Properties

Label 5.26.b.a.4.7
Level $5$
Weight $26$
Character 5.4
Analytic conductor $19.800$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5,26,Mod(4,5)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 26, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5.4");
 
S:= CuspForms(chi, 26);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5 \)
Weight: \( k \) \(=\) \( 26 \)
Character orbit: \([\chi]\) \(=\) 5.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.7998389976\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 71168091 x^{10} + \cdots + 10\!\cdots\!36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{44}\cdot 3^{20}\cdot 5^{29} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 4.7
Root \(1011.64i\) of defining polynomial
Character \(\chi\) \(=\) 5.4
Dual form 5.26.b.a.4.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2023.27i q^{2} -529751. i q^{3} +2.94608e7 q^{4} +(8.23814e7 - 5.39663e8i) q^{5} +1.07183e9 q^{6} -2.78390e10i q^{7} +1.27497e11i q^{8} +5.66653e11 q^{9} +(1.09188e12 + 1.66680e11i) q^{10} -1.72111e13 q^{11} -1.56069e13i q^{12} +4.19700e13i q^{13} +5.63258e13 q^{14} +(-2.85887e14 - 4.36416e13i) q^{15} +7.30580e14 q^{16} -2.71981e15i q^{17} +1.14649e15i q^{18} -2.11681e15 q^{19} +(2.42702e15 - 1.58989e16i) q^{20} -1.47477e16 q^{21} -3.48226e16i q^{22} -1.88198e17i q^{23} +6.75416e16 q^{24} +(-2.84450e17 - 8.89165e16i) q^{25} -8.49167e16 q^{26} -7.49036e17i q^{27} -8.20159e17i q^{28} +1.94107e18 q^{29} +(8.82988e16 - 5.78427e17i) q^{30} -3.33805e18 q^{31} +5.75625e18i q^{32} +9.11757e18i q^{33} +5.50290e18 q^{34} +(-1.50237e19 - 2.29341e18i) q^{35} +1.66940e19 q^{36} +6.23367e19i q^{37} -4.28289e18i q^{38} +2.22337e19 q^{39} +(6.88054e19 + 1.05034e19i) q^{40} -5.06141e19 q^{41} -2.98386e19i q^{42} -2.68901e20i q^{43} -5.07052e20 q^{44} +(4.66817e19 - 3.05802e20i) q^{45} +3.80776e20 q^{46} -1.57876e20i q^{47} -3.87025e20i q^{48} +5.66060e20 q^{49} +(1.79902e20 - 5.75519e20i) q^{50} -1.44082e21 q^{51} +1.23647e21i q^{52} +1.18565e19i q^{53} +1.51550e21 q^{54} +(-1.41787e21 + 9.28818e21i) q^{55} +3.54938e21 q^{56} +1.12138e21i q^{57} +3.92731e21i q^{58} +2.75209e21 q^{59} +(-8.42246e21 - 1.28572e21i) q^{60} -4.94352e21 q^{61} -6.75379e21i q^{62} -1.57750e22i q^{63} +1.28678e22 q^{64} +(2.26497e22 + 3.45755e21i) q^{65} -1.84473e22 q^{66} -4.65921e22i q^{67} -8.01277e22i q^{68} -9.96982e22 q^{69} +(4.64020e21 - 3.03970e22i) q^{70} +1.36659e23 q^{71} +7.22465e22i q^{72} +4.38570e22i q^{73} -1.26124e23 q^{74} +(-4.71036e22 + 1.50688e23i) q^{75} -6.23630e22 q^{76} +4.79138e23i q^{77} +4.49847e22i q^{78} +6.86566e23 q^{79} +(6.01862e22 - 3.94267e23i) q^{80} +8.33158e22 q^{81} -1.02406e23i q^{82} +1.11044e24i q^{83} -4.34480e23 q^{84} +(-1.46778e24 - 2.24062e23i) q^{85} +5.44059e23 q^{86} -1.02828e24i q^{87} -2.19436e24i q^{88} -8.75176e23 q^{89} +(6.18720e23 + 9.44496e22i) q^{90} +1.16840e24 q^{91} -5.54448e24i q^{92} +1.76834e24i q^{93} +3.19426e23 q^{94} +(-1.74386e23 + 1.14237e24i) q^{95} +3.04938e24 q^{96} +8.28877e24i q^{97} +1.14529e24i q^{98} -9.75269e24 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 166691544 q^{4} + 549543060 q^{5} + 10591544184 q^{6} - 3948466041036 q^{9} + 4435846671960 q^{10} - 1090673824176 q^{11} - 890646861445848 q^{14} + 443085522435120 q^{15} + 22\!\cdots\!32 q^{16}+ \cdots - 10\!\cdots\!72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2023.27i 0.349284i 0.984632 + 0.174642i \(0.0558768\pi\)
−0.984632 + 0.174642i \(0.944123\pi\)
\(3\) 529751.i 0.575514i −0.957703 0.287757i \(-0.907090\pi\)
0.957703 0.287757i \(-0.0929095\pi\)
\(4\) 2.94608e7 0.878001
\(5\) 8.23814e7 5.39663e8i 0.150905 0.988548i
\(6\) 1.07183e9 0.201018
\(7\) 2.78390e10i 0.760200i −0.924945 0.380100i \(-0.875890\pi\)
0.924945 0.380100i \(-0.124110\pi\)
\(8\) 1.27497e11i 0.655956i
\(9\) 5.66653e11 0.668784
\(10\) 1.09188e12 + 1.66680e11i 0.345284 + 0.0527088i
\(11\) −1.72111e13 −1.65348 −0.826740 0.562584i \(-0.809807\pi\)
−0.826740 + 0.562584i \(0.809807\pi\)
\(12\) 1.56069e13i 0.505302i
\(13\) 4.19700e13i 0.499629i 0.968294 + 0.249814i \(0.0803696\pi\)
−0.968294 + 0.249814i \(0.919630\pi\)
\(14\) 5.63258e13 0.265526
\(15\) −2.85887e14 4.36416e13i −0.568923 0.0868481i
\(16\) 7.30580e14 0.648885
\(17\) 2.71981e15i 1.13221i −0.824333 0.566104i \(-0.808450\pi\)
0.824333 0.566104i \(-0.191550\pi\)
\(18\) 1.14649e15i 0.233596i
\(19\) −2.11681e15 −0.219413 −0.109707 0.993964i \(-0.534991\pi\)
−0.109707 + 0.993964i \(0.534991\pi\)
\(20\) 2.42702e15 1.58989e16i 0.132495 0.867946i
\(21\) −1.47477e16 −0.437506
\(22\) 3.48226e16i 0.577534i
\(23\) 1.88198e17i 1.79068i −0.445383 0.895340i \(-0.646933\pi\)
0.445383 0.895340i \(-0.353067\pi\)
\(24\) 6.75416e16 0.377512
\(25\) −2.84450e17 8.89165e16i −0.954455 0.298354i
\(26\) −8.49167e16 −0.174512
\(27\) 7.49036e17i 0.960408i
\(28\) 8.20159e17i 0.667456i
\(29\) 1.94107e18 1.01875 0.509374 0.860545i \(-0.329877\pi\)
0.509374 + 0.860545i \(0.329877\pi\)
\(30\) 8.82988e16 5.78427e17i 0.0303347 0.198716i
\(31\) −3.33805e18 −0.761154 −0.380577 0.924749i \(-0.624275\pi\)
−0.380577 + 0.924749i \(0.624275\pi\)
\(32\) 5.75625e18i 0.882601i
\(33\) 9.11757e18i 0.951601i
\(34\) 5.50290e18 0.395463
\(35\) −1.50237e19 2.29341e18i −0.751494 0.114718i
\(36\) 1.66940e19 0.587192
\(37\) 6.23367e19i 1.55676i 0.627791 + 0.778382i \(0.283959\pi\)
−0.627791 + 0.778382i \(0.716041\pi\)
\(38\) 4.28289e18i 0.0766375i
\(39\) 2.22337e19 0.287543
\(40\) 6.88054e19 + 1.05034e19i 0.648444 + 0.0989872i
\(41\) −5.06141e19 −0.350327 −0.175163 0.984539i \(-0.556045\pi\)
−0.175163 + 0.984539i \(0.556045\pi\)
\(42\) 2.98386e19i 0.152814i
\(43\) 2.68901e20i 1.02621i −0.858326 0.513105i \(-0.828495\pi\)
0.858326 0.513105i \(-0.171505\pi\)
\(44\) −5.07052e20 −1.45176
\(45\) 4.66817e19 3.05802e20i 0.100923 0.661125i
\(46\) 3.80776e20 0.625456
\(47\) 1.57876e20i 0.198195i −0.995078 0.0990975i \(-0.968404\pi\)
0.995078 0.0990975i \(-0.0315956\pi\)
\(48\) 3.87025e20i 0.373443i
\(49\) 5.66060e20 0.422096
\(50\) 1.79902e20 5.75519e20i 0.104210 0.333376i
\(51\) −1.44082e21 −0.651602
\(52\) 1.23647e21i 0.438674i
\(53\) 1.18565e19i 0.00331519i 0.999999 + 0.00165759i \(0.000527628\pi\)
−0.999999 + 0.00165759i \(0.999472\pi\)
\(54\) 1.51550e21 0.335455
\(55\) −1.41787e21 + 9.28818e21i −0.249519 + 1.63454i
\(56\) 3.54938e21 0.498658
