)
\(720\) 0 0
\(721\) −6.23019e35 −1.17574
\(722\) 4.21509e35 0.781793
\(723\) 9.82443e34 0.179093
\(724\) −1.06487e35 −0.190794
\(725\) 0 0
\(726\) −4.09587e34 −0.0708987
\(727\) 4.49933e35 0.765539 0.382770 0.923844i \(-0.374970\pi\)
0.382770 + 0.923844i \(0.374970\pi\)
\(728\) −2.46792e35 −0.412751
\(729\) −5.67325e35 −0.932691
\(730\) 0 0
\(731\) 1.06572e35 0.169307
\(732\) −3.99320e34 −0.0623637
\(733\) 1.09791e36 1.68565 0.842827 0.538185i \(-0.180890\pi\)
0.842827 + 0.538185i \(0.180890\pi\)
\(734\) 2.83974e35 0.428626
\(735\) 0 0
\(736\) −9.89815e34 −0.144405
\(737\) −1.80893e36 −2.59464
\(738\) −8.01388e35 −1.13016
\(739\) −6.34879e35 −0.880309 −0.440155 0.897922i \(-0.645076\pi\)
−0.440155 + 0.897922i \(0.645076\pi\)
\(740\) 0 0
\(741\) −1.20463e35 −0.161483
\(742\) −7.11803e34 −0.0938234
\(743\) 6.17895e35 0.800856 0.400428 0.916328i \(-0.368861\pi\)
0.400428 + 0.916328i \(0.368861\pi\)
\(744\) −1.79295e34 −0.0228511
\(745\) 0 0
\(746\) −2.51662e35 −0.310158
\(747\) 7.52529e33 0.00912044
\(748\) −6.46262e35 −0.770262
\(749\) 2.56337e35 0.300461
\(750\) 0 0
\(751\) 6.31220e35 0.715619 0.357809 0.933795i \(-0.383524\pi\)
0.357809 + 0.933795i \(0.383524\pi\)
\(752\) −7.87641e34 −0.0878224
\(753\) −1.12546e35 −0.123422
\(754\) −7.48486e35 −0.807312
\(755\) 0 0
\(756\) 1.13210e35 0.118131
\(757\) −2.78268e35 −0.285605 −0.142802 0.989751i \(-0.545611\pi\)
−0.142802 + 0.989751i \(0.545611\pi\)
\(758\) 2.56401e35 0.258854
\(759\) −1.21994e35 −0.121148
\(760\) 0 0
\(761\) 2.91390e35 0.280005 0.140003 0.990151i \(-0.455289\pi\)
0.140003 + 0.990151i \(0.455289\pi\)
\(762\) −1.46904e33 −0.00138866
\(763\) −6.79552e35 −0.631926
\(764\) −6.02712e35 −0.551369
\(765\) 0 0
\(766\) −8.02238e35 −0.710303
\(767\) 7.32523e35 0.638086
\(768\) −7.76087e33 −0.00665113
\(769\) −1.59678e36 −1.34637 −0.673187 0.739473i \(-0.735075\pi\)
−0.673187 + 0.739473i \(0.735075\pi\)
\(770\) 0 0
\(771\) 1.25828e35 0.102707
\(772\) 6.31267e34 0.0506987
\(773\) −1.26764e36 −1.00173 −0.500866 0.865525i \(-0.666985\pi\)
−0.500866 + 0.865525i \(0.666985\pi\)
\(774\) −1.37706e35 −0.107076
\(775\) 0 0
\(776\) 5.95144e35 0.448075
\(777\) −2.05760e35 −0.152440
\(778\) −2.27695e35 −0.166000
\(779\) −3.26970e36 −2.34580
\(780\) 0 0
\(781\) 1.34979e36 0.937838
\(782\) −9.33788e35 −0.638505
\(783\) 3.43351e35 0.231055
\(784\) 9.29772e34 0.0615780
\(785\) 0 0
\(786\) 5.53245e34 0.0354924
\(787\) −1.69750e36 −1.07183 −0.535915 0.844272i \(-0.680033\pi\)
−0.535915 + 0.844272i \(0.680033\pi\)
\(788\) 3.09503e35 0.192348
\(789\) −2.42028e35 −0.148048
\(790\) 0 0
\(791\) 1.87669e36 1.11221
\(792\) 8.35063e35 0.487141
\(793\) −2.13443e36 −1.22565
