Properties

Label 50.11.c.c
Level $50$
Weight $11$
Character orbit 50.c
Analytic conductor $31.768$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [50,11,Mod(7,50)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(50, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 11, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("50.7");
 
S:= CuspForms(chi, 11);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 11 \)
Character orbit: \([\chi]\) \(=\) 50.c (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(31.7678626337\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 10)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 16 i - 16) q^{2} + ( - 183 i + 183) q^{3} + 512 i q^{4} - 5856 q^{6} + (8407 i + 8407) q^{7} + ( - 8192 i + 8192) q^{8} - 7929 i q^{9} - 173398 q^{11} + (93696 i + 93696) q^{12} + ( - 232623 i + 232623) q^{13} + \cdots + 1374872742 i q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 32 q^{2} + 366 q^{3} - 11712 q^{6} + 16814 q^{7} + 16384 q^{8} - 346796 q^{11} + 187392 q^{12} + 465246 q^{13} - 524288 q^{16} - 3760066 q^{17} - 253728 q^{18} + 6153924 q^{21} + 5548736 q^{22} + 10456526 q^{23}+ \cdots - 4515838432 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/50\mathbb{Z}\right)^\times\).

\(n\) \(27\)
\(\chi(n)\) \(i\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
7.1
1.00000i
1.00000i
−16.0000 16.0000i 183.000 183.000i 512.000i 0 −5856.00 8407.00 + 8407.00i 8192.00 8192.00i 7929.00i 0
43.1 −16.0000 + 16.0000i 183.000 + 183.000i 512.000i 0 −5856.00 8407.00 8407.00i 8192.00 + 8192.00i 7929.00i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 50.11.c.c 2
5.b even 2 1 10.11.c.a 2
5.c odd 4 1 10.11.c.a 2
5.c odd 4 1 inner 50.11.c.c 2
15.d odd 2 1 90.11.g.b 2
15.e even 4 1 90.11.g.b 2
20.d odd 2 1 80.11.p.b 2
20.e even 4 1 80.11.p.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.11.c.a 2 5.b even 2 1
10.11.c.a 2 5.c odd 4 1
50.11.c.c 2 1.a even 1 1 trivial
50.11.c.c 2 5.c odd 4 1 inner
80.11.p.b 2 20.d odd 2 1
80.11.p.b 2 20.e even 4 1
90.11.g.b 2 15.d odd 2 1
90.11.g.b 2 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 366T_{3} + 66978 \) acting on \(S_{11}^{\mathrm{new}}(50, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 32T + 512 \) Copy content Toggle raw display
$3$ \( T^{2} - 366T + 66978 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 16814 T + 141355298 \) Copy content Toggle raw display
$11$ \( (T + 173398)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots + 108226920258 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots + 7069048162178 \) Copy content Toggle raw display
$19$ \( T^{2} + 1213434433600 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 54669467994338 \) Copy content Toggle raw display
$29$ \( T^{2} + 614585747905600 \) Copy content Toggle raw display
$31$ \( (T + 10065998)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 63\!\cdots\!38 \) Copy content Toggle raw display
$41$ \( (T + 153003598)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 70\!\cdots\!98 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 59\!\cdots\!18 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 77\!\cdots\!78 \) Copy content Toggle raw display
$59$ \( T^{2} + 48\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( (T - 906185802)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 18\!\cdots\!78 \) Copy content Toggle raw display
$71$ \( (T + 3120877598)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 80\!\cdots\!38 \) Copy content Toggle raw display
$79$ \( T^{2} + 38\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 53\!\cdots\!18 \) Copy content Toggle raw display
$89$ \( T^{2} + 60\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 82\!\cdots\!18 \) Copy content Toggle raw display
show more
show less