Properties

Label 5.26.b.a.4.11
Level $5$
Weight $26$
Character 5.4
Analytic conductor $19.800$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5,26,Mod(4,5)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 26, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5.4");
 
S:= CuspForms(chi, 26);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5 \)
Weight: \( k \) \(=\) \( 26 \)
Character orbit: \([\chi]\) \(=\) 5.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.7998389976\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 71168091 x^{10} + \cdots + 10\!\cdots\!36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{44}\cdot 3^{20}\cdot 5^{29} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 4.11
Root \(4680.77i\) of defining polynomial
Character \(\chi\) \(=\) 5.4
Dual form 5.26.b.a.4.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9361.55i q^{2} +531494. i q^{3} -5.40841e7 q^{4} +(-5.44720e8 - 3.61012e7i) q^{5} -4.97561e9 q^{6} -1.37587e10i q^{7} -1.92189e11i q^{8} +5.64803e11 q^{9} +(3.37963e11 - 5.09942e12i) q^{10} -9.26999e12 q^{11} -2.87454e13i q^{12} -1.02027e14i q^{13} +1.28802e14 q^{14} +(1.91876e13 - 2.89515e14i) q^{15} -1.55712e13 q^{16} +3.06292e15i q^{17} +5.28743e15i q^{18} +5.00581e15 q^{19} +(2.94607e16 + 1.95250e15i) q^{20} +7.31265e15 q^{21} -8.67815e16i q^{22} -9.11014e16i q^{23} +1.02148e17 q^{24} +(2.95417e17 + 3.93301e16i) q^{25} +9.55130e17 q^{26} +7.50518e17i q^{27} +7.44125e17i q^{28} -3.16262e18 q^{29} +(2.71031e18 + 1.79626e17i) q^{30} +3.22878e18 q^{31} -6.59458e18i q^{32} -4.92695e18i q^{33} -2.86736e19 q^{34} +(-4.96704e17 + 7.49462e18i) q^{35} -3.05468e19 q^{36} -1.59124e19i q^{37} +4.68621e19i q^{38} +5.42268e19 q^{39} +(-6.93828e18 + 1.04689e20i) q^{40} -8.10389e19 q^{41} +6.84577e19i q^{42} -3.97592e20i q^{43} +5.01359e20 q^{44} +(-3.07659e20 - 2.03901e19i) q^{45} +8.52850e20 q^{46} -9.69576e20i q^{47} -8.27600e18i q^{48} +1.15177e21 q^{49} +(-3.68191e20 + 2.76556e21i) q^{50} -1.62792e21 q^{51} +5.51804e21i q^{52} -5.88324e21i q^{53} -7.02601e21 q^{54} +(5.04955e21 + 3.34658e20i) q^{55} -2.64427e21 q^{56} +2.66056e21i q^{57} -2.96070e22i q^{58} -2.11464e22 q^{59} +(-1.03774e21 + 1.56582e22i) q^{60} +7.65113e21 q^{61} +3.02264e22i q^{62} -7.77093e21i q^{63} +6.12130e22 q^{64} +(-3.68330e21 + 5.55762e22i) q^{65} +4.61238e22 q^{66} +3.72268e22i q^{67} -1.65655e23i q^{68} +4.84199e22 q^{69} +(-7.01612e22 - 4.64992e21i) q^{70} -3.96178e22 q^{71} -1.08549e23i q^{72} -4.27194e22i q^{73} +1.48965e23 q^{74} +(-2.09037e22 + 1.57012e23i) q^{75} -2.70734e23 q^{76} +1.27543e23i q^{77} +5.07646e23i q^{78} -9.25017e23 q^{79} +(8.48194e21 + 5.62139e20i) q^{80} +7.96549e22 q^{81} -7.58649e23i q^{82} +9.81159e23i q^{83} -3.95498e23 q^{84} +(1.10575e23 - 1.66843e24i) q^{85} +3.72207e24 q^{86} -1.68091e24i q^{87} +1.78160e24i q^{88} -1.32371e24 q^{89} +(1.90883e23 - 2.88017e24i) q^{90} -1.40375e24 q^{91} +4.92714e24i q^{92} +1.71608e24i q^{93} +9.07673e24 q^{94} +(-2.72676e24 - 1.80716e23i) q^{95} +3.50498e24 q^{96} -3.52916e24i q^{97} +1.07823e25i q^{98} -5.23572e24 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 166691544 q^{4} + 549543060 q^{5} + 10591544184 q^{6} - 3948466041036 q^{9} + 4435846671960 q^{10} - 1090673824176 q^{11} - 890646861445848 q^{14} + 443085522435120 q^{15} + 22\!\cdots\!32 q^{16}+ \cdots - 10\!\cdots\!72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 9361.55i 1.61612i 0.589103 + 0.808058i \(0.299481\pi\)
−0.589103 + 0.808058i \(0.700519\pi\)
\(3\) 531494.i 0.577408i 0.957418 + 0.288704i \(0.0932243\pi\)
−0.957418 + 0.288704i \(0.906776\pi\)
\(4\) −5.40841e7 −1.61183
\(5\) −5.44720e8 3.61012e7i −0.997811 0.0661298i
\(6\) −4.97561e9 −0.933158
\(7\) 1.37587e10i 0.375708i −0.982197 0.187854i \(-0.939847\pi\)
0.982197 0.187854i \(-0.0601532\pi\)
\(8\) 1.92189e11i 0.988791i
\(9\) 5.64803e11 0.666600
\(10\) 3.37963e11 5.09942e12i 0.106873 1.61258i
\(11\) −9.26999e12 −0.890576 −0.445288 0.895387i \(-0.646899\pi\)
−0.445288 + 0.895387i \(0.646899\pi\)
\(12\) 2.87454e13i 0.930685i
\(13\) 1.02027e14i 1.21457i −0.794483 0.607286i \(-0.792258\pi\)
0.794483 0.607286i \(-0.207742\pi\)
\(14\) 1.28802e14 0.607188
\(15\) 1.91876e13 2.89515e14i 0.0381839 0.576144i
\(16\) −1.55712e13 −0.0138300
\(17\) 3.06292e15i 1.27504i 0.770434 + 0.637520i \(0.220040\pi\)
−0.770434 + 0.637520i \(0.779960\pi\)
\(18\) 5.28743e15i 1.07730i
\(19\) 5.00581e15 0.518864 0.259432 0.965761i \(-0.416465\pi\)
0.259432 + 0.965761i \(0.416465\pi\)
\(20\) 2.94607e16 + 1.95250e15i 1.60830 + 0.106590i
\(21\) 7.31265e15 0.216937
\(22\) 8.67815e16i 1.43927i
\(23\) 9.11014e16i 0.866817i −0.901198 0.433408i \(-0.857311\pi\)
0.901198 0.433408i \(-0.142689\pi\)
\(24\) 1.02148e17 0.570936
\(25\) 2.95417e17 + 3.93301e16i 0.991254 + 0.131970i
\(26\) 9.55130e17 1.96289
\(27\) 7.50518e17i 0.962308i
\(28\) 7.44125e17i 0.605578i
\(29\) −3.16262e18 −1.65986 −0.829930 0.557867i \(-0.811620\pi\)
−0.829930 + 0.557867i \(0.811620\pi\)
\(30\) 2.71031e18 + 1.79626e17i 0.931116 + 0.0617095i
\(31\) 3.22878e18 0.736237 0.368119 0.929779i \(-0.380002\pi\)
0.368119 + 0.929779i \(0.380002\pi\)
\(32\) 6.59458e18i 1.01114i
\(33\) 4.92695e18i 0.514226i
\(34\) −2.86736e19 −2.06061
