Defining parameters
Level: | \( N \) | \(=\) | \( 50 = 2 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 12 \) |
Character orbit: | \([\chi]\) | \(=\) | 50.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(90\) | ||
Trace bound: | \(6\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{12}(50, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 88 | 16 | 72 |
Cusp forms | 76 | 16 | 60 |
Eisenstein series | 12 | 0 | 12 |
Trace form
Decomposition of \(S_{12}^{\mathrm{new}}(50, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
50.12.b.a | $2$ | $38.417$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+16\beta q^{2}+369\beta q^{3}-1024 q^{4}+\cdots\) |
50.12.b.b | $2$ | $38.417$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+16\beta q^{2}+159\beta q^{3}-1024 q^{4}+\cdots\) |
50.12.b.c | $2$ | $38.417$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-16\beta q^{2}+6\beta q^{3}-1024 q^{4}+384 q^{6}+\cdots\) |
50.12.b.d | $2$ | $38.417$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-32 i q^{2}+207 i q^{3}-1024 q^{4}+\cdots\) |
50.12.b.e | $4$ | $38.417$ | \(\mathbb{Q}[x]/(x^{4} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-2^{5}\beta _{1}q^{2}+(-28\beta _{1}+\beta _{2})q^{3}-2^{10}q^{4}+\cdots\) |
50.12.b.f | $4$ | $38.417$ | \(\Q(i, \sqrt{1969})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-2^{4}\beta _{1}q^{2}+(151\beta _{1}-\beta _{2})q^{3}-2^{10}q^{4}+\cdots\) |
Decomposition of \(S_{12}^{\mathrm{old}}(50, [\chi])\) into lower level spaces
\( S_{12}^{\mathrm{old}}(50, [\chi]) \simeq \) \(S_{12}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 2}\)