\(57\) 1.12138e21i 0.126275i
\(58\) 3.92731e21i 0.355833i
\(59\) 2.75209e21 0.201378 0.100689 0.994918i \(-0.467895\pi\)
0.100689 + 0.994918i \(0.467895\pi\)
\(60\) −8.42246e21 1.28572e21i −0.499515 0.0762527i
\(61\) −4.94352e21 −0.238459 −0.119229 0.992867i \(-0.538042\pi\)
−0.119229 + 0.992867i \(0.538042\pi\)
\(62\) 6.75379e21i 0.265859i
\(63\) 1.57750e22i 0.508409i
\(64\) 1.28678e22 0.340607
\(65\) 2.26497e22 + 3.45755e21i 0.493907 + 0.0753966i
\(66\) −1.84473e22 −0.332379
\(67\) 4.65921e22i 0.695629i −0.937563 0.347814i \(-0.886924\pi\)
0.937563 0.347814i \(-0.113076\pi\)
\(68\) 8.01277e22i 0.994080i
\(69\) −9.96982e22 −1.03056
\(70\) 4.64020e21 3.03970e22i 0.0400692 0.262485i
\(71\) 1.36659e23 0.988344 0.494172 0.869364i \(-0.335471\pi\)
0.494172 + 0.869364i \(0.335471\pi\)
\(72\) 7.22465e22i 0.438693i
\(73\) 4.38570e22i 0.224132i 0.993701 + 0.112066i \(0.0357468\pi\)
−0.993701 + 0.112066i \(0.964253\pi\)
\(74\) −1.26124e23 −0.543753
\(75\) −4.71036e22 + 1.50688e23i −0.171707 + 0.549302i
\(76\) −6.23630e22 −0.192645
\(77\) 4.79138e23i 1.25698i
\(78\) 4.49847e22i 0.100434i
\(79\) 6.86566e23 1.30721 0.653603 0.756838i \(-0.273257\pi\)
0.653603 + 0.756838i \(0.273257\pi\)
\(80\) 6.01862e22 3.94267e23i 0.0979202 0.641455i
\(81\) 8.33158e22 0.116055
\(82\) 1.02406e23i 0.122364i
\(83\) 1.11044e24i 1.14030i 0.821539 + 0.570152i \(0.193116\pi\)
−0.821539 + 0.570152i \(0.806884\pi\)
\(84\) −4.34480e23 −0.384130
\(85\) −1.46778e24 2.24062e23i −1.11924 0.170856i
\(86\) 5.44059e23 0.358439
\(87\) 1.02828e24i 0.586304i
\(88\) 2.19436e24i 1.08461i
\(89\) −8.75176e23 −0.375596 −0.187798 0.982208i \(-0.560135\pi\)
−0.187798 + 0.982208i \(0.560135\pi\)
\(90\) 6.18720e23 + 9.44496e22i 0.230920 + 0.0352508i
\(91\) 1.16840e24 0.379818
\(92\) 5.54448e24i 1.57222i
\(93\) 1.76834e24i 0.438055i
\(94\) 3.19426e23 0.0692264
\(95\) −1.74386e23 + 1.14237e24i −0.0331106 + 0.216900i
\(96\) 3.04938e24 0.507949
\(97\) 8.28877e24i 1.21295i 0.795102 + 0.606475i \(0.207417\pi\)
−0.795102 + 0.606475i \(0.792583\pi\)
\(98\) 1.14529e24i 0.147432i
\(99\) −9.75269e24 −1.10582
\(100\) −8.38012e24 2.61955e24i −0.838012 0.261955i
\(101\) 2.00440e25 1.76998 0.884989 0.465612i \(-0.154166\pi\)
0.884989 + 0.465612i \(0.154166\pi\)
\(102\) 2.91517e24i 0.227594i
\(103\) 1.74513e25i 1.20604i 0.797726 + 0.603020i \(0.206036\pi\)
−0.797726 + 0.603020i \(0.793964\pi\)
\(104\) −5.35105e24 −0.327734
\(105\) −1.21494e24 + 7.95880e24i −0.0660219 + 0.432495i
\(106\) −2.39889e22 −0.00115794
\(107\) 1.85608e25i 0.796711i 0.917231 + 0.398355i \(0.130419\pi\)
−0.917231 + 0.398355i \(0.869581\pi\)
\(108\) 2.20672e25i 0.843239i
\(109\) 1.23903e25 0.421940 0.210970 0.977493i \(-0.432338\pi\)
0.210970 + 0.977493i \(0.432338\pi\)
\(110\) −1.87925e25 2.86874e24i −0.570921 0.0871530i
\(111\) 3.30229e25 0.895939
\(112\) 2.03386e25i 0.493283i
\(113\) 6.56029e25i 1.42378i −0.702291 0.711890i \(-0.747840\pi\)
0.702291 0.711890i \(-0.252160\pi\)
\(114\) −2.26886e24 −0.0441060
\(115\) −1.01564e26 1.55041e25i −1.77017 0.270223i
\(116\) 5.71856e25 0.894461
\(117\) 2.37824e25i 0.334143i
\(118\) 5.56822e24i 0.0703383i
\(119\) −7.57166e25 −0.860705
\(120\) 5.56417e24 3.64497e25i 0.0569685 0.373189i
\(121\) 1.87873e26 1.73400
\(122\) 1.00021e25i 0.0832899i
\(123\) 2.68129e25i 0.201618i
\(124\) −9.83418e25 −0.668293
\(125\) −7.14183e25 + 1.46182e26i −0.438970 + 0.898502i
\(126\) 3.19172e25 0.177579
\(127\) 8.15832e25i 0.411201i −0.978636 0.205600i \(-0.934085\pi\)
0.978636 0.205600i \(-0.0659147\pi\)
\(128\) 2.19183e26i 1.00157i
\(129\) −1.42450e26 −0.590598
\(130\) −6.99556e24 + 4.58264e25i −0.0263348 + 0.172514i
\(131\) 4.56659e26 1.56207 0.781036 0.624486i \(-0.214692\pi\)
0.781036 + 0.624486i \(0.214692\pi\)
\(132\) 2.68611e26i 0.835506i
\(133\) 5.89299e25i 0.166798i
\(134\) 9.42685e25 0.242972
\(135\) −4.04228e26 6.17067e25i −0.949410 0.144931i
\(136\) 3.46767e26 0.742679
\(137\) 6.16258e26i 1.20436i −0.798361 0.602179i \(-0.794299\pi\)
0.798361 0.602179i \(-0.205701\pi\)
\(138\) 2.01716e26i 0.359959i
\(139\) −4.40596e26 −0.718382 −0.359191 0.933264i \(-0.616947\pi\)
−0.359191 + 0.933264i \(0.616947\pi\)
\(140\) −4.42610e26 6.75659e25i −0.659812 0.100723i
\(141\) −8.36349e25 −0.114064
\(142\) 2.76498e26i 0.345213i
\(143\) 7.22348e26i 0.826126i
\(144\) 4.13985e26 0.433964
\(145\) 1.59908e26 1.04753e27i 0.153734 1.00708i
\(146\) −8.87346e25 −0.0782857
\(147\) 2.99871e26i 0.242922i
\(148\) 1.83649e27i 1.36684i
\(149\) 6.48784e26 0.443887 0.221943 0.975060i \(-0.428760\pi\)
0.221943 + 0.975060i \(0.428760\pi\)
\(150\) −3.04882e26 9.53033e25i −0.191863 0.0599745i
\(151\) 6.60374e26 0.382453 0.191227 0.981546i \(-0.438753\pi\)
0.191227 + 0.981546i \(0.438753\pi\)
\(152\) 2.69887e26i 0.143925i
\(153\) 1.54119e27i 0.757203i
\(154\) −9.69426e26 −0.439042
\(155\) −2.74994e26 + 1.80143e27i −0.114862 + 0.752437i
\(156\) 6.55021e26 0.252463
\(157\) 4.50634e27i 1.60354i 0.597636 + 0.801768i \(0.296107\pi\)
−0.597636 + 0.801768i \(0.703893\pi\)
\(158\) 1.38911e27i 0.456586i
\(159\) 6.28098e24 0.00190794
\(160\) 3.10643e27 + 4.74208e26i 0.872494 + 0.133189i
\(161\) −5.23925e27 −1.36127
\(162\) 1.68570e26i 0.0405363i
\(163\) 1.31731e27i 0.293321i −0.989187 0.146661i \(-0.953147\pi\)
0.989187 0.146661i \(-0.0468525\pi\)
\(164\) −1.49113e27 −0.307587
\(165\) 4.92042e27 + 7.51118e26i 0.940703 + 0.143602i
\(166\) −2.24673e27 −0.398290
\(167\) 5.52465e27i 0.908550i −0.890861 0.454275i \(-0.849898\pi\)
0.890861 0.454275i \(-0.150102\pi\)
\(168\) 1.88029e27i 0.286984i
\(169\) 5.29493e27 0.750371
\(170\) 4.53337e26 2.96972e27i 0.0596774 0.390934i
\(171\) −1.19950e27 −0.146740
\(172\) 7.92203e27i 0.901012i
\(173\) 1.57879e27i 0.167012i −0.996507 0.0835058i \(-0.973388\pi\)
0.996507 0.0835058i \(-0.0266117\pi\)
\(174\) 2.08050e27 0.204787
\(175\) −2.47534e27 + 7.91879e27i −0.226809 + 0.725577i
\(176\) −1.25741e28 −1.07292
\(177\) 1.45792e27i 0.115896i
\(178\) 1.77072e27i 0.131190i
\(179\) 8.29286e27 0.572850 0.286425 0.958103i \(-0.407533\pi\)
0.286425 + 0.958103i \(0.407533\pi\)
\(180\) 1.37528e27 9.00917e27i 0.0886104 0.580468i
\(181\) −2.78734e28 −1.67574 −0.837872 0.545867i \(-0.816200\pi\)
−0.837872 + 0.545867i \(0.816200\pi\)
\(182\) 2.36399e27i 0.132664i
\(183\) 2.61883e27i 0.137236i
\(184\) 2.39947e28 1.17461
\(185\) 3.36409e28 + 5.13539e27i 1.53894 + 0.234924i