\(35\) −4.96704e17 + 7.49462e18i −0.0248455 + 0.374886i
\(36\) −3.05468e19 −1.07445
\(37\) 1.59124e19i 0.397388i −0.980062 0.198694i \(-0.936330\pi\)
0.980062 0.198694i \(-0.0636699\pi\)
\(38\) 4.68621e19i 0.838545i
\(39\) 5.42268e19 0.701303
\(40\) −6.93828e18 + 1.04689e20i −0.0653885 + 0.986627i
\(41\) −8.10389e19 −0.560913 −0.280456 0.959867i \(-0.590486\pi\)
−0.280456 + 0.959867i \(0.590486\pi\)
\(42\) 6.84577e19i 0.350595i
\(43\) 3.97592e20i 1.51734i −0.651478 0.758668i \(-0.725851\pi\)
0.651478 0.758668i \(-0.274149\pi\)
\(44\) 5.01359e20 1.43546
\(45\) −3.07659e20 2.03901e19i −0.665141 0.0440821i
\(46\) 8.52850e20 1.40088
\(47\) 9.69576e20i 1.21719i −0.793481 0.608595i \(-0.791733\pi\)
0.793481 0.608595i \(-0.208267\pi\)
\(48\) 8.27600e18i 0.00798555i
\(49\) 1.15177e21 0.858843
\(50\) −3.68191e20 + 2.76556e21i −0.213279 + 1.60198i
\(51\) −1.62792e21 −0.736218
\(52\) 5.51804e21i 1.95769i
\(53\) 5.88324e21i 1.64501i −0.568759 0.822504i \(-0.692576\pi\)
0.568759 0.822504i \(-0.307424\pi\)
\(54\) −7.02601e21 −1.55520
\(55\) 5.04955e21 + 3.34658e20i 0.888626 + 0.0588936i
\(56\) −2.64427e21 −0.371497
\(57\) 2.66056e21i 0.299596i
\(58\) 2.96070e22i 2.68253i
\(59\) −2.11464e22 −1.54734 −0.773671 0.633588i \(-0.781582\pi\)
−0.773671 + 0.633588i \(0.781582\pi\)
\(60\) −1.03774e21 + 1.56582e22i −0.0615459 + 0.928647i
\(61\) 7.65113e21 0.369065 0.184532 0.982826i \(-0.440923\pi\)
0.184532 + 0.982826i \(0.440923\pi\)
\(62\) 3.02264e22i 1.18985i
\(63\) 7.77093e21i 0.250447i
\(64\) 6.12130e22 1.62029
\(65\) −3.68330e21 + 5.55762e22i −0.0803194 + 1.21191i
\(66\) 4.61238e22 0.831048
\(67\) 3.72268e22i 0.555802i 0.960610 + 0.277901i \(0.0896387\pi\)
−0.960610 + 0.277901i \(0.910361\pi\)
\(68\) 1.65655e23i 2.05515i
\(69\) 4.84199e22 0.500507
\(70\) −7.01612e22 4.64992e21i −0.605859 0.0401532i
\(71\) −3.96178e22 −0.286524 −0.143262 0.989685i \(-0.545759\pi\)
−0.143262 + 0.989685i \(0.545759\pi\)
\(72\) 1.08549e23i 0.659128i
\(73\) 4.27194e22i 0.218318i −0.994024 0.109159i \(-0.965184\pi\)
0.994024 0.109159i \(-0.0348157\pi\)
\(74\) 1.48965e23 0.642225
\(75\) −2.09037e22 + 1.57012e23i −0.0762005 + 0.572358i
\(76\) −2.70734e23 −0.836322
\(77\) 1.27543e23i 0.334597i
\(78\) 5.07646e23i 1.13339i
\(79\) −9.25017e23 −1.76121 −0.880605 0.473851i \(-0.842863\pi\)
−0.880605 + 0.473851i \(0.842863\pi\)
\(80\) 8.48194e21 + 5.62139e20i 0.0137997 + 0.000914575i
\(81\) 7.96549e22 0.110956
\(82\) 7.58649e23i 0.906500i
\(83\) 9.81159e23i 1.00754i 0.863837 + 0.503771i \(0.168054\pi\)
−0.863837 + 0.503771i \(0.831946\pi\)
\(84\) −3.95498e23 −0.349666
\(85\) 1.10575e23 1.66843e24i 0.0843181 1.27225i
\(86\) 3.72207e24 2.45219
\(87\) 1.68091e24i 0.958416i
\(88\) 1.78160e24i 0.880594i
\(89\) −1.32371e24 −0.568091 −0.284046 0.958811i \(-0.591677\pi\)
−0.284046 + 0.958811i \(0.591677\pi\)
\(90\) 1.90883e23 2.88017e24i 0.0712418 1.07495i
\(91\) −1.40375e24 −0.456324
\(92\) 4.92714e24i 1.39716i
\(93\) 1.71608e24i 0.425109i
\(94\) 9.07673e24 1.96712
\(95\) −2.72676e24 1.80716e23i −0.517729 0.0343124i
\(96\) 3.50498e24 0.583842
\(97\) 3.52916e24i 0.516445i −0.966085 0.258223i \(-0.916863\pi\)
0.966085 0.258223i \(-0.0831368\pi\)
\(98\) 1.07823e25i 1.38799i
\(99\) −5.23572e24 −0.593658
\(100\) −1.59773e25 2.12713e24i −1.59773 0.212713i
\(101\) −1.04249e25 −0.920570 −0.460285 0.887771i \(-0.652253\pi\)
−0.460285 + 0.887771i \(0.652253\pi\)
\(102\) 1.52399e25i 1.18981i
\(103\) 1.55473e25i 1.07446i −0.843436 0.537230i \(-0.819471\pi\)
0.843436 0.537230i \(-0.180529\pi\)
\(104\) −1.96085e25 −1.20096
\(105\) −3.98334e24 2.63996e23i −0.216462 0.0143460i
\(106\) 5.50762e25 2.65852
\(107\) 3.91524e25i 1.68059i 0.542131 + 0.840294i \(0.317618\pi\)
−0.542131 + 0.840294i \(0.682382\pi\)
\(108\) 4.05911e25i 1.55108i
\(109\) −1.97006e25 −0.670886 −0.335443 0.942060i \(-0.608886\pi\)
−0.335443 + 0.942060i \(0.608886\pi\)
\(110\) −3.13292e24 + 4.72716e25i −0.0951789 + 1.43612i
\(111\) 8.45735e24 0.229455
\(112\) 2.14239e23i 0.00519604i
\(113\) 4.21994e25i 0.915853i 0.888990 + 0.457926i \(0.151408\pi\)
−0.888990 + 0.457926i \(0.848592\pi\)
\(114\) −2.49069e25 −0.484183
\(115\) −3.28887e24 + 4.96248e25i −0.0573224 + 0.864919i
\(116\) 1.71047e26 2.67542
\(117\) 5.76251e25i 0.809634i
\(118\) 1.97963e26i 2.50068i
\(119\) 4.21416e25 0.479043
\(120\) −5.56418e25 3.68765e24i −0.569686 0.0377559i
\(121\) −2.24143e25 −0.206875
\(122\) 7.16264e25i 0.596452i
\(123\) 4.30717e25i 0.323875i
\(124\) −1.74626e26 −1.18669
\(125\) −1.59499e26 3.20888e25i −0.980357 0.197233i
\(126\) 7.27479e25 0.404752
\(127\) 1.11228e26i 0.560619i 0.959910 + 0.280310i \(0.0904372\pi\)
−0.959910 + 0.280310i \(0.909563\pi\)
\(128\) 3.51771e26i 1.60744i
\(129\) 2.11318e26 0.876122
\(130\) −5.20279e26 3.44814e25i −1.95859 0.129805i
\(131\) 2.15522e26 0.737227 0.368613 0.929583i \(-0.379833\pi\)
0.368613 + 0.929583i \(0.379833\pi\)
\(132\) 2.66470e26i 0.828845i
\(133\) 6.88732e25i 0.194942i
\(134\) −3.48500e26 −0.898241
\(135\) 2.70946e25 4.08822e26i 0.0636372 0.960202i
\(136\) 5.88660e26 1.26075
\(137\) 9.54103e26i 1.86461i −0.361672 0.932305i \(-0.617794\pi\)
0.361672 0.932305i \(-0.382206\pi\)
\(138\) 4.53285e26i 0.808877i
\(139\) −2.71293e26 −0.442337 −0.221169 0.975236i \(-0.570987\pi\)
−0.221169 + 0.975236i \(0.570987\pi\)
