Properties

Label 5.5.c
Level $5$
Weight $5$
Character orbit 5.c
Rep. character $\chi_{5}(2,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $2$
Newform subspaces $1$
Sturm bound $2$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 5 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 5.c (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(2\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(5, [\chi])\).

Total New Old
Modular forms 6 6 0
Cusp forms 2 2 0
Eisenstein series 4 4 0

Trace form

\( 2 q - 2 q^{2} - 12 q^{3} + 40 q^{5} + 24 q^{6} - 52 q^{7} - 60 q^{8} - 10 q^{10} - 16 q^{11} + 168 q^{12} + 278 q^{13} - 420 q^{15} - 328 q^{16} - 2 q^{17} + 18 q^{18} + 420 q^{20} + 624 q^{21} + 16 q^{22}+ \cdots - 2098 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(5, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
5.5.c.a 5.c 5.c $2$ $0.517$ \(\Q(\sqrt{-1}) \) None 5.5.c.a \(-2\) \(-12\) \(40\) \(-52\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-i-1)q^{2}+(6 i-6)q^{3}-14 i q^{4}+\cdots\)