\(186\) −3.57782e27 −0.153006
\(187\) 4.68107e28i 1.87208i
\(188\) 4.65115e27i 0.174015i
\(189\) −2.08524e28 −0.730102
\(190\) −2.31132e27 3.52830e26i −0.0757599 0.0115650i
\(191\) −9.53907e26 −0.0292812 −0.0146406 0.999893i \(-0.504660\pi\)
−0.0146406 + 0.999893i \(0.504660\pi\)
\(192\) 6.81670e27i 0.196024i
\(193\) 5.56387e28i 1.49938i 0.661791 + 0.749688i \(0.269797\pi\)
−0.661791 + 0.749688i \(0.730203\pi\)
\(194\) −1.67704e28 −0.423665
\(195\) 1.83164e27 1.19987e28i 0.0433918 0.284250i
\(196\) 1.66766e28 0.370601
\(197\) 5.10086e28i 1.06369i −0.846841 0.531846i \(-0.821498\pi\)
0.846841 0.531846i \(-0.178502\pi\)
\(198\) 1.97323e28i 0.386246i
\(199\) 2.20419e28 0.405122 0.202561 0.979270i \(-0.435074\pi\)
0.202561 + 0.979270i \(0.435074\pi\)
\(200\) 1.13366e28 3.62665e28i 0.195707 0.626081i
\(201\) −2.46822e28 −0.400344
\(202\) 4.05545e28i 0.618225i
\(203\) 5.40375e28i 0.774452i
\(204\) −4.24477e28 −0.572107
\(205\) −4.16966e27 + 2.73146e28i −0.0528662 + 0.346315i
\(206\) −3.53086e28 −0.421251
\(207\) 1.06643e29i 1.19758i
\(208\) 3.06625e28i 0.324202i
\(209\) 3.64326e28 0.362795
\(210\) −1.61028e28 2.45815e27i −0.151064 0.0230604i
\(211\) 1.08789e29 0.961731 0.480865 0.876794i \(-0.340323\pi\)
0.480865 + 0.876794i \(0.340323\pi\)
\(212\) 3.49302e26i 0.00291073i
\(213\) 7.23951e28i 0.568806i
\(214\) −3.75536e28 −0.278278
\(215\) −1.45116e29 2.21524e28i −1.01446 0.154860i
\(216\) 9.54998e28 0.629986
\(217\) 9.29280e28i 0.578629i
\(218\) 2.50689e28i 0.147377i
\(219\) 2.32333e28 0.128991
\(220\) −4.17716e28 + 2.73637e29i −0.219078 + 1.43513i
\(221\) 1.14150e29 0.565684
\(222\) 6.68143e28i 0.312937i
\(223\) 1.88668e29i 0.835388i 0.908588 + 0.417694i \(0.137162\pi\)
−0.908588 + 0.417694i \(0.862838\pi\)
\(224\) 1.60248e29 0.670953
\(225\) −1.61184e29 5.03848e28i −0.638324 0.199534i
\(226\) 1.32732e29 0.497304
\(227\) 7.62292e28i 0.270270i −0.990827 0.135135i \(-0.956853\pi\)
0.990827 0.135135i \(-0.0431469\pi\)
\(228\) 3.30369e28i 0.110870i
\(229\) −4.98149e29 −1.58276 −0.791382 0.611322i \(-0.790638\pi\)
−0.791382 + 0.611322i \(0.790638\pi\)
\(230\) 3.13689e28 2.05491e29i 0.0943846 0.618294i
\(231\) 2.53824e29 0.723407
\(232\) 2.47481e29i 0.668254i
\(233\) 2.73818e29i 0.700669i −0.936625 0.350334i \(-0.886068\pi\)
0.936625 0.350334i \(-0.113932\pi\)
\(234\) −4.81183e28 −0.116711
\(235\) −8.51998e28 1.30060e28i −0.195925 0.0299087i
\(236\) 8.10788e28 0.176810
\(237\) 3.63709e29i 0.752315i
\(238\) 1.53195e29i 0.300631i
\(239\) −3.89671e29 −0.725645 −0.362822 0.931858i \(-0.618187\pi\)
−0.362822 + 0.931858i \(0.618187\pi\)
\(240\) −2.08863e29 3.18837e28i −0.369166 0.0563545i
\(241\) 1.08446e30 1.81971 0.909854 0.414928i \(-0.136193\pi\)
0.909854 + 0.414928i \(0.136193\pi\)
\(242\) 3.80119e29i 0.605657i
\(243\) 6.78787e29i 1.02720i
\(244\) −1.45640e29 −0.209367
\(245\) 4.66328e28 3.05482e29i 0.0636965 0.417263i
\(246\) −5.42497e28 −0.0704220
\(247\) 8.88427e28i 0.109625i
\(248\) 4.25592e29i 0.499283i
\(249\) 5.88259e29 0.656261
\(250\) −2.95766e29 1.44499e29i −0.313832 0.153325i
\(251\) −1.81453e30 −1.83165 −0.915826 0.401576i \(-0.868462\pi\)
−0.915826 + 0.401576i \(0.868462\pi\)
\(252\) 4.64745e29i 0.446384i
\(253\) 3.23909e30i 2.96085i
\(254\) 1.65065e29 0.143626
\(255\) −1.18697e29 + 7.77558e29i −0.0983302 + 0.644140i
\(256\) −1.16951e28 −0.00922581
\(257\) 3.71565e29i 0.279171i −0.990210 0.139585i \(-0.955423\pi\)
0.990210 0.139585i \(-0.0445770\pi\)
\(258\) 2.88215e29i 0.206287i
\(259\) 1.73539e30 1.18345
\(260\) 6.67278e29 + 1.01862e29i 0.433651 + 0.0661982i
\(261\) 1.09991e30 0.681322
\(262\) 9.23945e29i 0.545607i
\(263\) 3.58787e29i 0.202018i 0.994886 + 0.101009i \(0.0322071\pi\)
−0.994886 + 0.101009i \(0.967793\pi\)
\(264\) −1.16246e30 −0.624208
\(265\) 6.39851e27 + 9.76755e26i 0.00327722 + 0.000500279i
\(266\) −1.19231e29 −0.0582598
\(267\) 4.63625e29i 0.216160i
\(268\) 1.37264e30i 0.610763i
\(269\) −3.68420e29 −0.156473 −0.0782366 0.996935i \(-0.524929\pi\)
−0.0782366 + 0.996935i \(0.524929\pi\)
\(270\) 1.24849e29 8.17862e29i 0.0506220 0.331614i
\(271\) −3.05825e30 −1.18401 −0.592007 0.805933i \(-0.701664\pi\)
−0.592007 + 0.805933i \(0.701664\pi\)
\(272\) 1.98704e30i 0.734674i
\(273\) 6.18962e29i 0.218590i
\(274\) 1.24686e30 0.420663
\(275\) 4.89568e30 + 1.53035e30i 1.57817 + 0.493323i
\(276\) −2.93719e30 −0.904833
\(277\) 5.78873e29i 0.170446i −0.996362 0.0852229i \(-0.972840\pi\)
0.996362 0.0852229i \(-0.0271602\pi\)
\(278\) 8.91445e29i 0.250920i
\(279\) −1.89152e30 −0.509047
\(280\) 2.92403e29 1.91547e30i 0.0752500 0.492947i
\(281\) −5.20581e30 −1.28132 −0.640662 0.767823i \(-0.721340\pi\)
−0.640662 + 0.767823i \(0.721340\pi\)
\(282\) 1.69216e29i 0.0398407i
\(283\) 5.35308e30i 1.20580i −0.797819 0.602898i \(-0.794013\pi\)
0.797819 0.602898i \(-0.205987\pi\)
\(284\) 4.02608e30 0.867767
\(285\) 6.05170e29 + 9.23812e28i 0.124829 + 0.0190556i
\(286\) 1.46151e30 0.288553
\(287\) 1.40905e30i 0.266318i
\(288\) 3.26179e30i 0.590269i
\(289\) −1.62672e30 −0.281897
\(290\) 2.11943e30 + 3.23538e29i 0.351758 + 0.0536970i
\(291\) 4.39098e30 0.698070
\(292\) 1.29206e30i 0.196788i
\(293\) 5.03168e30i 0.734290i 0.930164 + 0.367145i \(0.119665\pi\)
−0.930164 + 0.367145i \(0.880335\pi\)
\(294\) 6.06720e29 0.0848489
\(295\) 2.26721e29 1.48520e30i 0.0303890 0.199072i
\(296\) −7.94774e30 −1.02117
\(297\) 1.28917e31i 1.58802i
\(298\) 1.31267e30i 0.155043i
\(299\) 7.89869e30 0.894675
\(300\) −1.38771e30 + 4.43938e30i −0.150759 + 0.482288i
\(301\) −7.48592e30 −0.780124
\(302\) 1.33612e30i 0.133585i
\(303\) 1.06183e31i 1.01865i
\(304\) −1.54650e30 −0.142374
\(305\) −4.07254e29 + 2.66784e30i −0.0359847 + 0.235728i
\(306\) 3.11824e30 0.264479
\(307\) 1.98181e31i 1.61374i −0.590730 0.806870i \(-0.701160\pi\)
0.590730 0.806870i \(-0.298840\pi\)
\(308\) 1.41158e31i 1.10362i
\(309\) 9.24482e30 0.694093
\(310\) −3.64477e30 5.56387e29i −0.262814 0.0401195i
\(311\) 4.40038e30 0.304779 0.152390 0.988321i \(-0.451303\pi\)
0.152390 + 0.988321i \(0.451303\pi\)
\(312\) 2.83472e30i 0.188616i
\(313\) 9.30499e30i 0.594855i −0.954744 0.297428i \(-0.903871\pi\)
0.954744 0.297428i \(-0.0961287\pi\)
\(314\) −9.11755e30 −0.560090
\(315\) −8.51321e30 1.29957e30i −0.502587 0.0767216i
\(316\) 2.02268e31 1.14773
\(317\) 1.57166e31i 0.857268i −0.903478 0.428634i \(-0.858995\pi\)
0.903478 0.428634i \(-0.141005\pi\)
