Properties

Label 50.12.b
Level $50$
Weight $12$
Character orbit 50.b
Rep. character $\chi_{50}(49,\cdot)$
Character field $\Q$
Dimension $16$
Newform subspaces $6$
Sturm bound $90$
Trace bound $6$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 50.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 6 \)
Sturm bound: \(90\)
Trace bound: \(6\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{12}(50, [\chi])\).

Total New Old
Modular forms 88 16 72
Cusp forms 76 16 60
Eisenstein series 12 0 12

Trace form

\( 16 q - 16384 q^{4} - 18496 q^{6} - 711622 q^{9} + 627762 q^{11} + 2100608 q^{14} + 16777216 q^{16} + 36373390 q^{19} - 101516548 q^{21} + 18939904 q^{24} - 54490496 q^{26} + 71084820 q^{29} - 785611948 q^{31}+ \cdots - 299335762404 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{12}^{\mathrm{new}}(50, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
50.12.b.a 50.b 5.b $2$ $38.417$ \(\Q(\sqrt{-1}) \) None 10.12.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+16\beta q^{2}+369\beta q^{3}-1024 q^{4}+\cdots\)
50.12.b.b 50.b 5.b $2$ $38.417$ \(\Q(\sqrt{-1}) \) None 10.12.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+16\beta q^{2}+159\beta q^{3}-1024 q^{4}+\cdots\)
50.12.b.c 50.b 5.b $2$ $38.417$ \(\Q(\sqrt{-1}) \) None 10.12.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-16\beta q^{2}+6\beta q^{3}-1024 q^{4}+384 q^{6}+\cdots\)
50.12.b.d 50.b 5.b $2$ $38.417$ \(\Q(\sqrt{-1}) \) None 50.12.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-32 i q^{2}+207 i q^{3}-1024 q^{4}+\cdots\)
50.12.b.e 50.b 5.b $4$ $38.417$ \(\mathbb{Q}[x]/(x^{4} + \cdots)\) None 50.12.a.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-2^{5}\beta _{1}q^{2}+(-28\beta _{1}+\beta _{2})q^{3}-2^{10}q^{4}+\cdots\)
50.12.b.f 50.b 5.b $4$ $38.417$ \(\Q(i, \sqrt{1969})\) None 10.12.a.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-2^{4}\beta _{1}q^{2}+(151\beta _{1}-\beta _{2})q^{3}-2^{10}q^{4}+\cdots\)

Decomposition of \(S_{12}^{\mathrm{old}}(50, [\chi])\) into lower level spaces

\( S_{12}^{\mathrm{old}}(50, [\chi]) \simeq \) \(S_{12}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 2}\)