Properties

Label 50.2.d
Level $50$
Weight $2$
Character orbit 50.d
Rep. character $\chi_{50}(11,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $12$
Newform subspaces $2$
Sturm bound $15$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 50.d (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 25 \)
Character field: \(\Q(\zeta_{5})\)
Newform subspaces: \( 2 \)
Sturm bound: \(15\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(50, [\chi])\).

Total New Old
Modular forms 36 12 24
Cusp forms 20 12 8
Eisenstein series 16 0 16

Trace form

\( 12 q - q^{2} - 4 q^{3} - 3 q^{4} + 5 q^{5} - 2 q^{6} - 8 q^{7} - q^{8} - 9 q^{9} - 5 q^{10} + 4 q^{11} + 6 q^{12} - 14 q^{13} - 4 q^{14} - 3 q^{16} - 8 q^{17} + 12 q^{18} + 10 q^{19} - 16 q^{21} + 8 q^{22}+ \cdots - 68 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(50, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
50.2.d.a 50.d 25.d $4$ $0.399$ \(\Q(\zeta_{10})\) None 50.2.d.a \(1\) \(-1\) \(5\) \(-12\) $\mathrm{SU}(2)[C_{5}]$ \(q+(1-\zeta_{10}+\zeta_{10}^{2}-\zeta_{10}^{3})q^{2}+(-1+\cdots)q^{3}+\cdots\)
50.2.d.b 50.d 25.d $8$ $0.399$ 8.0.58140625.2 None 50.2.d.b \(-2\) \(-3\) \(0\) \(4\) $\mathrm{SU}(2)[C_{5}]$ \(q+(-1+\beta _{2}+\beta _{3}+\beta _{6})q^{2}+\beta _{4}q^{3}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(50, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(50, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 2}\)