\(318\) 1.27081e28i 0.000666412i
\(319\) −3.34079e31 −1.68448
\(320\) 1.06006e30 6.94426e30i 0.0513993 0.336706i
\(321\) 9.83262e30 0.458518
\(322\) 1.06004e31i 0.475472i
\(323\) 5.75732e30i 0.248421i
\(324\) 2.45455e30 0.101897
\(325\) 3.73183e30 1.19384e31i 0.149066 0.476873i
\(326\) 2.66528e30 0.102452
\(327\) 6.56377e30i 0.242832i
\(328\) 6.45314e30i 0.229799i
\(329\) −4.39510e30 −0.150668
\(330\) −1.51972e30 + 9.95533e30i −0.0501577 + 0.328573i
\(331\) 3.48836e31 1.10859 0.554295 0.832320i \(-0.312988\pi\)
0.554295 + 0.832320i \(0.312988\pi\)
\(332\) 3.27146e31i 1.00119i
\(333\) 3.53233e31i 1.04114i
\(334\) 1.11779e31 0.317342
\(335\) −2.51441e31 3.83833e30i −0.687663 0.104974i
\(336\) −1.07744e31 −0.283891
\(337\) 4.49684e31i 1.14165i 0.821071 + 0.570826i \(0.193377\pi\)
−0.821071 + 0.570826i \(0.806623\pi\)
\(338\) 1.07131e31i 0.262093i
\(339\) −3.47532e31 −0.819405
\(340\) −4.32420e31 6.60104e30i −0.982696 0.150012i
\(341\) 5.74514e31 1.25855
\(342\) 2.42691e30i 0.0512539i
\(343\) 5.30925e31i 1.08108i
\(344\) 3.42840e31 0.673148
\(345\) −8.21328e30 + 5.38035e31i −0.155517 + 1.01876i
\(346\) 3.19431e30 0.0583345
\(347\) 3.65658e31i 0.644106i 0.946722 + 0.322053i \(0.104373\pi\)
−0.946722 + 0.322053i \(0.895627\pi\)
\(348\) 3.02941e31i 0.514775i
\(349\) 1.78800e31 0.293122 0.146561 0.989202i \(-0.453180\pi\)
0.146561 + 0.989202i \(0.453180\pi\)
\(350\) −1.60219e31 5.00829e30i −0.253432 0.0792207i
\(351\) 3.14371e31 0.479848
\(352\) 9.90711e31i 1.45936i
\(353\) 4.44335e31i 0.631723i 0.948805 + 0.315862i \(0.102294\pi\)
−0.948805 + 0.315862i \(0.897706\pi\)
\(354\) 2.94977e30 0.0404806
\(355\) 1.12581e31 7.37497e31i 0.149146 0.977026i
\(356\) −2.57834e31 −0.329773
\(357\) 4.01109e31i 0.495348i
\(358\) 1.67787e31i 0.200088i
\(359\) −5.83509e31 −0.671996 −0.335998 0.941863i \(-0.609074\pi\)
−0.335998 + 0.941863i \(0.609074\pi\)
\(360\) 3.89888e31 + 5.95177e30i 0.433669 + 0.0662010i
\(361\) −8.85956e31 −0.951858
\(362\) 5.63954e31i 0.585311i
\(363\) 9.95260e31i 0.997939i
\(364\) 3.44221e31 0.333480
\(365\) 2.36680e31 + 3.61301e30i 0.221565 + 0.0338227i
\(366\) −5.29861e30 −0.0479345
\(367\) 5.85632e31i 0.512035i −0.966672 0.256017i \(-0.917590\pi\)
0.966672 0.256017i \(-0.0824104\pi\)
\(368\) 1.37494e32i 1.16195i
\(369\) −2.86806e31 −0.234293
\(370\) −1.03903e31 + 6.80645e31i −0.0820551 + 0.537526i
\(371\) 3.30073e29 0.00252020
\(372\) 5.20966e31i 0.384612i
\(373\) 2.48400e32i 1.77333i 0.462409 + 0.886667i \(0.346985\pi\)
−0.462409 + 0.886667i \(0.653015\pi\)
\(374\) −9.47108e31 −0.653890
\(375\) 7.74401e31 + 3.78339e31i 0.517100 + 0.252633i
\(376\) 2.01287e31 0.130007
\(377\) 8.14669e31i 0.508996i
\(378\) 4.21901e31i 0.255013i
\(379\) 1.58347e32 0.926020 0.463010 0.886353i \(-0.346769\pi\)
0.463010 + 0.886353i \(0.346769\pi\)
\(380\) −5.13756e30 + 3.36550e31i −0.0290711 + 0.190439i
\(381\) −4.32187e31 −0.236652
\(382\) 1.93001e30i 0.0102275i
\(383\) 9.64738e31i 0.494794i 0.968914 + 0.247397i \(0.0795752\pi\)
−0.968914 + 0.247397i \(0.920425\pi\)
\(384\) 1.16112e32 0.576418
\(385\) 2.58573e32 + 3.94721e31i 1.24258 + 0.189684i
\(386\) −1.12572e32 −0.523709
\(387\) 1.52373e32i 0.686312i
\(388\) 2.44194e32i 1.06497i
\(389\) −3.69637e31 −0.156101 −0.0780504 0.996949i \(-0.524870\pi\)
−0.0780504 + 0.996949i \(0.524870\pi\)
\(390\) 2.42766e31 + 3.70590e30i 0.0992842 + 0.0151561i
\(391\) −5.11863e32 −2.02742
\(392\) 7.21709e31i 0.276877i
\(393\) 2.41915e32i 0.898994i
\(394\) 1.03204e32 0.371531
\(395\) 5.65603e31 3.70515e32i 0.197264 1.29224i
\(396\) −2.87322e32 −0.970911
\(397\) 4.44703e32i 1.45609i 0.685528 + 0.728046i \(0.259571\pi\)
−0.685528 + 0.728046i \(0.740429\pi\)
\(398\) 4.45968e31i 0.141503i
\(399\) 3.12182e31 0.0959945
\(400\) −2.07813e32 6.49606e31i −0.619332 0.193598i
\(401\) 3.32269e32 0.959809 0.479904 0.877321i \(-0.340671\pi\)
0.479904 + 0.877321i \(0.340671\pi\)
\(402\) 4.99388e31i 0.139834i
\(403\) 1.40098e32i 0.380294i
\(404\) 5.90513e32 1.55404
\(405\) 6.86368e30 4.49625e31i 0.0175133 0.114726i
\(406\) 1.09332e32 0.270504
\(407\) 1.07288e33i 2.57408i
\(408\) 1.83700e32i 0.427422i
\(409\) −5.29054e32 −1.19388 −0.596938 0.802288i \(-0.703616\pi\)
−0.596938 + 0.802288i \(0.703616\pi\)
\(410\) −5.52648e31 8.43636e30i −0.120962 0.0184653i
\(411\) −3.26463e32 −0.693125
\(412\) 5.14128e32i 1.05890i
\(413\) 7.66154e31i 0.153088i
\(414\) 2.15768e32 0.418295
\(415\) 5.99266e32 + 9.14800e31i 1.12725 + 0.172078i
\(416\) −2.41590e32 −0.440973
\(417\) 2.33406e32i 0.413439i
\(418\) 7.37130e31i 0.126719i
\(419\) −6.29624e32 −1.05052 −0.525262 0.850941i \(-0.676033\pi\)
−0.525262 + 0.850941i \(0.676033\pi\)
\(420\) −3.57931e31 + 2.34473e32i −0.0579672 + 0.379731i
\(421\) 4.32266e32 0.679555 0.339778 0.940506i \(-0.389648\pi\)
0.339778 + 0.940506i \(0.389648\pi\)
\(422\) 2.20109e32i 0.335917i
\(423\) 8.94608e31i 0.132550i
\(424\) −1.51167e30 −0.00217462
\(425\) −2.41836e32 + 7.73649e32i −0.337799 + 1.08064i
\(426\) 1.46475e32 0.198675
\(427\) 1.37622e32i 0.181276i
\(428\) 5.46818e32i 0.699512i
\(429\) −3.82665e32 −0.475447
\(430\) 4.48203e31 2.93608e32i 0.0540903 0.354334i
\(431\) 1.21421e33 1.42341 0.711704 0.702480i \(-0.247924\pi\)
0.711704 + 0.702480i \(0.247924\pi\)
\(432\) 5.47231e32i 0.623195i
\(433\) 4.46703e32i 0.494220i 0.968987 + 0.247110i \(0.0794809\pi\)
−0.968987 + 0.247110i \(0.920519\pi\)
\(434\) −1.88019e32 −0.202106
\(435\) −5.54927e32 8.47116e31i −0.579590 0.0884763i
\(436\) 3.65028e32 0.370463
\(437\) 3.98381e32i 0.392899i
\(438\) 4.70072e31i 0.0450545i
\(439\) 1.89182e32 0.176227 0.0881135 0.996110i \(-0.471916\pi\)
0.0881135 + 0.996110i \(0.471916\pi\)
\(440\) −1.18421e33 1.80774e32i −1.07219 0.163673i
\(441\) 3.20760e32 0.282291
\(442\) 2.30957e32i 0.197585i
\(443\) 9.50307e32i 0.790346i −0.918607 0.395173i \(-0.870685\pi\)
0.918607 0.395173i \(-0.129315\pi\)
\(444\) 9.72882e32 0.786635
\(445\) −7.20983e31 + 4.72301e32i −0.0566793 + 0.371294i
\(446\) −3.81727e32 −0.291788
\(447\) 3.43694e32i 0.255463i
\(448\) 3.58225e32i 0.258929i
\(449\) −6.79168e32 −0.477417 −0.238709 0.971091i \(-0.576724\pi\)
−0.238709 + 0.971091i \(0.576724\pi\)
\(450\) 1.01942e32 3.26119e32i 0.0696942 0.222957i
\(451\) 8.71123e32 0.579259
\(452\) 1.93272e33i 1.25008i
\(453\) 3.49834e32i 0.220107i
\(454\) 1.54232e32 0.0944011
\(455\) 9.62547e31 6.30544e32i 0.0573165 0.375468i
