Properties

Label 50.2.e
Level $50$
Weight $2$
Character orbit 50.e
Rep. character $\chi_{50}(9,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $8$
Newform subspaces $1$
Sturm bound $15$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 50.e (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 25 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 1 \)
Sturm bound: \(15\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(50, [\chi])\).

Total New Old
Modular forms 40 8 32
Cusp forms 24 8 16
Eisenstein series 16 0 16

Trace form

\( 8 q + 2 q^{4} - 10 q^{5} + 2 q^{6} - 4 q^{9} - 4 q^{11} - 10 q^{12} - 4 q^{14} - 20 q^{15} - 2 q^{16} + 10 q^{17} + 10 q^{19} + 16 q^{21} + 20 q^{22} + 10 q^{23} + 8 q^{24} + 10 q^{25} - 28 q^{26} + 10 q^{28}+ \cdots - 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(50, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
50.2.e.a 50.e 25.e $8$ $0.399$ \(\Q(\zeta_{20})\) None 50.2.e.a \(0\) \(0\) \(-10\) \(0\) $\mathrm{SU}(2)[C_{10}]$ \(q+\zeta_{20}q^{2}+(-1+\zeta_{20}^{2}-\zeta_{20}^{4}+2\zeta_{20}^{6}+\cdots)q^{3}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(50, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(50, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 2}\)