\(140\) 2.68638e25 4.05340e26i 0.0400467 0.604253i
\(141\) 5.15324e26 0.702816
\(142\) 3.70884e26i 0.463056i
\(143\) 9.45790e26i 1.08167i
\(144\) −8.79465e24 −0.00921908
\(145\) 1.72274e27 + 1.14174e26i 1.65623 + 0.109766i
\(146\) 3.99919e26 0.352827
\(147\) 6.12158e26i 0.495903i
\(148\) 8.60608e26i 0.640522i
\(149\) −2.96654e26 −0.202966 −0.101483 0.994837i \(-0.532359\pi\)
−0.101483 + 0.994837i \(0.532359\pi\)
\(150\) −1.46988e27 1.95691e26i −0.924997 0.123149i
\(151\) 2.46628e26 0.142834 0.0714169 0.997447i \(-0.477248\pi\)
0.0714169 + 0.997447i \(0.477248\pi\)
\(152\) 9.62063e26i 0.513049i
\(153\) 1.72994e27i 0.849942i
\(154\) −1.19400e27 −0.540747
\(155\) −1.75878e27 1.16563e26i −0.734626 0.0486872i
\(156\) −2.93281e27 −1.13038
\(157\) 6.49248e26i 0.231028i 0.993306 + 0.115514i \(0.0368516\pi\)
−0.993306 + 0.115514i \(0.963148\pi\)
\(158\) 8.65959e27i 2.84632i
\(159\) 3.12691e27 0.949841
\(160\) −2.38072e26 + 3.59220e27i −0.0668666 + 1.00893i
\(161\) −1.25343e27 −0.325670
\(162\) 7.45693e26i 0.179317i
\(163\) 4.33189e26i 0.0964567i −0.998836 0.0482283i \(-0.984642\pi\)
0.998836 0.0482283i \(-0.0153575\pi\)
\(164\) 4.38291e27 0.904097
\(165\) −1.77869e26 + 2.68381e27i −0.0340056 + 0.513100i
\(166\) −9.18516e27 −1.62830
\(167\) 1.30454e26i 0.0214536i −0.999942 0.0107268i \(-0.996585\pi\)
0.999942 0.0107268i \(-0.00341451\pi\)
\(168\) 1.40541e27i 0.214505i
\(169\) −3.35310e27 −0.475185
\(170\) 1.56191e28 + 1.03515e27i 2.05610 + 0.136268i
\(171\) 2.82729e27 0.345875
\(172\) 2.15034e28i 2.44569i
\(173\) 6.64872e27i 0.703335i −0.936125 0.351667i \(-0.885615\pi\)
0.936125 0.351667i \(-0.114385\pi\)
\(174\) 1.57359e28 1.54891
\(175\) 5.41130e26 4.06454e27i 0.0495822 0.372422i
\(176\) 1.44345e26 0.0123167
\(177\) 1.12392e28i 0.893447i
\(178\) 1.23920e28i 0.918102i
\(179\) −1.37345e28 −0.948749 −0.474375 0.880323i \(-0.657326\pi\)
−0.474375 + 0.880323i \(0.657326\pi\)
\(180\) 1.66395e28 + 1.10278e27i 1.07210 + 0.0710529i
\(181\) −2.24199e28 −1.34788 −0.673941 0.738786i \(-0.735400\pi\)
−0.673941 + 0.738786i \(0.735400\pi\)
\(182\) 1.31413e28i 0.737473i
\(183\) 4.06653e27i 0.213101i
\(184\) −1.75087e28 −0.857101
\(185\) −5.74457e26 + 8.66781e27i −0.0262791 + 0.396518i
\(186\) −1.60652e28 −0.687026
\(187\) 2.83932e28i 1.13552i
\(188\) 5.24386e28i 1.96191i
\(189\) 1.03261e28 0.361547
\(190\) 1.69178e27 2.55267e28i 0.0554528 0.836710i
\(191\) −6.91841e26 −0.0212368 −0.0106184 0.999944i \(-0.503380\pi\)
−0.0106184 + 0.999944i \(0.503380\pi\)
\(192\) 3.25343e28i 0.935570i
\(193\) 6.51372e28i 1.75535i 0.479259 + 0.877673i \(0.340905\pi\)
−0.479259 + 0.877673i \(0.659095\pi\)
\(194\) 3.30384e28 0.834636
\(195\) −2.95384e28 1.95765e27i −0.699768 0.0463770i
\(196\) −6.22923e28 −1.38431
\(197\) 4.73638e27i 0.0987686i −0.998780 0.0493843i \(-0.984274\pi\)
0.998780 0.0493843i \(-0.0157259\pi\)
\(198\) 4.90144e28i 0.959420i
\(199\) 3.76031e28 0.691131 0.345565 0.938395i \(-0.387687\pi\)
0.345565 + 0.938395i \(0.387687\pi\)
\(200\) 7.55884e27 5.67760e28i 0.130491 0.980143i
\(201\) −1.97858e28 −0.320925
\(202\) 9.75936e28i 1.48775i
\(203\) 4.35134e28i 0.623623i
\(204\) 8.80447e28 1.18666
\(205\) 4.41435e28 + 2.92560e27i 0.559685 + 0.0370930i
\(206\) 1.45547e29 1.73645
\(207\) 5.14543e28i 0.577820i
\(208\) 1.58868e27i 0.0167975i
\(209\) −4.64038e28 −0.462088
\(210\) 2.47141e27 3.72903e28i 0.0231848 0.349828i
\(211\) 2.10105e28 0.185740 0.0928700 0.995678i \(-0.470396\pi\)
0.0928700 + 0.995678i \(0.470396\pi\)
\(212\) 3.18190e29i 2.65148i
\(213\) 2.10566e28i 0.165441i
\(214\) −3.66527e29 −2.71603
\(215\) −1.43536e28 + 2.16576e29i −0.100341 + 1.51401i
\(216\) 1.44242e29 0.951522
\(217\) 4.44237e28i 0.276610i
\(218\) 1.84428e29i 1.08423i
\(219\) 2.27051e28 0.126058
\(220\) −2.73100e29 1.80997e28i −1.43232 0.0949265i
\(221\) 3.12500e29 1.54863
\(222\) 7.91739e28i 0.370826i
\(223\) 2.96364e29i 1.31224i −0.754655 0.656122i \(-0.772196\pi\)
0.754655 0.656122i \(-0.227804\pi\)
\(224\) −9.07325e28 −0.379894
\(225\) 1.66852e29 + 2.22138e28i 0.660770 + 0.0879712i
\(226\) −3.95051e29 −1.48012
\(227\) 2.89017e29i 1.02471i −0.858775 0.512354i \(-0.828774\pi\)
0.858775 0.512354i \(-0.171226\pi\)
\(228\) 1.43894e29i 0.482899i
\(229\) −1.38694e29 −0.440670 −0.220335 0.975424i \(-0.570715\pi\)
−0.220335 + 0.975424i \(0.570715\pi\)
\(230\) −4.64565e29 3.07889e28i −1.39781 0.0926397i
\(231\) −6.77882e28 −0.193199
\(232\) 6.07821e29i 1.64126i
\(233\) 1.00825e29i 0.258000i −0.991645 0.129000i \(-0.958823\pi\)
0.991645 0.129000i \(-0.0411768\pi\)
\(234\) 5.39460e29 1.30846
\(235\) −3.50029e28 + 5.28147e29i −0.0804925 + 1.21453i
\(236\) 1.14368e30 2.49405
\(237\) 4.91641e29i 1.01694i
\(238\) 3.94511e29i 0.774189i
\(239\) 5.29180e29 0.985438 0.492719 0.870188i \(-0.336003\pi\)
0.492719 + 0.870188i \(0.336003\pi\)
\(240\) −2.98774e26 + 4.50810e27i −0.000528083 + 0.00796807i
\(241\) −4.04250e28 −0.0678324 −0.0339162 0.999425i \(-0.510798\pi\)
−0.0339162 + 0.999425i \(0.510798\pi\)
\(242\) 2.09832e29i 0.334333i
\(243\) 6.78242e29i 1.02637i
\(244\) −4.13804e29 −0.594870
\(245\) −6.27391e29 4.15802e28i −0.856963 0.0567951i
\(246\) 4.03217e29 0.523420
\(247\) 5.10727e29i 0.630198i
\(248\) 6.20538e29i 0.727985i
\(249\) −5.21480e29 −0.581763