\(456\) −1.42973e32 −0.0828310
\(457\) 7.89422e32i 0.444996i 0.974933 + 0.222498i \(0.0714212\pi\)
−0.974933 + 0.222498i \(0.928579\pi\)
\(458\) 1.00789e33i 0.552834i
\(459\) −2.03723e33 −1.08738
\(460\) −2.99215e33 4.56762e32i −1.55421 0.237256i
\(461\) 2.02758e33 1.02498 0.512492 0.858692i \(-0.328722\pi\)
0.512492 + 0.858692i \(0.328722\pi\)
\(462\) 5.13554e32i 0.252675i
\(463\) 1.88726e32i 0.0903794i −0.998978 0.0451897i \(-0.985611\pi\)
0.998978 0.0451897i \(-0.0143892\pi\)
\(464\) 1.41811e33 0.661051
\(465\) 9.54307e32 + 1.45678e32i 0.433038 + 0.0661047i
\(466\) 5.54007e32 0.244733
\(467\) 1.70273e33i 0.732291i 0.930558 + 0.366145i \(0.119323\pi\)
−0.930558 + 0.366145i \(0.880677\pi\)
\(468\) 7.00650e32i 0.293378i
\(469\) −1.29708e33 −0.528817
\(470\) 2.63147e31 1.72382e32i 0.0104466 0.0684336i
\(471\) 2.38724e33 0.922857
\(472\) 3.50883e32i 0.132095i
\(473\) 4.62806e33i 1.69682i
\(474\) 7.35881e32 0.262772
\(475\) 6.02127e32 + 1.88220e32i 0.209420 + 0.0654628i
\(476\) −2.23067e33 −0.755699
\(477\) 6.71851e30i 0.00221714i
\(478\) 7.88409e32i 0.253456i
\(479\) −3.94704e33 −1.23617 −0.618084 0.786112i \(-0.712091\pi\)
−0.618084 + 0.786112i \(0.712091\pi\)
\(480\) 2.51212e32 1.64564e33i 0.0766522 0.502133i
\(481\) −2.61627e33 −0.777803
\(482\) 2.19416e33i 0.635596i
\(483\) 2.77550e33i 0.783433i
\(484\) 5.53490e33 1.52245
\(485\) 4.47314e33 + 6.82840e32i 1.19906 + 0.183041i
\(486\) 1.37337e33 0.358785
\(487\) 3.91855e33i 0.997730i −0.866680 0.498865i \(-0.833750\pi\)
0.866680 0.498865i \(-0.166250\pi\)
\(488\) 6.30283e32i 0.156418i
\(489\) −6.97847e32 −0.168811
\(490\) 6.18072e32 + 9.43508e31i 0.145743 + 0.0222482i
\(491\) −2.40038e33 −0.551773 −0.275887 0.961190i \(-0.588971\pi\)
−0.275887 + 0.961190i \(0.588971\pi\)
\(492\) 7.89929e32i 0.177021i
\(493\) 5.27934e33i 1.15344i
\(494\) 1.79753e32 0.0382903
\(495\) −8.03441e32 + 5.26317e33i −0.166874 + 1.09316i
\(496\) −2.43872e33 −0.493901
\(497\) 3.80444e33i 0.751339i
\(498\) 1.19021e33i 0.229222i
\(499\) −2.69345e33 −0.505886 −0.252943 0.967481i \(-0.581399\pi\)
−0.252943 + 0.967481i \(0.581399\pi\)
\(500\) −2.10404e33 + 4.30664e33i −0.385416 + 0.788885i
\(501\) −2.92669e33 −0.522883
\(502\) 3.67129e33i 0.639767i
\(503\) 4.57498e33i 0.777659i −0.921310 0.388829i \(-0.872880\pi\)
0.921310 0.388829i \(-0.127120\pi\)
\(504\) 2.01127e33 0.333494
\(505\) 1.65126e33 1.08170e34i 0.267099 1.74971i
\(506\) −6.55356e33 −1.03418
\(507\) 2.80499e33i 0.431849i
\(508\) 2.40351e33i 0.361035i
\(509\) 1.09929e34 1.61117 0.805586 0.592479i \(-0.201851\pi\)
0.805586 + 0.592479i \(0.201851\pi\)
\(510\) −1.57321e33 2.40156e32i −0.224988 0.0343452i
\(511\) 1.22093e33 0.170385
\(512\) 7.33088e33i 0.998348i
\(513\) 1.58557e33i 0.210726i
\(514\) 7.51776e32 0.0975100
\(515\) 9.41781e33 + 1.43766e33i 1.19223 + 0.181998i
\(516\) −4.19670e33 −0.518545
\(517\) 2.71721e33i 0.327711i
\(518\) 3.51116e33i 0.413361i
\(519\) −8.36363e32 −0.0961175
\(520\) −4.40827e32 + 2.88776e33i −0.0494568 + 0.323981i
\(521\) −9.13391e33 −1.00043 −0.500213 0.865902i \(-0.666745\pi\)
−0.500213 + 0.865902i \(0.666745\pi\)
\(522\) 2.22542e33i 0.237975i
\(523\) 2.09183e33i 0.218402i −0.994020 0.109201i \(-0.965171\pi\)
0.994020 0.109201i \(-0.0348292\pi\)
\(524\) 1.34535e34 1.37150
\(525\) 4.19499e33 + 1.31132e33i 0.417580 + 0.130532i
\(526\) −7.25923e32 −0.0705617
\(527\) 9.07887e33i 0.861785i
\(528\) 6.66111e33i 0.617480i
\(529\) −2.43729e34 −2.20653
\(530\) −1.97624e30 + 1.29459e31i −0.000174739 + 0.00114468i
\(531\) 1.55948e33 0.134679
\(532\) 1.73612e33i 0.146449i
\(533\) 2.12428e33i 0.175033i
\(534\) −9.38039e32 −0.0755014
\(535\) 1.00166e34 + 1.52907e33i 0.787587 + 0.120228i
\(536\) 5.94035e33 0.456302
\(537\) 4.39315e33i 0.329683i
\(538\) 7.45414e32i 0.0546537i
\(539\) −9.74249e33 −0.697928
\(540\) −1.19089e34 1.81793e33i −0.833582 0.127249i
\(541\) 1.05050e34 0.718503 0.359251 0.933241i \(-0.383032\pi\)
0.359251 + 0.933241i \(0.383032\pi\)
\(542\) 6.18766e33i 0.413557i
\(543\) 1.47659e34i 0.964414i
\(544\) 1.56559e34 0.999289
\(545\) 1.02073e33 6.68659e33i 0.0636729 0.417108i
\(546\) 1.25233e33 0.0763502
\(547\) 1.22596e34i 0.730523i 0.930905 + 0.365261i \(0.119020\pi\)
−0.930905 + 0.365261i \(0.880980\pi\)
\(548\) 1.81555e34i 1.05743i
\(549\) −2.80126e33 −0.159477
\(550\) −3.09630e33 + 9.90529e33i −0.172310 + 0.551231i
\(551\) −4.10889e33 −0.223527
\(552\) 1.27112e34i 0.676003i
\(553\) 1.91133e34i 0.993737i
\(554\) 1.17122e33 0.0595340
\(555\) 2.72048e33 1.78213e34i 0.135202 0.885679i
\(556\) −1.29803e34 −0.630740
\(557\) 1.79762e34i 0.854100i −0.904228 0.427050i \(-0.859553\pi\)
0.904228 0.427050i \(-0.140447\pi\)
\(558\) 3.82705e33i 0.177802i
\(559\) 1.12858e34 0.512724
\(560\) −1.09760e34 1.67552e33i −0.487634 0.0744389i
\(561\) 2.47980e34 1.07741
\(562\) 1.05328e34i 0.447547i
\(563\) 3.62981e34i 1.50844i 0.656619 + 0.754222i \(0.271986\pi\)
−0.656619 + 0.754222i \(0.728014\pi\)
\(564\) −2.46395e33 −0.100148
\(565\) −3.54035e34 5.40446e33i −1.40747 0.214856i
\(566\) 1.08307e34 0.421165
\(567\) 2.31943e33i 0.0882252i
\(568\) 1.74236e34i 0.648310i
\(569\) −3.88784e34 −1.41516 −0.707579 0.706635i \(-0.750212\pi\)
−0.707579 + 0.706635i \(0.750212\pi\)
\(570\) −1.86912e32 + 1.22442e33i −0.00665582 + 0.0436009i
\(571\) 3.32205e34 1.15732 0.578662 0.815567i \(-0.303575\pi\)
0.578662 + 0.815567i \(0.303575\pi\)
\(572\) 2.12810e34i 0.725339i
\(573\) 5.05333e32i 0.0168517i
\(574\) −2.85088e33 −0.0930208
\(575\) −1.67339e34 + 5.35330e34i −0.534257 + 1.70912i
\(576\) 7.29155e33 0.227792
\(577\) 5.11740e34i 1.56441i 0.623018 + 0.782207i \(0.285906\pi\)
−0.623018 + 0.782207i \(0.714094\pi\)
\(578\) 3.29130e33i 0.0984622i
\(579\) 2.94746e34 0.862912
\(580\) 4.71103e33 3.08610e34i 0.134979 0.884218i
\(581\) 3.09136e34 0.866859
\(582\) 8.88414e33i 0.243825i
\(583\) 2.04063e32i 0.00548159i
\(584\) −5.59163e33 −0.147021
\(585\) 1.28345e34 + 1.95923e33i 0.330317 + 0.0504240i
\(586\) −1.01805e34 −0.256476
\(587\) 5.17586e33i 0.127646i −0.997961 0.0638228i \(-0.979671\pi\)
0.997961 0.0638228i \(-0.0203293\pi\)
\(588\) 8.83443e33i 0.213286i
\(589\) 7.06604e33 0.167007
\(590\) 3.00497e33 + 4.58718e32i 0.0695328 + 0.0106144i
\(591\) −2.70219e34 −0.612170
\(592\) 4.55420e34i 1.01016i
\(593\) 3.22963e34i 0.701406i −0.936487 0.350703i \(-0.885943\pi\)
0.936487 0.350703i \(-0.114057\pi\)
