Properties

Label 50.26.a
Level $50$
Weight $26$
Character orbit 50.a
Rep. character $\chi_{50}(1,\cdot)$
Character field $\Q$
Dimension $40$
Newform subspaces $12$
Sturm bound $195$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 26 \)
Character orbit: \([\chi]\) \(=\) 50.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 12 \)
Sturm bound: \(195\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{26}(\Gamma_0(50))\).

Total New Old
Modular forms 193 40 153
Cusp forms 181 40 141
Eisenstein series 12 0 12

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)FrickeDim
\(+\)\(+\)\(+\)\(9\)
\(+\)\(-\)\(-\)\(11\)
\(-\)\(+\)\(-\)\(10\)
\(-\)\(-\)\(+\)\(10\)
Plus space\(+\)\(19\)
Minus space\(-\)\(21\)

Trace form

\( 40 q - 650200 q^{3} + 671088640 q^{4} + 1224335360 q^{6} + 70437967600 q^{7} + 10458624046970 q^{9} - 18707778902670 q^{11} - 10908545843200 q^{12} + 198216091044100 q^{13} + 42768283320320 q^{14} + 11\!\cdots\!40 q^{16}+ \cdots - 59\!\cdots\!60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{26}^{\mathrm{new}}(\Gamma_0(50))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5
50.26.a.a 50.a 1.a $1$ $197.998$ \(\Q\) None 10.26.a.a \(-4096\) \(-162864\) \(0\) \(17600893492\) $+$ $+$ $\mathrm{SU}(2)$ \(q-2^{12}q^{2}-162864q^{3}+2^{24}q^{4}+\cdots\)
50.26.a.b 50.a 1.a $1$ $197.998$ \(\Q\) None 2.26.a.a \(4096\) \(-97956\) \(0\) \(40882637368\) $-$ $+$ $\mathrm{SU}(2)$ \(q+2^{12}q^{2}-97956q^{3}+2^{24}q^{4}-401227776q^{6}+\cdots\)
50.26.a.c 50.a 1.a $2$ $197.998$ \(\Q(\sqrt{106705}) \) None 2.26.a.b \(-8192\) \(-379848\) \(0\) \(376536944\) $+$ $+$ $\mathrm{SU}(2)$ \(q-2^{12}q^{2}+(-189924-\beta )q^{3}+2^{24}q^{4}+\cdots\)
50.26.a.d 50.a 1.a $2$ $197.998$ \(\Q(\sqrt{95351}) \) None 10.26.a.d \(-8192\) \(97092\) \(0\) \(16137160124\) $+$ $+$ $\mathrm{SU}(2)$ \(q-2^{12}q^{2}+(48546+\beta )q^{3}+2^{24}q^{4}+\cdots\)
50.26.a.e 50.a 1.a $2$ $197.998$ \(\mathbb{Q}[x]/(x^{2} - \cdots)\) None 10.26.a.c \(8192\) \(-545212\) \(0\) \(-38567856964\) $-$ $+$ $\mathrm{SU}(2)$ \(q+2^{12}q^{2}+(-272606+\beta )q^{3}+2^{24}q^{4}+\cdots\)
50.26.a.f 50.a 1.a $2$ $197.998$ \(\mathbb{Q}[x]/(x^{2} - \cdots)\) None 10.26.a.b \(8192\) \(438588\) \(0\) \(34008596636\) $-$ $+$ $\mathrm{SU}(2)$ \(q+2^{12}q^{2}+(219294-\beta )q^{3}+2^{24}q^{4}+\cdots\)
50.26.a.g 50.a 1.a $4$ $197.998$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 50.26.a.g \(-16384\) \(-106356\) \(0\) \(11094836368\) $+$ $+$ $\mathrm{SU}(2)$ \(q-2^{12}q^{2}+(-26589+\beta _{1})q^{3}+2^{24}q^{4}+\cdots\)
50.26.a.h 50.a 1.a $4$ $197.998$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 50.26.a.g \(16384\) \(106356\) \(0\) \(-11094836368\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2^{12}q^{2}+(26589-\beta _{1})q^{3}+2^{24}q^{4}+\cdots\)
50.26.a.i 50.a 1.a $5$ $197.998$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 50.26.a.i \(-20480\) \(-723995\) \(0\) \(-49218886190\) $+$ $-$ $\mathrm{SU}(2)$ \(q-2^{12}q^{2}+(-144799-\beta _{1})q^{3}+2^{24}q^{4}+\cdots\)
50.26.a.j 50.a 1.a $5$ $197.998$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 50.26.a.i \(20480\) \(723995\) \(0\) \(49218886190\) $-$ $+$ $\mathrm{SU}(2)$ \(q+2^{12}q^{2}+(144799+\beta _{1})q^{3}+2^{24}q^{4}+\cdots\)
50.26.a.k 50.a 1.a $6$ $197.998$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 10.26.b.a \(-24576\) \(801416\) \(0\) \(34007705352\) $+$ $-$ $\mathrm{SU}(2)$ \(q-2^{12}q^{2}+(133569+\beta _{1})q^{3}+2^{24}q^{4}+\cdots\)
50.26.a.l 50.a 1.a $6$ $197.998$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 10.26.b.a \(24576\) \(-801416\) \(0\) \(-34007705352\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2^{12}q^{2}+(-133569-\beta _{1})q^{3}+2^{24}q^{4}+\cdots\)

Decomposition of \(S_{26}^{\mathrm{old}}(\Gamma_0(50))\) into lower level spaces

\( S_{26}^{\mathrm{old}}(\Gamma_0(50)) \simeq \) \(S_{26}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{26}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 3}\)\(\oplus\)\(S_{26}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{26}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{26}^{\mathrm{new}}(\Gamma_0(25))\)\(^{\oplus 2}\)