Properties

Label 50.18.b.d
Level $50$
Weight $18$
Character orbit 50.b
Analytic conductor $91.611$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [50,18,Mod(49,50)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(50, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 18, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("50.49");
 
S:= CuspForms(chi, 18);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 18 \)
Character orbit: \([\chi]\) \(=\) 50.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(91.6110436723\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 41641x^{2} + 433472400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{2}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 10)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 128 \beta_1 q^{2} + (\beta_{2} - 327 \beta_1) q^{3} - 65536 q^{4} + ( - 128 \beta_{3} + 167424) q^{6} + ( - 2907 \beta_{2} - 150961 \beta_1) q^{7} - 8388608 \beta_1 q^{8} + (654 \beta_{3} + 53759547) q^{9}+ \cdots + ( - 294970637385 \beta_{3} - 13\!\cdots\!56) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 262144 q^{4} + 669696 q^{6} + 215038188 q^{9} - 942962592 q^{11} + 309168128 q^{14} + 17179869184 q^{16} - 257345058800 q^{19} + 870762493248 q^{21} - 43889197056 q^{24} + 789419124736 q^{26} - 5086109499960 q^{29}+ \cdots - 52\!\cdots\!24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 41641x^{2} + 433472400 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 20821\nu ) / 10410 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 62461\nu ) / 694 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 120\nu^{2} + 2498460 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} - 15\beta_1 ) / 60 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} - 2498460 ) / 120 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -20821\beta_{2} + 936915\beta_1 ) / 60 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/50\mathbb{Z}\right)^\times\).

\(n\) \(27\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
143.792i
144.792i
144.792i
143.792i
256.000i 8003.53i −65536.0 0 −2.04890e6 2.54694e7i 1.67772e7i 6.50836e7 0
49.2 256.000i 9311.53i −65536.0 0 2.38375e6 2.48655e7i 1.67772e7i 4.24355e7 0
49.3 256.000i 9311.53i −65536.0 0 2.38375e6 2.48655e7i 1.67772e7i 4.24355e7 0
49.4 256.000i 8003.53i −65536.0 0 −2.04890e6 2.54694e7i 1.67772e7i 6.50836e7 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 50.18.b.d 4
5.b even 2 1 inner 50.18.b.d 4
5.c odd 4 1 10.18.a.c 2
5.c odd 4 1 50.18.a.f 2
15.e even 4 1 90.18.a.k 2
20.e even 4 1 80.18.a.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.18.a.c 2 5.c odd 4 1
50.18.a.f 2 5.c odd 4 1
50.18.b.d 4 1.a even 1 1 trivial
50.18.b.d 4 5.b even 2 1 inner
80.18.a.d 2 20.e even 4 1
90.18.a.k 2 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 150761232T_{3}^{2} + 5554003050233856 \) acting on \(S_{18}^{\mathrm{new}}(50, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 65536)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} + \cdots + 55\!\cdots\!56 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots + 40\!\cdots\!56 \) Copy content Toggle raw display
$11$ \( (T^{2} + \cdots + 53\!\cdots\!04)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 57\!\cdots\!16 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 15\!\cdots\!76 \) Copy content Toggle raw display
$19$ \( (T^{2} + \cdots + 88\!\cdots\!00)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 10\!\cdots\!56 \) Copy content Toggle raw display
$29$ \( (T^{2} + \cdots - 13\!\cdots\!00)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + \cdots - 57\!\cdots\!16)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 20\!\cdots\!56 \) Copy content Toggle raw display
$41$ \( (T^{2} + \cdots - 11\!\cdots\!16)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 12\!\cdots\!76 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 15\!\cdots\!16 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 69\!\cdots\!16 \) Copy content Toggle raw display
$59$ \( (T^{2} + \cdots - 54\!\cdots\!00)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + \cdots - 12\!\cdots\!36)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 27\!\cdots\!16 \) Copy content Toggle raw display
$71$ \( (T^{2} + \cdots - 20\!\cdots\!56)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 41\!\cdots\!16 \) Copy content Toggle raw display
$79$ \( (T^{2} + \cdots + 15\!\cdots\!00)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 65\!\cdots\!96 \) Copy content Toggle raw display
$89$ \( (T^{2} + \cdots + 37\!\cdots\!00)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 59\!\cdots\!56 \) Copy content Toggle raw display
show more
show less