\(594\) −2.60834e34 −0.554669
\(595\) −6.23765e33 + 4.08615e34i −0.129885 + 0.850848i
\(596\) 1.91137e34 0.389733
\(597\) 1.16767e34i 0.233153i
\(598\) 1.59812e34i 0.312496i
\(599\) −5.78815e34 −1.10842 −0.554211 0.832376i \(-0.686980\pi\)
−0.554211 + 0.832376i \(0.686980\pi\)
\(600\) −1.92122e34 6.00556e33i −0.360318 0.112632i
\(601\) 4.54517e34 0.834872 0.417436 0.908706i \(-0.362929\pi\)
0.417436 + 0.908706i \(0.362929\pi\)
\(602\) 1.51460e34i 0.272485i
\(603\) 2.64016e34i 0.465225i
\(604\) 1.94552e34 0.335794
\(605\) 1.54773e34 1.01388e35i 0.261669 1.71414i
\(606\) 2.14838e34 0.355797
\(607\) 2.97089e34i 0.481979i 0.970528 + 0.240990i \(0.0774720\pi\)
−0.970528 + 0.240990i \(0.922528\pi\)
\(608\) 1.21849e34i 0.193654i
\(609\) −2.86264e34 −0.445708
\(610\) −5.39775e33 8.23985e32i −0.0823361 0.0125689i
\(611\) 6.62606e33 0.0990239
\(612\) 4.54046e34i 0.664825i
\(613\) 6.35057e34i 0.911080i −0.890215 0.455540i \(-0.849446\pi\)
0.890215 0.455540i \(-0.150554\pi\)
\(614\) 4.00975e34 0.563654
\(615\) 1.44699e34 + 2.20888e33i 0.199309 + 0.0304252i
\(616\) −6.10886e34 −0.824520
\(617\) 6.33497e34i 0.837876i −0.908015 0.418938i \(-0.862402\pi\)
0.908015 0.418938i \(-0.137598\pi\)
\(618\) 1.87048e34i 0.242436i
\(619\) −5.34076e32 −0.00678375 −0.00339188 0.999994i \(-0.501080\pi\)
−0.00339188 + 0.999994i \(0.501080\pi\)
\(620\) −8.10154e33 + 5.30715e34i −0.100849 + 0.660640i
\(621\) −1.40967e35 −1.71978
\(622\) 8.90316e33i 0.106455i
\(623\) 2.43640e34i 0.285528i
\(624\) 1.62435e34 0.186583
\(625\) 7.30056e34 + 5.05846e34i 0.821970 + 0.569531i
\(626\) 1.88265e34 0.207774
\(627\) 1.93002e34i 0.208794i
\(628\) 1.32761e35i 1.40791i
\(629\) 1.69544e35 1.76258
\(630\) 2.62938e33 1.72245e34i 0.0267976 0.175546i
\(631\) −9.67889e34 −0.967071 −0.483536 0.875325i \(-0.660648\pi\)
−0.483536 + 0.875325i \(0.660648\pi\)
\(632\) 8.75350e34i 0.857469i
\(633\) 5.76309e34i 0.553490i
\(634\) 3.17988e34 0.299430
\(635\) −4.40274e34 6.72094e33i −0.406492 0.0620524i
\(636\) 1.85043e32 0.00167517
\(637\) 2.37576e34i 0.210891i
\(638\) 6.75932e34i 0.588362i
\(639\) 7.74381e34 0.660989
\(640\) 1.18285e35 + 1.80566e34i 0.990100 + 0.151142i
\(641\) −7.48249e34 −0.614216 −0.307108 0.951675i \(-0.599361\pi\)
−0.307108 + 0.951675i \(0.599361\pi\)
\(642\) 1.98941e34i 0.160153i
\(643\) 1.50707e35i 1.18986i 0.803777 + 0.594931i \(0.202821\pi\)
−0.803777 + 0.594931i \(0.797179\pi\)
\(644\) −1.54353e35 −1.19520
\(645\) −1.17353e34 + 7.68752e34i −0.0891243 + 0.583835i
\(646\) −1.16486e34 −0.0867697
\(647\) 6.07630e34i 0.443952i −0.975052 0.221976i \(-0.928749\pi\)
0.975052 0.221976i \(-0.0712507\pi\)
\(648\) 1.06225e34i 0.0761271i
\(649\) −4.73664e34 −0.332975
\(650\) 2.41545e34 + 7.55049e33i 0.166564 + 0.0520665i
\(651\) 4.92287e34 0.333009
\(652\) 3.88091e34i 0.257536i
\(653\) 9.70389e34i 0.631730i 0.948804 + 0.315865i \(0.102295\pi\)
−0.948804 + 0.315865i \(0.897705\pi\)
\(654\) 1.32803e34 0.0848175
\(655\) 3.76202e34 2.46442e35i 0.235725 1.54418i
\(656\) −3.69777e34 −0.227322
\(657\) 2.48517e34i 0.149896i
\(658\) 8.89248e33i 0.0526259i
\(659\) 3.95203e34 0.229484 0.114742 0.993395i \(-0.463396\pi\)
0.114742 + 0.993395i \(0.463396\pi\)
\(660\) 1.44959e35 + 2.21286e34i 0.825938 + 0.126082i
\(661\) −1.83055e35 −1.02344 −0.511720 0.859152i \(-0.670992\pi\)
−0.511720 + 0.859152i \(0.670992\pi\)
\(662\) 7.05789e34i 0.387213i
\(663\) 6.04712e34i 0.325559i
\(664\) −1.41578e35 −0.747989
\(665\) 3.18023e34 + 4.85473e33i 0.164888 + 0.0251707i
\(666\) −7.14686e34 −0.363653
\(667\) 3.65307e35i 1.82425i
\(668\) 1.62761e35i 0.797707i
\(669\) 9.99472e34 0.480778
\(670\) 7.76597e33 5.08733e34i 0.0366658 0.240190i
\(671\) 8.50832e34 0.394287
\(672\) 8.48915e34i 0.386143i
\(673\) 2.04061e35i 0.911111i −0.890207 0.455556i \(-0.849441\pi\)
0.890207 0.455556i \(-0.150559\pi\)
\(674\) −9.09832e34 −0.398761
\(675\) −6.66017e34 + 2.13063e35i −0.286542 + 0.916667i
\(676\) 1.55993e35 0.658826
\(677\) 3.54375e35i 1.46928i 0.678456 + 0.734641i \(0.262650\pi\)
−0.678456 + 0.734641i \(0.737350\pi\)
\(678\) 7.03151e34i 0.286205i
\(679\) 2.30751e35 0.922085
\(680\) 2.85672e34 1.87137e35i 0.112074 0.734174i
\(681\) −4.03825e34 −0.155544
\(682\) 1.16240e35i 0.439592i
\(683\) 2.42881e35i 0.901852i 0.892561 + 0.450926i \(0.148906\pi\)
−0.892561 + 0.450926i \(0.851094\pi\)
\(684\) −3.53382e34 −0.128838
\(685\) −3.32572e35 5.07682e34i −1.19057 0.181744i
\(686\) 1.07420e35 0.377603
\(687\) 2.63895e35i 0.910902i
\(688\) 1.96453e35i 0.665892i
\(689\) −4.97617e32 −0.00165636
\(690\) −1.08859e35 1.66177e34i −0.355837 0.0543197i
\(691\) 2.57346e34 0.0826116 0.0413058 0.999147i \(-0.486848\pi\)
0.0413058 + 0.999147i \(0.486848\pi\)
\(692\) 4.65123e34i 0.146636i
\(693\) 2.71505e35i 0.840644i
\(694\) −7.39826e34 −0.224976
\(695\) −3.62969e34 + 2.37774e35i −0.108408 + 0.710156i
\(696\) 1.31103e35 0.384589
\(697\) 1.37661e35i 0.396643i
\(698\) 3.61760e34i 0.102383i
\(699\) −1.45055e35 −0.403245
\(700\) −7.29256e34 + 2.33294e35i −0.199138 + 0.637057i
\(701\) 2.69685e35 0.723405 0.361702 0.932294i \(-0.382196\pi\)
0.361702 + 0.932294i \(0.382196\pi\)
\(702\) 6.36057e34i 0.167603i
\(703\) 1.31955e35i 0.341574i
\(704\) −2.21468e35 −0.563186
\(705\) −6.88996e33 + 4.51347e34i −0.0172129 + 0.112758i
\(706\) −8.99010e34 −0.220651
\(707\) 5.58005e35i 1.34554i
\(708\) 4.29516e34i 0.101757i
\(709\) 6.58497e35 1.53277 0.766383 0.642384i \(-0.222055\pi\)
0.766383 + 0.642384i \(0.222055\pi\)
\(710\) 1.49216e35 + 2.27783e34i 0.341260 + 0.0520945i
\(711\) 3.89045e35 0.874237
\(712\) 1.11582e35i 0.246374i
\(713\) 6.28217e35i 1.36298i
\(714\) −8.11553e34 −0.173017
\(715\) −3.89825e35 5.95081e34i −0.816665 0.124667i
\(716\) 2.44314e35 0.502963
\(717\) 2.06428e35i 0.417619i
\(718\) 1.18060e35i 0.234718i
\(719\) −3.88717e35 −0.759492 −0.379746 0.925091i \(-0.623989\pi\)
−0.379746 + 0.925091i \(0.623989\pi\)
\(720\) 3.41047e34 2.23413e35i 0.0654874 0.428994i
\(721\) 4.85825e35 0.916831
\(722\) 1.79253e35i 0.332469i
\(723\) 5.74495e35i 1.04727i
\(724\) −8.21172e35 −1.47130
\(725\) −5.52138e35 1.72593e35i −0.972349 0.303948i
\(726\) 2.01368e35 0.348564
\(727\) 9.07249e35i 1.54364i −0.635840 0.771821i \(-0.719346\pi\)
0.635840 0.771821i \(-0.280654\pi\)
\(728\) 1.48968e35i 0.249144i
\(729\) −2.88995e35 −0.475113
\(730\) −7.31009e33 + 4.78868e34i −0.0118137 + 0.0773892i