\(794\) 1.64129e36 0.927748
\(795\) 0 0
\(796\) 5.42798e35 0.297321
\(797\) 1.94040e36 1.04631 0.523157 0.852236i \(-0.324754\pi\)
0.523157 + 0.852236i \(0.324754\pi\)
\(798\) 2.29636e35 0.121900
\(799\) −7.43058e35 −0.388319
\(800\) 0 0
\(801\) −2.97884e36 −1.50883
\(802\) −1.14608e36 −0.571525
\(803\) 5.86368e35 0.287889
\(804\) −2.04936e35 −0.0990643
\(805\) 0 0
\(806\) −9.58363e35 −0.449099
\(807\) −8.15908e34 −0.0376463
\(808\) 5.00539e35 0.227403
\(809\) 8.07086e35 0.361047 0.180523 0.983571i \(-0.442221\pi\)
0.180523 + 0.983571i \(0.442221\pi\)
\(810\) 0 0
\(811\) 1.23381e36 0.535165 0.267583 0.963535i \(-0.413775\pi\)
0.267583 + 0.963535i \(0.413775\pi\)
\(812\) 1.42682e36 0.609424
\(813\) 3.81872e34 0.0160615
\(814\) −3.05285e36 −1.26445
\(815\) 0 0
\(816\) −7.32158e34 −0.0294088
\(817\) −5.61847e35 −0.222250
\(818\) −2.95796e36 −1.15233
\(819\) 3.00840e36 1.15422
\(820\) 0 0
\(821\) −6.01008e34 −0.0223661 −0.0111831 0.999937i \(-0.503560\pi\)
−0.0111831 + 0.999937i \(0.503560\pi\)
\(822\) −1.73443e35 −0.0635710
\(823\) −1.64344e36 −0.593274 −0.296637 0.954990i \(-0.595865\pi\)
−0.296637 + 0.954990i \(0.595865\pi\)
\(824\) −1.04723e36 −0.372351
\(825\) 0 0
\(826\) −1.39639e36 −0.481679
\(827\) −4.86438e36 −1.65276 −0.826378 0.563116i \(-0.809602\pi\)
−0.826378 + 0.563116i \(0.809602\pi\)
\(828\) 1.20659e36 0.403813
\(829\) −1.30083e36 −0.428834 −0.214417 0.976742i \(-0.568785\pi\)
−0.214417 + 0.976742i \(0.568785\pi\)
\(830\) 0 0
\(831\) 5.64053e35 0.180429
\(832\) −4.14832e35 −0.130716
\(833\) 8.77144e35 0.272275
\(834\) 1.60750e34 0.00491560
\(835\) 0 0
\(836\) 3.40710e36 1.01113
\(837\) 4.39627e35 0.128533
\(838\) 2.10154e36 0.605323
\(839\) −3.56272e36 −1.01101 −0.505506 0.862823i \(-0.668694\pi\)
−0.505506 + 0.862823i \(0.668694\pi\)
\(840\) 0 0
\(841\) 6.96997e35 0.191991
\(842\) −5.36538e35 −0.145613
\(843\) 7.19727e34 0.0192452
\(844\) 1.23282e36 0.324803
\(845\) 0 0
\(846\) 9.60138e35 0.245586
\(847\) 4.17344e36 1.05184
\(848\) −1.19647e35 −0.0297134
\(849\) −1.13328e35 −0.0277325
\(850\) 0 0
\(851\) −4.41108e36 −1.04816
\(852\) 1.52919e35 0.0358070
\(853\) 2.91289e36 0.672142 0.336071 0.941837i \(-0.390902\pi\)
0.336071 + 0.941837i \(0.390902\pi\)
\(854\) 4.06882e36 0.925220
\(855\) 0 0
\(856\) 4.30876e35 0.0951546
\(857\) 6.85495e36 1.49192 0.745958 0.665993i \(-0.231992\pi\)
0.745958 + 0.665993i \(0.231992\pi\)
\(858\) −5.11278e35 −0.109665
\(859\) 6.94361e36 1.46781 0.733907 0.679250i \(-0.237695\pi\)
0.733907 + 0.679250i \(0.237695\pi\)
\(860\) 0 0
\(861\) −9.35337e35 −0.192056
\(862\) 1.74097e36 0.352331
\(863\) 5.37478e35 0.107208 0.0536038 0.998562i \(-0.482929\pi\)