\(250\) 3.00401e29 1.49316e30i 0.318751 1.58437i
\(251\) 4.46094e29 0.450303 0.225151 0.974324i \(-0.427712\pi\)
0.225151 + 0.974324i \(0.427712\pi\)
\(252\) 4.20284e29i 0.403678i
\(253\) 8.44510e29i 0.771966i
\(254\) −1.04127e30 −0.906026
\(255\) 8.86762e29 + 5.87700e28i 0.734607 + 0.0486859i
\(256\) −1.23915e30 −0.977517
\(257\) 9.74169e29i 0.731931i −0.930628 0.365965i \(-0.880739\pi\)
0.930628 0.365965i \(-0.119261\pi\)
\(258\) 1.97826e30i 1.41591i
\(259\) −2.18933e29 −0.149302
\(260\) 1.99208e29 3.00579e30i 0.129461 1.95340i
\(261\) −1.78625e30 −1.10646
\(262\) 2.01762e30i 1.19144i
\(263\) 1.52948e30i 0.861188i 0.902546 + 0.430594i \(0.141696\pi\)
−0.902546 + 0.430594i \(0.858304\pi\)
\(264\) −9.46907e29 −0.508462
\(265\) −2.12392e29 + 3.20472e30i −0.108784 + 1.64141i
\(266\) 6.44759e29 0.315048
\(267\) 7.03545e29i 0.328020i
\(268\) 2.01338e30i 0.895860i
\(269\) −2.62915e29 −0.111663 −0.0558317 0.998440i \(-0.517781\pi\)
−0.0558317 + 0.998440i \(0.517781\pi\)
\(270\) 3.82721e30 + 2.53648e29i 1.55180 + 0.102845i
\(271\) −2.83737e30 −1.09850 −0.549249 0.835658i \(-0.685086\pi\)
−0.549249 + 0.835658i \(0.685086\pi\)
\(272\) 4.76933e28i 0.0176338i
\(273\) 7.46087e29i 0.263485i
\(274\) 8.93188e30 3.01343
\(275\) −2.73851e30 3.64590e29i −0.882787 0.117529i
\(276\) −2.61875e30 −0.806733
\(277\) 2.96419e30i 0.872788i −0.899756 0.436394i \(-0.856255\pi\)
0.899756 0.436394i \(-0.143745\pi\)
\(278\) 2.53972e30i 0.714868i
\(279\) 1.82363e30 0.490776
\(280\) 1.44039e30 + 9.54614e28i 0.370684 + 0.0245670i
\(281\) 3.78581e30 0.931816 0.465908 0.884833i \(-0.345728\pi\)
0.465908 + 0.884833i \(0.345728\pi\)
\(282\) 4.82423e30i 1.13583i
\(283\) 5.09128e30i 1.14682i −0.819267 0.573412i \(-0.805619\pi\)
0.819267 0.573412i \(-0.194381\pi\)
\(284\) 2.14269e30 0.461829
\(285\) 9.60493e28 1.44926e30i 0.0198122 0.298941i
\(286\) −8.85405e30 −1.74810
\(287\) 1.11499e30i 0.210739i
\(288\) 3.72463e30i 0.674027i
\(289\) −3.61083e30 −0.625727
\(290\) −1.06885e30 + 1.61275e31i −0.177395 + 2.67666i
\(291\) 1.87573e30 0.298200
\(292\) 2.31044e30i 0.351891i
\(293\) 6.28617e30i 0.917362i 0.888601 + 0.458681i \(0.151678\pi\)
−0.888601 + 0.458681i \(0.848322\pi\)
\(294\) −5.73074e30 −0.801437
\(295\) 1.15189e31 + 7.63411e29i 1.54395 + 0.102325i
\(296\) −3.05820e30 −0.392933
\(297\) 6.95730e30i 0.857008i
\(298\) 2.77714e30i 0.328016i
\(299\) −9.29481e30 −1.05281
\(300\) 1.13056e30 8.49186e30i 0.122822 0.922544i
\(301\) −5.47033e30 −0.570075
\(302\) 2.30882e30i 0.230836i
\(303\) 5.54080e30i 0.531544i
\(304\) −7.79464e28 −0.00717590
\(305\) −4.16772e30 2.76215e29i −0.368257 0.0244062i
\(306\) −1.61949e31 −1.37360
\(307\) 1.10314e30i 0.0898261i 0.998991 + 0.0449130i \(0.0143011\pi\)
−0.998991 + 0.0449130i \(0.985699\pi\)
\(308\) 6.89803e30i 0.539313i
\(309\) 8.26332e30 0.620402
\(310\) 1.09121e30 1.64649e31i 0.0786842 1.18724i
\(311\) 2.41872e31 1.67525 0.837627 0.546242i \(-0.183942\pi\)
0.837627 + 0.546242i \(0.183942\pi\)
\(312\) 1.04218e31i 0.693443i
\(313\) 1.66307e31i 1.06318i 0.847002 + 0.531589i \(0.178405\pi\)
−0.847002 + 0.531589i \(0.821595\pi\)
\(314\) −6.07797e30 −0.373369
\(315\) −2.80540e29 + 4.23298e30i −0.0165620 + 0.249899i
\(316\) 5.00287e31 2.83877
\(317\) 2.91127e31i 1.58797i 0.607939 + 0.793984i \(0.291997\pi\)
−0.607939 + 0.793984i \(0.708003\pi\)
\(318\) 2.92727e31i 1.53505i
\(319\) 2.93174e31 1.47823
\(320\) −3.33439e31 2.20986e30i −1.61675 0.107150i
\(321\) −2.08093e31 −0.970385
\(322\) 1.17341e31i 0.526321i
\(323\) 1.53324e31i 0.661573i
\(324\) −4.30806e30 −0.178842
\(325\) 4.01274e30 3.01405e31i 0.160287 1.20395i
\(326\) 4.05532e30 0.155885
\(327\) 1.04708e31i 0.387375i
\(328\) 1.55748e31i 0.554625i
\(329\) −1.33401e31 −0.457308
\(330\) −2.51246e31 1.66513e30i −0.829229 0.0549570i
\(331\) 1.93746e31 0.615719 0.307860 0.951432i \(-0.400387\pi\)
0.307860 + 0.951432i \(0.400387\pi\)
\(332\) 5.30651e31i 1.62399i
\(333\) 8.98737e30i 0.264899i
\(334\) 1.22125e30 0.0346715
\(335\) 1.34393e30 2.02782e31i 0.0367551 0.554586i
\(336\) −1.13867e29 −0.00300024
\(337\) 2.56947e30i 0.0652335i 0.999468 + 0.0326167i \(0.0103841\pi\)
−0.999468 + 0.0326167i \(0.989616\pi\)
\(338\) 3.13902e31i 0.767954i
\(339\) −2.24287e31 −0.528821
\(340\) −5.98035e30 + 9.02357e31i −0.135907 + 2.05065i
\(341\) −2.99308e31 −0.655675
\(342\) 2.64678e31i 0.558974i
\(343\) 3.42981e31i 0.698383i
\(344\) −7.64129e31 −1.50033
\(345\) −2.63753e31 1.74802e30i −0.499411 0.0330984i
\(346\) 6.22423e31 1.13667
\(347\) 3.68925e31i 0.649860i 0.945738 + 0.324930i \(0.105341\pi\)
−0.945738 + 0.324930i \(0.894659\pi\)
\(348\) 9.09106e31i 1.54481i
\(349\) −8.90327e31 −1.45959 −0.729796 0.683665i \(-0.760385\pi\)
−0.729796 + 0.683665i \(0.760385\pi\)
\(350\) 3.80503e31 + 5.06581e30i 0.601877 + 0.0801306i
\(351\) 7.65731e31 1.16879
\(352\) 6.11317e31i 0.900499i
\(353\) 1.18792e32i 1.68890i −0.535638 0.844448i \(-0.679929\pi\)
0.535638 0.844448i \(-0.320071\pi\)
\(354\) 1.05216e32 1.44391
\(355\) 2.15806e31 + 1.43025e30i 0.285897 + 0.0189478i
\(356\) 7.15917e31 0.915668
\(357\) 2.23980e31i 0.276603i
\(358\) 1.28577e32i 1.53329i
\(359\) 3.43106e31 0.395137 0.197569 0.980289i \(-0.436695\pi\)
0.197569 + 0.980289i \(0.436695\pi\)
