Properties

Label 5.8
Level 5
Weight 8
Dimension 5
Nonzero newspaces 2
Newform subspaces 3
Sturm bound 16
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 5 \)
Weight: \( k \) = \( 8 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 3 \)
Sturm bound: \(16\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(5))\).

Total New Old
Modular forms 9 7 2
Cusp forms 5 5 0
Eisenstein series 4 2 2

Trace form

\( 5 q + 6 q^{2} - 28 q^{3} + 188 q^{4} + 25 q^{5} - 1040 q^{6} - 1744 q^{7} + 2280 q^{8} + 7957 q^{9} + 1550 q^{10} - 8940 q^{11} - 26624 q^{12} + 7402 q^{13} + 39576 q^{14} + 8900 q^{15} - 29520 q^{16} - 39594 q^{17}+ \cdots - 12697996 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(5))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
5.8.a \(\chi_{5}(1, \cdot)\) 5.8.a.a 1 1
5.8.a.b 2
5.8.b \(\chi_{5}(4, \cdot)\) 5.8.b.a 2 1