\(731\) −7.31358e35 −1.16188
\(732\) 7.71529e34i 0.120494i
\(733\) 5.01082e35i 0.769323i −0.923058 0.384662i \(-0.874318\pi\)
0.923058 0.384662i \(-0.125682\pi\)
\(734\) 1.18489e35 0.178846
\(735\) −1.61829e35 2.47038e34i −0.240140 0.0366582i
\(736\) 1.08332e36 1.58046
\(737\) 8.01900e35i 1.15021i
\(738\) 5.80287e34i 0.0818348i
\(739\) 2.61583e35 0.362706 0.181353 0.983418i \(-0.441952\pi\)
0.181353 + 0.983418i \(0.441952\pi\)
\(740\) 9.91087e35 + 1.51293e35i 1.35119 + 0.206263i
\(741\) −4.70645e34 −0.0630908
\(742\) 6.67826e32i 0.000880267i
\(743\) 6.51807e35i 0.844810i −0.906407 0.422405i \(-0.861186\pi\)
0.906407 0.422405i \(-0.138814\pi\)
\(744\) −2.25457e35 −0.287344
\(745\) 5.34478e34 3.50125e35i 0.0669848 0.438803i
\(746\) −5.02579e35 −0.619397
\(747\) 6.29236e35i 0.762617i
\(748\) 1.37908e36i 1.64369i
\(749\) 5.16715e35 0.605659
\(750\) −7.65482e34 + 1.56682e35i −0.0882408 + 0.180615i
\(751\) −8.22563e35 −0.932545 −0.466272 0.884641i \(-0.654403\pi\)
−0.466272 + 0.884641i \(0.654403\pi\)
\(752\) 1.15341e35i 0.128606i
\(753\) 9.61249e35i 1.05414i
\(754\) −1.64829e35 −0.177784
\(755\) 5.44026e34 3.56380e35i 0.0577142 0.378073i
\(756\) −6.14329e35 −0.641030
\(757\) 1.14364e34i 0.0117379i −0.999983 0.00586895i \(-0.998132\pi\)
0.999983 0.00586895i \(-0.00186816\pi\)
\(758\) 3.20379e35i 0.323444i
\(759\) 1.71591e36 1.70401
\(760\) −1.45648e35 2.22337e34i −0.142277 0.0217191i
\(761\) 9.84364e35 0.945905 0.472953 0.881088i \(-0.343188\pi\)
0.472953 + 0.881088i \(0.343188\pi\)
\(762\) 8.74432e34i 0.0826588i
\(763\) 3.44933e35i 0.320759i
\(764\) −2.81029e34 −0.0257089
\(765\) −8.31722e35 1.26965e35i −0.748532 0.114266i
\(766\) −1.95193e35 −0.172824
\(767\) 1.15505e35i 0.100614i
\(768\) 6.19549e33i 0.00530959i
\(769\) −5.41990e35 −0.456995 −0.228498 0.973544i \(-0.573381\pi\)
−0.228498 + 0.973544i \(0.573381\pi\)
\(770\) −7.98627e34 + 5.23164e35i −0.0662537 + 0.434014i
\(771\) −1.96837e35 −0.160667
\(772\) 1.63916e36i 1.31645i
\(773\) 9.78778e34i 0.0773465i −0.999252 0.0386732i \(-0.987687\pi\)
0.999252 0.0386732i \(-0.0123131\pi\)
\(774\) 3.08292e35 0.239718
\(775\) 9.49509e35 + 2.96808e35i 0.726487 + 0.227093i
\(776\) −1.05679e36 −0.795642
\(777\) 9.19325e35i 0.681093i
\(778\) 7.47875e34i 0.0545236i
\(779\) 1.07141e35 0.0768663
\(780\) 5.39616e34 3.53491e35i 0.0380980 0.249572i
\(781\) −2.35204e36 −1.63421
\(782\) 1.03564e36i 0.708147i
\(783\) 1.45393e36i 0.978414i
\(784\) 4.13552e35 0.273892
\(785\) 2.43191e36 + 3.71239e35i 1.58517 + 0.241982i
\(786\) 4.89460e35 0.314004
\(787\) 7.88622e35i 0.497949i −0.968510 0.248975i \(-0.919906\pi\)
0.968510 0.248975i \(-0.0800936\pi\)
\(788\) 1.50276e36i 0.933922i
\(789\) 1.90068e35 0.116264
\(790\) 7.49651e35 + 1.14437e35i 0.451357 + 0.0689012i
\(791\) −1.82632e36 −1.08236
\(792\) 1.24344e36i 0.725369i
\(793\) 2.07480e35i 0.119141i
\(794\) −8.99755e35 −0.508590
\(795\) 5.17437e32 3.38962e33i 0.000287917 0.00188609i
\(796\) 6.49373e35 0.355697
\(797\) 7.07299e35i 0.381394i 0.981649 + 0.190697i \(0.0610749\pi\)
−0.981649 + 0.190697i \(0.938925\pi\)
\(798\) 6.31628e34i 0.0335294i
\(799\) −4.29392e35 −0.224398
\(800\) 5.11825e35 1.63736e36i 0.263328 0.842404i
\(801\) −4.95921e35 −0.251192
\(802\) 6.72269e35i 0.335246i
\(803\) 7.54826e35i 0.370597i
\(804\) −7.27158e35 −0.351502
\(805\) −4.31617e35 + 2.82743e36i −0.205423 + 1.34569i
\(806\) 2.83457e35 0.132831
\(807\) 1.95171e35i 0.0900526i
\(808\) 2.55555e36i 1.16103i
\(809\) 3.00518e35 0.134435 0.0672177 0.997738i \(-0.478588\pi\)
0.0672177 + 0.997738i \(0.478588\pi\)
\(810\) 9.09713e34 + 1.38871e34i 0.0400721 + 0.00611713i
\(811\) 1.26185e36 0.547327 0.273664 0.961825i \(-0.411765\pi\)
0.273664 + 0.961825i \(0.411765\pi\)
\(812\) 1.59199e36i 0.679969i
\(813\) 1.62011e36i 0.681416i
\(814\) 2.17073e36 0.899084
\(815\) −7.10905e35 1.08522e35i −0.289962 0.0442637i
\(816\) −1.05263e36 −0.422815
\(817\) 5.69212e35i 0.225164i
\(818\) 1.07042e36i 0.417002i
\(819\) 6.62079e35 0.254016
\(820\) −1.22842e35 + 8.04710e35i −0.0464165 + 0.304065i
\(821\) −4.10231e35 −0.152665 −0.0763324 0.997082i \(-0.524321\pi\)
−0.0763324 + 0.997082i \(0.524321\pi\)
\(822\) 6.60523e35i 0.242097i
\(823\) 4.60163e36i 1.66117i 0.556893 + 0.830584i \(0.311993\pi\)
−0.556893 + 0.830584i \(0.688007\pi\)
\(824\) −2.22498e36 −0.791109
\(825\) 8.10702e35 2.59349e36i 0.283914 0.908260i
\(826\) 1.55014e35 0.0534711
\(827\) 4.81186e36i 1.63491i 0.575991 + 0.817456i \(0.304616\pi\)
−0.575991 + 0.817456i \(0.695384\pi\)
\(828\) 3.14179e36i 1.05147i
\(829\) 3.18080e36 1.04859 0.524294 0.851538i \(-0.324329\pi\)
0.524294 + 0.851538i \(0.324329\pi\)
\(830\) −1.85089e35 + 1.21248e36i −0.0601041 + 0.393729i
\(831\) −3.06659e35 −0.0980940
\(832\) 5.40060e35i 0.170177i
\(833\) 1.53957e36i 0.477901i
\(834\) −4.72244e35 −0.144408
\(835\) −2.98145e36 4.55129e35i −0.898146 0.137105i
\(836\) 1.07333e36 0.318534
\(837\) 2.50032e36i 0.731018i
\(838\) 1.27390e36i 0.366931i
\(839\) −2.92525e36 −0.830116 −0.415058 0.909795i \(-0.636239\pi\)
−0.415058 + 0.909795i \(0.636239\pi\)
\(840\) −1.01472e36 1.54901e35i −0.283698 0.0433074i
\(841\) 1.37400e35 0.0378475
\(842\) 8.74591e35i 0.237358i
\(843\) 2.75778e36i 0.737420i
\(844\) 3.20501e36 0.844400
\(845\) 4.36204e35 2.85748e36i 0.113235 0.741778i
\(846\) 1.81003e35 0.0462975
\(847\) 5.23020e36i 1.31818i
\(848\) 8.66212e33i 0.00215118i
\(849\) −2.83580e36 −0.693952
\(850\) −1.56530e36 4.89299e35i −0.377451 0.117988i
\(851\) 1.17317e37 2.78766
\(852\) 2.13282e36i 0.499412i
\(853\) 5.67373e36i 1.30920i −0.755975 0.654600i \(-0.772837\pi\)
0.755975 0.654600i \(-0.227163\pi\)
\(854\) −2.78447e35 −0.0633169
\(855\) −9.88164e34 + 6.47325e35i −0.0221438 + 0.145059i
\(856\) −2.36645e36 −0.522607
\(857\) 5.81493e36i 1.26557i −0.774330 0.632783i \(-0.781913\pi\)
0.774330 0.632783i \(-0.218087\pi\)
\(858\) 7.74234e35i 0.166066i
\(859\) −2.94784e36 −0.623144 −0.311572 0.950222i \(-0.600856\pi\)
−0.311572 + 0.950222i \(0.600856\pi\)
\(860\) −4.27523e36 6.52628e35i −0.890694 0.135967i
\(861\) 7.46443e35 0.153270
\(862\) 2.45668e36i 0.497174i
\(863\) 3.06311e36i 0.610981i 0.952195 + 0.305491i \(0.0988205\pi\)
−0.952195 + 0.305491i \(0.901180\pi\)
\(864\) 4.31164e36 0.847658
\(865\) −8.52012e35 1.30063e35i −0.165099 0.0252029i
\(866\) −9.03801e35 −0.172623
\(867\) 8.61758e35i 0.162236i
\(868\) 2.73773e36i 0.508036i