\(360\) −3.91876e30 + 5.91289e31i −0.0435880 + 0.657686i
\(361\) −6.80184e31 −0.730780
\(362\) 2.09885e32i 2.17833i
\(363\) 1.19130e31i 0.119451i
\(364\) 7.59208e31 0.735518
\(365\) −1.54222e30 + 2.32701e31i −0.0144373 + 0.217840i
\(366\) −3.80690e31 −0.344396
\(367\) 1.81832e32i 1.58981i 0.606735 + 0.794904i \(0.292479\pi\)
−0.606735 + 0.794904i \(0.707521\pi\)
\(368\) 1.41856e30i 0.0119881i
\(369\) −4.57710e31 −0.373904
\(370\) −8.11441e31 5.37781e30i −0.640819 0.0424702i
\(371\) −8.09454e31 −0.618043
\(372\) 9.28126e31i 0.685205i
\(373\) 4.57515e31i 0.326621i −0.986575 0.163311i \(-0.947783\pi\)
0.986575 0.163311i \(-0.0522173\pi\)
\(374\) 2.65804e32 1.83513
\(375\) 1.70550e31 8.47730e31i 0.113884 0.566066i
\(376\) −1.86342e32 −1.20355
\(377\) 3.22672e32i 2.01602i
\(378\) 9.66685e31i 0.584302i
\(379\) 5.21676e31 0.305078 0.152539 0.988297i \(-0.451255\pi\)
0.152539 + 0.988297i \(0.451255\pi\)
\(380\) 1.47474e32 + 9.77385e30i 0.834492 + 0.0553058i
\(381\) −5.91171e31 −0.323706
\(382\) 6.47670e30i 0.0343212i
\(383\) 1.65045e32i 0.846481i 0.906017 + 0.423240i \(0.139107\pi\)
−0.906017 + 0.423240i \(0.860893\pi\)
\(384\) −1.86964e32 −0.928149
\(385\) 4.60445e30 6.94751e31i 0.0221268 0.333864i
\(386\) −6.09785e32 −2.83684
\(387\) 2.24561e32i 1.01146i
\(388\) 1.90871e32i 0.832423i
\(389\) −2.98846e32 −1.26205 −0.631025 0.775762i \(-0.717366\pi\)
−0.631025 + 0.775762i \(0.717366\pi\)
\(390\) 1.83267e31 2.76525e32i 0.0749507 1.13091i
\(391\) 2.79036e32 1.10523
\(392\) 2.21358e32i 0.849217i
\(393\) 1.14549e32i 0.425681i
\(394\) 4.43399e31 0.159622
\(395\) 5.03875e32 + 3.33943e31i 1.75735 + 0.116468i
\(396\) 2.83169e32 0.956877
\(397\) 3.98902e32i 1.30612i −0.757304 0.653062i \(-0.773484\pi\)
0.757304 0.653062i \(-0.226516\pi\)
\(398\) 3.52023e32i 1.11695i
\(399\) 3.66057e31 0.112561
\(400\) −4.59999e30 6.12417e29i −0.0137090 0.00182515i
\(401\) 1.04555e32 0.302024 0.151012 0.988532i \(-0.451747\pi\)
0.151012 + 0.988532i \(0.451747\pi\)
\(402\) 1.85226e32i 0.518651i
\(403\) 3.29423e32i 0.894213i
\(404\) 5.63824e32 1.48380
\(405\) −4.33896e31 2.87564e30i −0.110713 0.00733747i
\(406\) −4.07352e32 −1.00785
\(407\) 1.47508e32i 0.353904i
\(408\) 3.12869e32i 0.727966i
\(409\) −5.94901e32 −1.34247 −0.671234 0.741246i \(-0.734235\pi\)
−0.671234 + 0.741246i \(0.734235\pi\)
\(410\) −2.73882e31 + 4.13251e32i −0.0599466 + 0.904516i
\(411\) 5.07100e32 1.07664
\(412\) 8.40864e32i 1.73185i
\(413\) 2.90946e32i 0.581349i
\(414\) 4.81692e32 0.933825
\(415\) 3.54210e31 5.34457e32i 0.0666285 1.00534i
\(416\) −6.72825e32 −1.22810
\(417\) 1.44191e32i 0.255409i
\(418\) 4.34411e32i 0.746788i
\(419\) 1.11614e33 1.86227 0.931136 0.364671i \(-0.118819\pi\)
0.931136 + 0.364671i \(0.118819\pi\)
\(420\) 2.15436e32 + 1.42780e31i 0.348900 + 0.0231233i
\(421\) −4.92553e32 −0.774331 −0.387166 0.922010i \(-0.626546\pi\)
−0.387166 + 0.922010i \(0.626546\pi\)
\(422\) 1.96691e32i 0.300177i
\(423\) 5.47619e32i 0.811379i
\(424\) −1.13070e33 −1.62657
\(425\) −1.20465e32 + 9.04837e32i −0.168267 + 1.26389i
\(426\) 1.97123e32 0.267372
\(427\) 1.05269e32i 0.138661i
\(428\) 2.11752e33i 2.70883i
\(429\) −5.02682e32 −0.624564
\(430\) −2.02749e33 1.34371e32i −2.44682 0.162163i
\(431\) −4.71497e31 −0.0552730 −0.0276365 0.999618i \(-0.508798\pi\)
−0.0276365 + 0.999618i \(0.508798\pi\)
\(432\) 1.16865e31i 0.0133087i
\(433\) 3.61224e30i 0.00399648i 0.999998 + 0.00199824i \(0.000636061\pi\)
−0.999998 + 0.00199824i \(0.999364\pi\)
\(434\) 4.15875e32 0.447034
\(435\) −6.06830e31 + 9.15626e32i −0.0633799 + 0.956319i
\(436\) 1.06549e33 1.08136
\(437\) 4.56036e32i 0.449760i
\(438\) 2.12555e32i 0.203725i
\(439\) −3.57029e32 −0.332580 −0.166290 0.986077i \(-0.553179\pi\)
−0.166290 + 0.986077i \(0.553179\pi\)
\(440\) 6.43178e31 9.70471e32i 0.0582335 0.878666i
\(441\) 6.50522e32 0.572505
\(442\) 2.92549e33i 2.50276i
\(443\) 1.54821e33i 1.28761i 0.765190 + 0.643805i \(0.222645\pi\)
−0.765190 + 0.643805i \(0.777355\pi\)
\(444\) −4.57408e32 −0.369842
\(445\) 7.21052e32 + 4.77876e31i 0.566848 + 0.0375678i
\(446\) 2.77442e33 2.12074
\(447\) 1.57670e32i 0.117194i
\(448\) 8.42208e32i 0.608757i
\(449\) −2.49721e33 −1.75540 −0.877701 0.479209i \(-0.840924\pi\)
−0.877701 + 0.479209i \(0.840924\pi\)
\(450\) −2.07955e32 + 1.56199e33i −0.142172 + 1.06788i
\(451\) 7.51230e32 0.499535
\(452\) 2.28232e33i 1.47620i
\(453\) 1.31082e32i 0.0824734i
\(454\) 2.70564e33 1.65605
\(455\) 7.64653e32 + 5.06773e31i 0.455326 + 0.0301766i
\(456\) 5.11331e32 0.296238
\(457\) 3.97112e32i 0.223851i −0.993717 0.111926i \(-0.964298\pi\)
0.993717 0.111926i \(-0.0357019\pi\)
\(458\) 1.29839e33i 0.712174i
\(459\) −2.29878e33 −1.22698
\(460\) 1.77876e32 2.68391e33i 0.0923941 1.39410i
\(461\) −8.07920e32 −0.408420 −0.204210 0.978927i \(-0.565463\pi\)
−0.204210 + 0.978927i \(0.565463\pi\)
\(462\) 6.34602e32i 0.312232i
\(463\) 9.97158e32i 0.477531i 0.971077 + 0.238766i \(0.0767427\pi\)
−0.971077 + 0.238766i \(0.923257\pi\)
\(464\) 4.92457e31 0.0229559
\(465\) 6.19526e31 9.34783e32i 0.0281124 0.424179i
\(466\) 9.43880e32 0.416959
\(467\) 3.43650e33i 1.47793i −0.673742 0.738967i \(-0.735314\pi\)
0.673742 0.738967i \(-0.264686\pi\)
\(468\) 3.11660e33i 1.30499i
\(469\) 5.12190e32 0.208819
\(470\) −4.94428e33 3.27681e32i −1.96282 0.130085i