0.0536038 + 0.998562i \(0.482929\pi\)
\(864\) 1.90294e35 0.0374114
\(865\) 0 0
\(866\) −8.93846e35 −0.170722
\(867\) −1.25448e35 −0.0236171
\(868\) 1.82691e36 0.339016
\(869\) 1.16814e37 2.13673
\(870\) 0 0
\(871\) −1.09542e37 −1.94694
\(872\) −1.14226e36 −0.200128
\(873\) −7.25483e36 −1.25300
\(874\) 4.92294e36 0.838169
\(875\) 0 0
\(876\) 6.64304e34 0.0109917
\(877\) −1.45532e36 −0.237391 −0.118695 0.992931i \(-0.537871\pi\)
−0.118695 + 0.992931i \(0.537871\pi\)
\(878\) 8.02985e36 1.29130
\(879\) −9.76076e34 −0.0154747
\(880\) 0 0
\(881\) 7.73993e36 1.19272 0.596360 0.802717i \(-0.296613\pi\)
0.596360 + 0.802717i \(0.296613\pi\)
\(882\) −1.13340e36 −0.172197
\(883\) 1.08821e35 0.0163006 0.00815031 0.999967i \(-0.497406\pi\)
0.00815031 + 0.999967i \(0.497406\pi\)
\(884\) −3.91351e36 −0.577980
\(885\) 0 0
\(886\) 7.41686e36 1.06488
\(887\) 7.82913e36 1.10833 0.554164 0.832407i \(-0.313038\pi\)
0.554164 + 0.832407i \(0.313038\pi\)
\(888\) −3.45861e35 −0.0482769
\(889\) 1.49686e35 0.0206020
\(890\) 0 0
\(891\) −1.00615e37 −1.34646
\(892\) 6.43861e36 0.849634
\(893\) 3.91741e36 0.509748
\(894\) −4.50148e35 −0.0577612
\(895\) 0 0
\(896\) 7.90785e35 0.0986753
\(897\) −7.38750e35 −0.0909059
\(898\) 8.05840e36 0.977900
\(899\) 5.54076e36 0.663091
\(900\) 0 0
\(901\) −1.12874e36 −0.131382
\(902\) −1.38775e37 −1.59305
\(903\) −1.60723e35 −0.0181962
\(904\) 3.15453e36 0.352232
\(905\) 0 0
\(906\) 1.06399e35 0.0115567
\(907\) −1.06412e36 −0.113999 −0.0569993 0.998374i \(-0.518153\pi\)
−0.0569993 + 0.998374i \(0.518153\pi\)
\(908\) −4.80492e35 −0.0507707
\(909\) −6.10159e36 −0.635909
\(910\) 0 0
\(911\) 7.34268e36 0.744517 0.372259 0.928129i \(-0.378583\pi\)
0.372259 + 0.928129i \(0.378583\pi\)
\(912\) 3.85994e35 0.0386052
\(913\) 1.30314e35 0.0128561
\(914\) 2.66928e36 0.259757
\(915\) 0 0
\(916\) 8.69083e36 0.822939
\(917\) −5.63723e36 −0.526561
\(918\) 1.79523e36 0.165420
\(919\) 5.22115e36 0.474594 0.237297 0.971437i \(-0.423738\pi\)
0.237297 + 0.971437i \(0.423738\pi\)
\(920\) 0 0
\(921\) 1.09322e36 0.0967080
\(922\) −1.52922e36 −0.133454
\(923\) 8.17379e36 0.703724
\(924\) 9.74640e35 0.0827836
\(925\) 0 0
\(926\) −1.60932e37 −1.33047
\(927\) 1.27658e37 1.04124
\(928\) 2.39834e36 0.193002
\(929\) −1.16329e37 −0.923618 −0.461809 0.886979i \(-0.652799\pi\)
−0.461809 + 0.886979i \(0.652799\pi\)
\(930\) 0 0
\(931\) −4.62431e36 −0.357418
\(932\) 1.87046e36 0.142643
\(933\) 8.29996e35 0.0624533
\(934\) 8.98341e36 0.666968
\(935\) 0 0
\(936\) 5.05681e36 0.365535
\(937\) −5.72513e36 −0.408358 −0.204179 0.978934i \(-0.565452\pi\)
−0.204179 + 0.978934i \(0.565452\pi\)
\(938\) 2.08817e37 1.46970
\(939\) −1.13416e36 −0.0787690
