Properties

Label 50.24.a.d
Level $50$
Weight $24$
Character orbit 50.a
Self dual yes
Analytic conductor $167.602$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [50,24,Mod(1,50)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(50, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 24, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("50.1");
 
S:= CuspForms(chi, 24);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 24 \)
Character orbit: \([\chi]\) \(=\) 50.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(167.602018673\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{219241}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 54810 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3\cdot 5 \)
Twist minimal: no (minimal twist has level 10)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 30\sqrt{219241}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2048 q^{2} + ( - 17 \beta + 9258) q^{3} + 4194304 q^{4} + ( - 34816 \beta + 18960384) q^{6} + ( - 236871 \beta + 2207867554) q^{7} + 8589934592 q^{8} + ( - 314772 \beta - 37032884163) q^{9} + ( - 74860038 \beta + 97508619912) q^{11}+ \cdots + (27\!\cdots\!30 \beta + 10\!\cdots\!44) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4096 q^{2} + 18516 q^{3} + 8388608 q^{4} + 37920768 q^{6} + 4415735108 q^{7} + 17179869184 q^{8} - 74065768326 q^{9} + 195017239824 q^{11} + 77661732864 q^{12} - 2583183058684 q^{13} + 9043425501184 q^{14}+ \cdots + 20\!\cdots\!88 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
234.616
−233.616
2048.00 −229540. 4.19430e6 0 −4.70098e8 −1.11945e9 8.58993e9 −4.14545e10 0
1.2 2048.00 248056. 4.19430e6 0 5.08019e8 5.53518e9 8.58993e9 −3.26113e10 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 50.24.a.d 2
5.b even 2 1 10.24.a.a 2
5.c odd 4 2 50.24.b.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.24.a.a 2 5.b even 2 1
50.24.a.d 2 1.a even 1 1 trivial
50.24.b.d 4 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 18516T_{3} - 56938873536 \) acting on \(S_{24}^{\mathrm{new}}(\Gamma_0(50))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 2048)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + \cdots - 56938873536 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + \cdots - 61\!\cdots\!84 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots - 10\!\cdots\!56 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots - 12\!\cdots\!36 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots - 36\!\cdots\!44 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots - 68\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 32\!\cdots\!76 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots + 24\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 17\!\cdots\!04 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 17\!\cdots\!44 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots + 69\!\cdots\!44 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 19\!\cdots\!24 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 99\!\cdots\!84 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 16\!\cdots\!16 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 38\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 12\!\cdots\!96 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 60\!\cdots\!76 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 44\!\cdots\!24 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 79\!\cdots\!56 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 62\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 11\!\cdots\!84 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 10\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 21\!\cdots\!36 \) Copy content Toggle raw display
show more
show less