\(471\) −3.45072e32 −0.133398
\(472\) 4.06411e33i 1.53000i
\(473\) 3.68567e33i 1.35130i
\(474\) 4.60252e33 1.64349
\(475\) 1.47880e33 + 1.96879e32i 0.514326 + 0.0684746i
\(476\) −2.27919e33 −0.772136
\(477\) 3.32287e33i 1.09656i
\(478\) 4.95394e33i 1.59258i
\(479\) −4.30103e33 −1.34704 −0.673518 0.739171i \(-0.735218\pi\)
−0.673518 + 0.739171i \(0.735218\pi\)
\(480\) −1.90923e33 1.26534e32i −0.582564 0.0386093i
\(481\) −1.62350e33 −0.482656
\(482\) 3.78440e32i 0.109625i
\(483\) 6.66193e32i 0.188045i
\(484\) 1.21225e33 0.333447
\(485\) −1.27407e32 + 1.92240e33i −0.0341524 + 0.515315i
\(486\) −6.34939e33 −1.65874
\(487\) 1.77385e33i 0.451654i 0.974167 + 0.225827i \(0.0725083\pi\)
−0.974167 + 0.225827i \(0.927492\pi\)
\(488\) 1.47047e33i 0.364928i
\(489\) 2.30237e32 0.0556948
\(490\) 3.89255e32 5.87335e33i 0.0917875 1.38495i
\(491\) 7.59245e33 1.74527 0.872637 0.488370i \(-0.162408\pi\)
0.872637 + 0.488370i \(0.162408\pi\)
\(492\) 2.32949e33i 0.522033i
\(493\) 9.68683e33i 2.11639i
\(494\) 4.78120e33 1.01847
\(495\) 2.85200e33 + 1.89016e32i 0.592358 + 0.0392585i
\(496\) −5.02760e31 −0.0101822
\(497\) 5.45088e32i 0.107649i
\(498\) 4.88186e33i 0.940196i
\(499\) −2.93681e33 −0.551593 −0.275797 0.961216i \(-0.588942\pi\)
−0.275797 + 0.961216i \(0.588942\pi\)
\(500\) 8.62639e33 + 1.73549e33i 1.58017 + 0.317906i
\(501\) 6.93353e31 0.0123875
\(502\) 4.17613e33i 0.727742i
\(503\) 4.24338e33i 0.721294i 0.932702 + 0.360647i \(0.117444\pi\)
−0.932702 + 0.360647i \(0.882556\pi\)
\(504\) −1.49349e33 −0.247640
\(505\) 5.67868e33 + 3.76354e32i 0.918555 + 0.0608771i
\(506\) −7.90592e33 −1.24759
\(507\) 1.78215e33i 0.274376i
\(508\) 6.01567e33i 0.903624i
\(509\) −2.39447e33 −0.350943 −0.175472 0.984484i \(-0.556145\pi\)
−0.175472 + 0.984484i \(0.556145\pi\)
\(510\) −5.50178e32 + 8.30146e33i −0.0786821 + 1.18721i
\(511\) −5.87761e32 −0.0820237
\(512\) 2.03101e32i 0.0276591i
\(513\) 3.75695e33i 0.499307i
\(514\) 9.11972e33 1.18289
\(515\) −5.61278e32 + 8.46894e33i −0.0710538 + 1.07211i
\(516\) −1.14289e34 −1.41216
\(517\) 8.98796e33i 1.08400i
\(518\) 2.04955e33i 0.241289i
\(519\) 3.53376e33 0.406111
\(520\) 1.06811e34 + 7.07891e32i 1.19833 + 0.0794191i
\(521\) 8.32276e33 0.911582 0.455791 0.890087i \(-0.349356\pi\)
0.455791 + 0.890087i \(0.349356\pi\)
\(522\) 1.67221e34i 1.78817i
\(523\) 1.32749e34i 1.38599i −0.720944 0.692993i \(-0.756292\pi\)
0.720944 0.692993i \(-0.243708\pi\)
\(524\) −1.16563e34 −1.18829
\(525\) 2.16028e33 + 2.87607e32i 0.215039 + 0.0286292i
\(526\) −1.43183e34 −1.39178
\(527\) 9.88950e33i 0.938732i
\(528\) 7.67185e31i 0.00711174i
\(529\) 2.74629e33 0.248629
\(530\) −3.00011e34 1.98832e33i −2.65270 0.175808i
\(531\) −1.19435e34 −1.03146
\(532\) 3.72494e33i 0.314213i
\(533\) 8.26815e33i 0.681269i
\(534\) 6.58627e33 0.530119
\(535\) 1.41345e33 2.13271e34i 0.111137 1.67691i
\(536\) 7.15459e33 0.549572
\(537\) 7.29983e33i 0.547815i
\(538\) 2.46129e33i 0.180461i
\(539\) −1.06769e34 −0.764865
\(540\) −1.46539e33 + 2.21108e34i −0.102572 + 1.54768i
\(541\) 1.45952e34 0.998260 0.499130 0.866527i \(-0.333653\pi\)
0.499130 + 0.866527i \(0.333653\pi\)
\(542\) 2.65622e34i 1.77530i
\(543\) 1.19160e34i 0.778277i
\(544\) 2.01986e34 1.28925
\(545\) 1.07313e34 + 7.11217e32i 0.669418 + 0.0443655i
\(546\) 6.98453e33 0.425823
\(547\) 3.28646e34i 1.95834i 0.203054 + 0.979168i \(0.434913\pi\)
−0.203054 + 0.979168i \(0.565087\pi\)
\(548\) 5.16018e34i 3.00544i
\(549\) 4.32138e33 0.246019
\(550\) 3.41313e33 2.56367e34i 0.189941 1.42669i
\(551\) −1.58314e34 −0.861242
\(552\) 9.30579e33i 0.494897i
\(553\) 1.27270e34i 0.661701i
\(554\) 2.77494e34 1.41053
\(555\) −4.60689e33 3.05321e32i −0.228952 0.0151738i
\(556\) 1.46726e34 0.712973
\(557\) 2.79942e34i 1.33008i −0.746806 0.665042i \(-0.768414\pi\)
0.746806 0.665042i \(-0.231586\pi\)
\(558\) 1.70720e34i 0.793151i
\(559\) −4.05651e34 −1.84291
\(560\) 7.73428e30 1.16700e32i 0.000343613 0.00518467i
\(561\) 1.50908e34 0.655658
\(562\) 3.54410e34i 1.50592i
\(563\) 2.94294e34i 1.22300i −0.791244 0.611500i \(-0.790566\pi\)
0.791244 0.611500i \(-0.209434\pi\)
\(564\) −2.78708e34 −1.13282
\(565\) 1.52345e33 2.29869e34i 0.0605651 0.913848i
\(566\) 4.76623e34 1.85340
\(567\) 1.09594e33i 0.0416869i
\(568\) 7.61413e33i 0.283313i
\(569\) −1.44033e34 −0.524275 −0.262137 0.965031i \(-0.584427\pi\)
−0.262137 + 0.965031i \(0.584427\pi\)
\(570\) 1.35673e34 + 8.99170e32i 0.483123 + 0.0320189i
\(571\) −6.02200e33 −0.209792 −0.104896 0.994483i \(-0.533451\pi\)
−0.104896 + 0.994483i \(0.533451\pi\)
\(572\) 5.11522e34i 1.74347i
\(573\) 3.67710e32i 0.0122623i
\(574\) −1.04380e34 −0.340579
\(575\) 3.58303e33 2.69129e34i 0.114394 0.859235i
\(576\) 3.45732e34 1.08009
\(577\) 3.36622e34i 1.02907i 0.857470 + 0.514534i \(0.172035\pi\)
−0.857470 + 0.514534i \(0.827965\pi\)
\(578\) 3.38030e34i 1.01125i
\(579\) −3.46201e34 −1.01355
\(580\) −9.31729e34 6.17502e33i −2.66956 0.176925i
\(581\) 1.34994e34 0.378542
\(582\) 1.75597e34i 0.481925i
\(583\) 5.45376e34i 1.46500i
\(584\) −8.21021e33 −0.215871
\(585\) −2.08034e33 + 3.13896e34i −0.0535409 + 0.807861i
\(586\) −5.88482e34 −1.48256
\(587\) 2.29972e34i 0.567152i 0.958950 + 0.283576i \(0.0915208\pi\)
−0.958950 + 0.283576i \(0.908479\pi\)
\(588\) 3.31080e34i 0.799312i
