Properties

Label 5.8.a
Level $5$
Weight $8$
Character orbit 5.a
Rep. character $\chi_{5}(1,\cdot)$
Character field $\Q$
Dimension $3$
Newform subspaces $2$
Sturm bound $4$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 5 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 5.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(4\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(5))\).

Total New Old
Modular forms 5 3 2
Cusp forms 3 3 0
Eisenstein series 2 0 2

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(5\)TotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(3\)\(2\)\(1\)\(2\)\(2\)\(0\)\(1\)\(0\)\(1\)
\(-\)\(2\)\(1\)\(1\)\(1\)\(1\)\(0\)\(1\)\(0\)\(1\)

Trace form

\( 3 q + 6 q^{2} - 28 q^{3} + 164 q^{4} - 125 q^{5} - 344 q^{6} - 1744 q^{7} + 2280 q^{8} + 5671 q^{9} - 4250 q^{10} + 4716 q^{11} - 26624 q^{12} + 7402 q^{13} + 30528 q^{14} - 8500 q^{15} - 112 q^{16} - 39594 q^{17}+ \cdots + 2910812 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(5))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 5
5.8.a.a 5.a 1.a $1$ $1.562$ \(\Q\) None 5.8.a.a \(-14\) \(-48\) \(125\) \(-1644\) $-$ $\mathrm{SU}(2)$ \(q-14q^{2}-48q^{3}+68q^{4}+5^{3}q^{5}+\cdots\)
5.8.a.b 5.a 1.a $2$ $1.562$ \(\Q(\sqrt{19}) \) None 5.8.a.b \(20\) \(20\) \(-250\) \(-100\) $+$ $\mathrm{SU}(2)$ \(q+(10+\beta )q^{2}+(10-8\beta )q^{3}+(48+20\beta )q^{4}+\cdots\)