Properties

Label 5.5
Level 5
Weight 5
Dimension 2
Nonzero newspaces 1
Newform subspaces 1
Sturm bound 10
Trace bound 0

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 5 \)
Weight: \( k \) = \( 5 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 1 \)
Sturm bound: \(10\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(\Gamma_1(5))\).

Total New Old
Modular forms 6 6 0
Cusp forms 2 2 0
Eisenstein series 4 4 0

Trace form

\( 2 q - 2 q^{2} - 12 q^{3} + 40 q^{5} + 24 q^{6} - 52 q^{7} - 60 q^{8} - 10 q^{10} - 16 q^{11} + 168 q^{12} + 278 q^{13} - 420 q^{15} - 328 q^{16} - 2 q^{17} + 18 q^{18} + 420 q^{20} + 624 q^{21} + 16 q^{22}+ \cdots - 2098 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(\Gamma_1(5))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
5.5.c \(\chi_{5}(2, \cdot)\) 5.5.c.a 2 2