\(589\) 1.61627e34 0.382007
\(590\) −7.14671e33 + 1.07834e35i −0.165370 + 2.49521i
\(591\) 2.51736e33 0.0570298
\(592\) 2.47775e32i 0.00549587i
\(593\) 2.56446e34i 0.556945i −0.960444 0.278472i \(-0.910172\pi\)
0.960444 0.278472i \(-0.0898280\pi\)
\(594\) 6.51311e34 1.38503
\(595\) −2.29554e34 1.52136e33i −0.477994 0.0316790i
\(596\) 1.60443e34 0.327146
\(597\) 1.99858e34i 0.399064i
\(598\) 8.70138e34i 1.70147i
\(599\) 6.53223e34 1.25091 0.625455 0.780260i \(-0.284913\pi\)
0.625455 + 0.780260i \(0.284913\pi\)
\(600\) 3.01761e34 + 4.01748e33i 0.565942 + 0.0753464i
\(601\) 1.46105e34 0.268370 0.134185 0.990956i \(-0.457158\pi\)
0.134185 + 0.990956i \(0.457158\pi\)
\(602\) 5.12107e34i 0.921308i
\(603\) 2.10258e34i 0.370498i
\(604\) −1.33387e34 −0.230224
\(605\) 1.22095e34 + 8.09182e32i 0.206422 + 0.0136806i
\(606\) 5.18704e34 0.859038
\(607\) 1.63446e34i 0.265165i 0.991172 + 0.132582i \(0.0423269\pi\)
−0.991172 + 0.132582i \(0.957673\pi\)
\(608\) 3.30112e34i 0.524646i
\(609\) −2.31271e34 −0.360085
\(610\) 2.58580e33 3.90163e34i 0.0394432 0.595146i
\(611\) −9.89229e34 −1.47837
\(612\) 9.35625e34i 1.36996i
\(613\) 6.22253e34i 0.892712i −0.894855 0.446356i \(-0.852722\pi\)
0.894855 0.446356i \(-0.147278\pi\)
\(614\) −1.03271e34 −0.145169
\(615\) −1.55494e33 + 2.34620e34i −0.0214178 + 0.323166i
\(616\) 2.45124e34 0.330846
\(617\) 4.34980e34i 0.575314i −0.957733 0.287657i \(-0.907124\pi\)
0.957733 0.287657i \(-0.0928763\pi\)
\(618\) 7.73574e34i 1.00264i
\(619\) 1.76940e34 0.224747 0.112373 0.993666i \(-0.464155\pi\)
0.112373 + 0.993666i \(0.464155\pi\)
\(620\) 9.51222e34 + 6.30421e33i 1.18409 + 0.0784756i
\(621\) 6.83733e34 0.834145
\(622\) 2.26430e35i 2.70741i
\(623\) 1.82125e34i 0.213437i
\(624\) −8.44376e32 −0.00969903
\(625\) 8.57241e34 + 2.32375e34i 0.965168 + 0.261632i
\(626\) −1.55689e35 −1.71822
\(627\) 2.46633e34i 0.266813i
\(628\) 3.51140e34i 0.372379i
\(629\) 4.87384e34 0.506685
\(630\) −3.96272e34 2.62629e33i −0.403866 0.0267661i
\(631\) 1.04208e35 1.04120 0.520601 0.853800i \(-0.325708\pi\)
0.520601 + 0.853800i \(0.325708\pi\)
\(632\) 1.77778e35i 1.74147i
\(633\) 1.11669e34i 0.107248i
\(634\) −2.72540e35 −2.56634
\(635\) 4.01547e33 6.05882e34i 0.0370736 0.559392i
\(636\) −1.69116e35 −1.53098
\(637\) 1.17511e35i 1.04313i
\(638\) 2.74457e35i 2.38899i
\(639\) −2.23762e34 −0.190997
\(640\) 1.26994e34 1.91616e35i 0.106300 1.60392i
\(641\) −8.19994e34 −0.673109 −0.336555 0.941664i \(-0.609262\pi\)
−0.336555 + 0.941664i \(0.609262\pi\)
\(642\) 1.94807e35i 1.56825i
\(643\) 5.73324e34i 0.452650i −0.974052 0.226325i \(-0.927329\pi\)
0.974052 0.226325i \(-0.0726712\pi\)
\(644\) 6.77908e34 0.524925
\(645\) −1.15109e35 7.62883e33i −0.874204 0.0579377i
\(646\) −1.43535e35 −1.06918
\(647\) 1.81756e35i 1.32796i −0.747751 0.663979i \(-0.768866\pi\)
0.747751 0.663979i \(-0.231134\pi\)
\(648\) 1.53088e34i 0.109712i
\(649\) 1.96027e35 1.37803
\(650\) 2.82161e35 + 3.75654e34i 1.94572 + 0.259043i
\(651\) 2.36110e34 0.159717
\(652\) 2.34286e34i 0.155472i
\(653\) 1.90602e35i 1.24083i 0.784274 + 0.620415i \(0.213036\pi\)
−0.784274 + 0.620415i \(0.786964\pi\)
\(654\) 9.80226e34 0.626043
\(655\) −1.17399e35 7.78062e33i −0.735613 0.0487526i
\(656\) 1.26187e33 0.00775742
\(657\) 2.41280e34i 0.145531i
\(658\) 1.24884e35i 0.739064i
\(659\) 6.08809e34 0.353520 0.176760 0.984254i \(-0.443438\pi\)
0.176760 + 0.984254i \(0.443438\pi\)
\(660\) 9.61988e33 1.45151e35i 0.0548113 0.827031i
\(661\) −2.17257e35 −1.21466 −0.607332 0.794448i \(-0.707760\pi\)
−0.607332 + 0.794448i \(0.707760\pi\)
\(662\) 1.81376e35i 0.995074i
\(663\) 1.66092e35i 0.894190i
\(664\) 1.88568e35 0.996249
\(665\) −2.48641e33 + 3.75166e34i −0.0128914 + 0.194515i
\(666\) 8.41357e34 0.428107
\(667\) 2.88119e35i 1.43879i
\(668\) 7.05547e33i 0.0345796i
\(669\) 1.57516e35 0.757700
\(670\) 1.89835e35 + 1.25813e34i 0.896275 + 0.0594005i
\(671\) −7.09259e34 −0.328680
\(672\) 4.82238e34i 0.219354i
\(673\) 7.80776e34i 0.348609i 0.984692 + 0.174304i \(0.0557676\pi\)
−0.984692 + 0.174304i \(0.944232\pi\)
\(674\) −2.40542e34 −0.105425
\(675\) −2.95180e34 + 2.21716e35i −0.126996 + 0.953892i
\(676\) 1.81349e35 0.765918
\(677\) 2.43537e35i 1.00973i −0.863198 0.504866i \(-0.831542\pi\)
0.863198 0.504866i \(-0.168458\pi\)
\(678\) 2.09968e35i 0.854636i
\(679\) −4.85565e34 −0.194033
\(680\) −3.20655e35 2.12514e34i −1.25799 0.0833730i
\(681\) 1.53611e35 0.591674
\(682\) 2.80199e35i 1.05965i
\(683\) 4.30905e35i 1.60001i −0.599994 0.800004i \(-0.704830\pi\)
0.599994 0.800004i \(-0.295170\pi\)
\(684\) −1.52912e35 −0.557492
\(685\) −3.44443e34 + 5.19719e35i −0.123306 + 1.86053i
\(686\) 3.21083e35 1.12867
\(687\) 7.37149e34i 0.254446i
\(688\) 6.19098e33i 0.0209848i
\(689\) −6.00249e35 −1.99798
\(690\) 1.63641e34 2.46913e35i 0.0534909 0.807107i
\(691\) 2.98951e35 0.959675 0.479838 0.877357i \(-0.340696\pi\)
0.479838 + 0.877357i \(0.340696\pi\)
\(692\) 3.59590e35i 1.13366i
\(693\) 7.20364e34i 0.223042i
\(694\) −3.45371e35 −1.05025
\(695\) 1.47779e35 + 9.79401e33i 0.441369 + 0.0292517i
\(696\) −3.23053e35 −0.947674
\(697\) 2.48215e35i 0.715186i
\(698\) 8.33483e35i 2.35887i
\(699\) 5.35880e34 0.148971
\(700\) −2.92665e34 + 2.19827e35i −0.0799182 + 0.600282i