\(869\) −1.18165e37 −2.16144
\(870\) 1.71394e35 1.12277e36i 0.0309034 0.202441i
\(871\) 1.95547e36 0.347556
\(872\) 1.57972e36i 0.276774i
\(873\) 4.69685e36i 0.811202i
\(874\) −8.06032e35 −0.137233
\(875\) 4.06956e36 + 1.98821e36i 0.683041 + 0.333705i
\(876\) 6.84472e35 0.113254
\(877\) 4.68999e36i 0.765027i −0.923950 0.382513i \(-0.875059\pi\)
0.923950 0.382513i \(-0.124941\pi\)
\(878\) 3.82765e35i 0.0615533i
\(879\) 2.66554e36 0.422594
\(880\) −1.03587e36 + 6.78576e36i −0.161909 + 1.06063i
\(881\) 5.55944e36 0.856707 0.428354 0.903611i \(-0.359094\pi\)
0.428354 + 0.903611i \(0.359094\pi\)
\(882\) 6.48983e35i 0.0985998i
\(883\) 6.59997e36i 0.988629i −0.869283 0.494315i \(-0.835419\pi\)
0.869283 0.494315i \(-0.164581\pi\)
\(884\) 3.36296e36 0.496671
\(885\) −7.86787e35 1.20106e35i −0.114569 0.0174893i
\(886\) 1.92273e36 0.276055
\(887\) 7.82318e36i 1.10749i 0.832688 + 0.553743i \(0.186801\pi\)
−0.832688 + 0.553743i \(0.813199\pi\)
\(888\) 4.21032e36i 0.587696i
\(889\) −2.27119e36 −0.312595
\(890\) −9.55592e35 1.45874e35i −0.129687 0.0197972i
\(891\) −1.43395e36 −0.191895
\(892\) 5.55832e36i 0.733471i
\(893\) 3.34194e35i 0.0434866i
\(894\) 6.95386e35 0.0892292
\(895\) 6.83177e35 4.47535e36i 0.0864461 0.566290i
\(896\) 6.10182e36 0.761393
\(897\) 4.18434e36i 0.514898i
\(898\) 1.37414e36i 0.166754i
\(899\) −6.47941e36 −0.775424
\(900\) −4.74862e36 1.48438e36i −0.560449 0.175191i
\(901\) 3.22474e34 0.00375348
\(902\) 1.76252e36i 0.202326i
\(903\) 3.96567e36i 0.448972i
\(904\) 8.36417e36 0.933937
\(905\) −2.29625e36 + 1.50422e37i −0.252878 + 1.65655i
\(906\) 7.07808e35 0.0768799
\(907\) 1.93438e36i 0.207229i −0.994618 0.103615i \(-0.966959\pi\)
0.994618 0.103615i \(-0.0330408\pi\)
\(908\) 2.24577e36i 0.237297i
\(909\) 1.13580e37 1.18373
\(910\) 1.27576e36 + 1.94749e35i 0.131145 + 0.0200197i
\(911\) −1.32299e37 −1.34146 −0.670728 0.741704i \(-0.734018\pi\)
−0.670728 + 0.741704i \(0.734018\pi\)
\(912\) 8.19260e35i 0.0819382i
\(913\) 1.91119e37i 1.88547i
\(914\) −1.59721e36 −0.155430
\(915\) 1.41329e36 + 2.15743e35i 0.135665 + 0.0207097i
\(916\) −1.46759e37 −1.38967
\(917\) 1.27129e37i 1.18749i
\(918\) 4.12188e36i 0.379806i
\(919\) −1.20222e36 −0.109280 −0.0546401 0.998506i \(-0.517401\pi\)
−0.0546401 + 0.998506i \(0.517401\pi\)
\(920\) 1.97672e36 1.29491e37i 0.177254 1.16116i
\(921\) −1.04987e37 −0.928729
\(922\) 4.10235e36i 0.358011i
\(923\) 5.73557e36i 0.493805i
\(924\) 7.47785e36 0.635151
\(925\) 5.54276e36 1.77317e37i 0.464467 1.48586i
\(926\) 3.81844e35 0.0315681
\(927\) 9.88881e36i 0.806580i
\(928\) 1.11733e37i 0.899148i
\(929\) −1.76310e36 −0.139985 −0.0699924 0.997548i \(-0.522298\pi\)
−0.0699924 + 0.997548i \(0.522298\pi\)
\(930\) −2.94746e35 + 1.93082e36i −0.0230893 + 0.151253i
\(931\) −1.19824e36 −0.0926135
\(932\) 8.06689e36i 0.615187i
\(933\) 2.33110e36i 0.175405i
\(934\) −3.44507e36 −0.255778
\(935\) 2.52620e37 + 3.85634e36i 1.85065 + 0.282507i
\(936\) −3.03219e36 −0.219183
\(937\) 8.36573e36i 0.596704i −0.954456 0.298352i \(-0.903563\pi\)
0.954456 0.298352i \(-0.0964370\pi\)
\(938\) 2.62434e36i 0.184707i
\(939\) −4.92932e36 −0.342348
\(940\) −2.51006e36 3.83169e35i −0.172023 0.0262598i
\(941\) 1.88960e37 1.27791 0.638953 0.769246i \(-0.279368\pi\)
0.638953 + 0.769246i \(0.279368\pi\)
\(942\) 4.83003e36i 0.322339i
\(943\) 9.52550e36i 0.627323i
\(944\) 2.01062e36 0.130671
\(945\) −1.71785e36 + 1.12533e37i −0.110176 + 0.721741i
\(946\) −9.36382e36 −0.592671
\(947\) 2.30050e37i 1.43697i 0.695544 + 0.718484i \(0.255163\pi\)
−0.695544 + 0.718484i \(0.744837\pi\)
\(948\) 1.07152e37i 0.660533i
\(949\) −1.84068e36 −0.111983
\(950\) −3.80819e35 + 1.21827e36i −0.0228651 + 0.0731471i
\(951\) −8.32586e36 −0.493370
\(952\) 9.65363e36i 0.564585i
\(953\) 1.27736e37i 0.737312i 0.929566 + 0.368656i \(0.120182\pi\)
−0.929566 + 0.368656i \(0.879818\pi\)
\(954\) −1.35934e34 −0.000774413
\(955\) −7.85842e34 + 5.14789e35i −0.00441869 + 0.0289459i
\(956\) −1.14800e37 −0.637117
\(957\) 1.76979e37i 0.969441i
\(958\) 7.98593e36i 0.431774i
\(959\) −1.71560e37 −0.915552
\(960\) −3.67873e36 5.61570e35i −0.193779 0.0295810i
\(961\) −8.09018e36 −0.420645
\(962\) 5.29343e36i 0.271674i
\(963\) 1.05176e37i 0.532827i
\(964\) 3.19492e37 1.59771
\(965\) 3.00262e37 + 4.58360e36i 1.48221 + 0.226264i
\(966\) −5.61558e36 −0.273641
\(967\) 1.55346e37i 0.747255i −0.927579 0.373627i \(-0.878114\pi\)
0.927579 0.373627i \(-0.121886\pi\)
\(968\) 2.39533e37i 1.13742i
\(969\) 3.04995e36 0.142970
\(970\) −1.38157e36 + 9.05038e36i −0.0639332 + 0.418813i
\(971\) −1.12959e37 −0.516039 −0.258019 0.966140i \(-0.583070\pi\)
−0.258019 + 0.966140i \(0.583070\pi\)
\(972\) 1.99976e37i 0.901882i
\(973\) 1.22657e37i 0.546114i
\(974\) 7.92828e36 0.348491
\(975\) −6.32436e36 1.97694e36i −0.274447 0.0857897i
\(976\) −3.61164e36 −0.154732
\(977\) 2.48617e35i 0.0105160i −0.999986 0.00525799i \(-0.998326\pi\)
0.999986 0.00525799i \(-0.00167368\pi\)
\(978\) 1.41193e36i 0.0589628i
\(979\) 1.50627e37 0.621040
\(980\) 1.37384e36 8.99974e36i 0.0559256 0.366357i
\(981\) 7.02100e36 0.282187
\(982\) 4.85661e36i 0.192726i
\(983\) 3.35550e37i 1.31474i −0.753569 0.657368i \(-0.771670\pi\)
0.753569 0.657368i \(-0.228330\pi\)
\(984\) −3.41856e36 −0.132253
\(985\) −2.75275e37 4.20217e36i −1.05151 0.160517i
\(986\) 1.06815e37 0.402877
\(987\) 2.32831e36i 0.0867114i
\(988\) 2.61738e36i 0.0962509i
\(989\) −5.06067e37 −1.83761
\(990\) −1.06488e37 1.62558e36i −0.381822 0.0582865i
\(991\) 2.43897e37 0.863547 0.431774 0.901982i \(-0.357888\pi\)
0.431774 + 0.901982i \(0.357888\pi\)
\(992\) 1.92147e37i 0.671795i
\(993\) 1.84796e37i 0.638009i
\(994\) 7.69741e36 0.262431
\(995\) 1.81584e36 1.18952e37i 0.0611350 0.400483i
\(996\) 1.73306e37 0.576197
\(997\) 1.09989e37i 0.361128i 0.983563 + 0.180564i \(0.0577923\pi\)
−0.983563 + 0.180564i \(0.942208\pi\)
\(998\) 5.44958e36i 0.176698i
\(999\) 4.66925e37 1.49513
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5.26.b.a.4.7 yes 12
3.2 odd 2 45.26.b.b.19.6 12
5.2 odd 4 25.26.a.f.1.6 12
5.3 odd 4 25.26.a.f.1.7 12
5.4 even 2 inner 5.26.b.a.4.6 12
15.14 odd 2 45.26.b.b.19.7 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5.26.b.a.4.6 12 5.4 even 2 inner
5.26.b.a.4.7 yes 12 1.1 even 1 trivial
25.26.a.f.1.6 12 5.2 odd 4
25.26.a.f.1.7 12 5.3 odd 4
45.26.b.b.19.6 12 3.2 odd 2
45.26.b.b.19.7 12 15.14 odd 2