\(940\) 0 0
\(941\) −2.32727e37 −1.57390 −0.786950 0.617016i \(-0.788341\pi\)
−0.786950 + 0.617016i \(0.788341\pi\)
\(942\) −3.33953e35 −0.0222869
\(943\) −2.00518e37 −1.32055
\(944\) −2.34719e36 −0.152545
\(945\) 0 0
\(946\) −2.38464e36 −0.150933
\(947\) −2.10624e37 −1.31563 −0.657814 0.753180i \(-0.728519\pi\)
−0.657814 + 0.753180i \(0.728519\pi\)
\(948\) 1.32340e36 0.0815809
\(949\) 3.55081e36 0.216023
\(950\) 0 0
\(951\) −1.93161e36 −0.114462
\(952\) 7.46024e36 0.436306
\(953\) 1.00956e36 0.0582736 0.0291368 0.999575i \(-0.490724\pi\)
0.0291368 + 0.999575i \(0.490724\pi\)
\(954\) 1.45850e36 0.0830905
\(955\) 0 0
\(956\) 1.64654e37 0.913797
\(957\) 2.95595e36 0.161919
\(958\) −1.74742e37 −0.944776
\(959\) 1.76728e37 0.943131
\(960\) 0 0
\(961\) −1.21384e37 −0.631130
\(962\) −1.84868e37 −0.948799
\(963\) −5.25239e36 −0.266090
\(964\) −1.68266e37 −0.841459
\(965\) 0 0
\(966\) 1.40826e36 0.0686231
\(967\) −5.41536e36 −0.260493 −0.130247 0.991482i \(-0.541577\pi\)
−0.130247 + 0.991482i \(0.541577\pi\)
\(968\) 7.01512e36 0.333114
\(969\) 3.64146e36 0.170698
\(970\) 0 0
\(971\) −5.44528e36 −0.248759 −0.124380 0.992235i \(-0.539694\pi\)
−0.124380 + 0.992235i \(0.539694\pi\)
\(972\) −3.48615e36 −0.157224
\(973\) −1.63795e36 −0.0729271
\(974\) −8.97226e36 −0.394380
\(975\) 0 0
\(976\) 6.83926e36 0.293013
\(977\) 3.00155e37 1.26959 0.634794 0.772681i \(-0.281085\pi\)
0.634794 + 0.772681i \(0.281085\pi\)
\(978\) −2.89799e36 −0.121021
\(979\) −5.15842e37 −2.12683
\(980\) 0 0
\(981\) 1.39242e37 0.559637
\(982\) −4.35992e35 −0.0173015
\(983\) −2.29888e36 −0.0900737 −0.0450368 0.998985i \(-0.514341\pi\)
−0.0450368 + 0.998985i \(0.514341\pi\)
\(984\) −1.57220e36 −0.0608233
\(985\) 0 0
\(986\) 2.26259e37 0.853383
\(987\) 1.12062e36 0.0417344
\(988\) 2.06320e37 0.758718
\(989\) −3.44558e36 −0.125115
\(990\) 0 0
\(991\) 9.88586e36 0.350021 0.175010 0.984567i \(-0.444004\pi\)
0.175010 + 0.984567i \(0.444004\pi\)
\(992\) 3.07084e36 0.107365
\(993\) −4.67360e36 −0.161356
\(994\) −1.55815e37 −0.531228
\(995\) 0 0
\(996\) 1.47635e34 0.000490848 0
\(997\) −2.20132e37 −0.722759 −0.361380 0.932419i \(-0.617694\pi\)
−0.361380 + 0.932419i \(0.617694\pi\)
\(998\) −1.41873e37 −0.460012
\(999\) 8.48041e36 0.271549
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 50.26.a.b.1.1 1
5.2 odd 4 50.26.b.a.49.2 2
5.3 odd 4 50.26.b.a.49.1 2
5.4 even 2 2.26.a.a.1.1 1
15.14 odd 2 18.26.a.c.1.1 1
20.19 odd 2 16.26.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2.26.a.a.1.1 1 5.4 even 2
16.26.a.a.1.1 1 20.19 odd 2
18.26.a.c.1.1 1 15.14 odd 2
50.26.a.b.1.1 1 1.1 even 1 trivial
50.26.b.a.49.1 2 5.3 odd 4
50.26.b.a.49.2 2 5.2 odd 4