Defining parameters
Level: | \( N \) | \(=\) | \( 5 \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 5.c (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(2\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{5}(5, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 6 | 6 | 0 |
Cusp forms | 2 | 2 | 0 |
Eisenstein series | 4 | 4 | 0 |
Trace form
Decomposition of \(S_{5}^{\mathrm{new}}(5, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
5.5.c.a | $2$ | $0.517$ | \(\Q(\sqrt{-1}) \) | None | \(-2\) | \(-12\) | \(40\) | \(-52\) | \(q+(-i-1)q^{2}+(6 i-6)q^{3}-14 i q^{4}+\cdots\) |