Defining parameters
Level: | \( N \) | \(=\) | \( 50 = 2 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 50.d (of order \(5\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 25 \) |
Character field: | \(\Q(\zeta_{5})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(15\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(50, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 36 | 12 | 24 |
Cusp forms | 20 | 12 | 8 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(50, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
50.2.d.a | $4$ | $0.399$ | \(\Q(\zeta_{10})\) | None | \(1\) | \(-1\) | \(5\) | \(-12\) | \(q+(1-\zeta_{10}+\zeta_{10}^{2}-\zeta_{10}^{3})q^{2}+(-1+\cdots)q^{3}+\cdots\) |
50.2.d.b | $8$ | $0.399$ | 8.0.58140625.2 | None | \(-2\) | \(-3\) | \(0\) | \(4\) | \(q+(-1+\beta _{2}+\beta _{3}+\beta _{6})q^{2}+\beta _{4}q^{3}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(50, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(50, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 2}\)