\(701\) −5.64961e35 −1.51546 −0.757728 0.652570i \(-0.773691\pi\)
−0.757728 + 0.652570i \(0.773691\pi\)
\(702\) 7.16843e35i 1.88890i
\(703\) 7.96544e34i 0.206190i
\(704\) −5.67444e35 −1.44299
\(705\) −2.80707e35 1.86038e34i −0.701277 0.0464770i
\(706\) 1.11208e36 2.72945
\(707\) 1.43433e35i 0.345866i
\(708\) 6.07861e35i 1.44009i
\(709\) 3.85512e35 0.897345 0.448672 0.893696i \(-0.351897\pi\)
0.448672 + 0.893696i \(0.351897\pi\)
\(710\) −1.33894e34 + 2.02028e35i −0.0306218 + 0.462043i
\(711\) −5.22452e35 −1.17402
\(712\) 2.54403e35i 0.561724i
\(713\) 2.94147e35i 0.638183i
\(714\) −2.09680e35 −0.447023
\(715\) 3.41442e34 5.15191e35i 0.0715305 1.07930i
\(716\) 7.42821e35 1.52922
\(717\) 2.81256e35i 0.569000i
\(718\) 3.21200e35i 0.638588i
\(719\) 9.36871e35 1.83050 0.915248 0.402892i \(-0.131995\pi\)
0.915248 + 0.402892i \(0.131995\pi\)
\(720\) 4.79062e33 + 3.17498e32i 0.00919890 + 0.000609656i
\(721\) −2.13910e35 −0.403684
\(722\) 6.36757e35i 1.18102i
\(723\) 2.14856e34i 0.0391669i
\(724\) 1.21256e36 2.17256
\(725\) −9.34289e35 1.24386e35i −1.64534 0.219052i
\(726\) 1.11525e35 0.193047
\(727\) 3.25564e35i 0.553931i −0.960880 0.276966i \(-0.910671\pi\)
0.960880 0.276966i \(-0.0893288\pi\)
\(728\) 2.69787e35i 0.451210i
\(729\) −2.92991e35 −0.481681
\(730\) −2.17844e35 1.44376e34i −0.352055 0.0233324i
\(731\) 1.21779e36 1.93466
\(732\) 2.19935e35i 0.343483i
\(733\) 2.07689e35i 0.318870i 0.987208 + 0.159435i \(0.0509673\pi\)
−0.987208 + 0.159435i \(0.949033\pi\)
\(734\) −1.70223e36 −2.56931
\(735\) 2.20997e34 3.33455e35i 0.0327940 0.494818i
\(736\) −6.00776e35 −0.876475
\(737\) 3.45092e35i 0.494984i
\(738\) 4.28487e35i 0.604273i
\(739\) 1.12620e36 1.56156 0.780781 0.624805i \(-0.214821\pi\)
0.780781 + 0.624805i \(0.214821\pi\)
\(740\) 3.10690e34 4.68790e35i 0.0423576 0.639120i
\(741\) 2.71449e35 0.363881
\(742\) 7.57774e35i 0.998829i
\(743\) 7.41657e35i 0.961264i 0.876922 + 0.480632i \(0.159593\pi\)
−0.876922 + 0.480632i \(0.840407\pi\)
\(744\) 3.29812e35 0.420344
\(745\) 1.61594e35 + 1.07096e34i 0.202521 + 0.0134221i
\(746\) 4.28304e35 0.527858
\(747\) 5.54161e35i 0.671628i
\(748\) 1.53562e36i 1.83027i
\(749\) 5.38685e35 0.631411
\(750\) 7.93607e35 + 1.59661e35i 0.914828 + 0.184049i
\(751\) −9.24971e35 −1.04865 −0.524323 0.851520i \(-0.675681\pi\)
−0.524323 + 0.851520i \(0.675681\pi\)
\(752\) 1.50975e34i 0.0168338i
\(753\) 2.37096e35i 0.260008i
\(754\) −3.02071e36 −3.25812
\(755\) −1.34343e35 8.90359e33i −0.142521 0.00944557i
\(756\) −5.58479e35 −0.582753
\(757\) 2.20319e35i 0.226127i 0.993588 + 0.113064i \(0.0360664\pi\)
−0.993588 + 0.113064i \(0.963934\pi\)
\(758\) 4.88369e35i 0.493041i
\(759\) −4.48852e35 −0.445739
\(760\) −3.47317e34 + 5.24055e35i −0.0339278 + 0.511926i
\(761\) −3.87186e35 −0.372059 −0.186029 0.982544i \(-0.559562\pi\)
−0.186029 + 0.982544i \(0.559562\pi\)
\(762\) 5.53427e35i 0.523147i
\(763\) 2.71054e35i 0.252057i
\(764\) 3.74176e34 0.0342302
\(765\) 6.24531e34 9.42335e35i 0.0562064 0.848081i
\(766\) −1.54507e36 −1.36801
\(767\) 2.15750e36i 1.87936i
\(768\) 6.58601e35i 0.564426i
\(769\) 5.73844e35 0.483854 0.241927 0.970294i \(-0.422221\pi\)
0.241927 + 0.970294i \(0.422221\pi\)
\(770\) 6.50394e35 + 4.31047e34i 0.539563 + 0.0357595i
\(771\) 5.17765e35 0.422623
\(772\) 3.52289e36i 2.82932i
\(773\) 1.94109e35i 0.153392i 0.997055 + 0.0766959i \(0.0244371\pi\)
−0.997055 + 0.0766959i \(0.975563\pi\)
\(774\) 2.10224e36 1.63463
\(775\) 9.53836e35 + 1.26988e35i 0.729798 + 0.0971613i
\(776\) −6.78267e35 −0.510657
\(777\) 1.16362e35i 0.0862080i
\(778\) 2.79766e36i 2.03962i
\(779\) −4.05665e35 −0.291038
\(780\) 1.59756e36 + 1.05878e35i 1.12791 + 0.0747520i
\(781\) 3.67257e35 0.255171
\(782\) 2.61221e36i 1.78617i
\(783\) 2.37360e36i 1.59730i
\(784\) −1.79344e34 −0.0118778
\(785\) 2.34387e34 3.53658e35i 0.0152778 0.230523i
\(786\) −1.07235e36 −0.687949
\(787\) 7.50226e35i 0.473705i −0.971546 0.236852i \(-0.923884\pi\)
0.971546 0.236852i \(-0.0761158\pi\)
\(788\) 2.56163e35i 0.159198i
\(789\) −8.12912e35 −0.497257
\(790\) −3.12622e35 + 4.71705e36i −0.188226 + 2.84009i
\(791\) 5.80607e35 0.344093
\(792\) 1.00625e36i 0.587004i
\(793\) 7.80622e35i 0.448256i
\(794\) 3.73434e36 2.11085
\(795\) −1.70329e36 1.12885e35i −0.947761 0.0628127i
\(796\) −2.03373e36 −1.11399
\(797\) 2.78320e36i 1.50077i 0.660998 + 0.750387i \(0.270133\pi\)
−0.660998 + 0.750387i \(0.729867\pi\)
\(798\) 3.42686e35i 0.181911i
\(799\) 2.96973e36 1.55197
\(800\) 2.59366e35 1.94815e36i 0.133440 1.00230i
\(801\) −7.47636e35 −0.378690
\(802\) 9.78801e35i 0.488107i
\(803\) 3.96008e35i 0.194429i
\(804\) 1.07010e36 0.517276
\(805\) 6.82770e35 + 4.52505e34i 0.324957 + 0.0215365i
\(806\) 3.08391e36 1.44515
\(807\) 1.39738e35i 0.0644754i
\(808\) 2.00357e36i 0.910252i
\(809\) −2.84960e36 −1.27476 −0.637379 0.770550i \(-0.719982\pi\)
−0.637379 + 0.770550i \(0.719982\pi\)
\(810\) 2.69204e34 4.06194e35i 0.0118582 0.178925i
\(811\) −2.18452e36 −0.947535 −0.473767 0.880650i \(-0.657106\pi\)
−0.473767 + 0.880650i \(0.657106\pi\)
\(812\) 2.35338e36i 1.00518i
\(813\) 1.50804e36i 0.634282i
\(814\) −1.38090e36 −0.571950
\(815\) −1.56387e34 + 2.35967e35i −0.00637866 + 0.0962455i
\(816\) 2.53487e34 0.0101819
\(817\) 1.99027e36i 0.787291i
\(818\) 5.56920e36i 2.16958i
\(819\) −7.92844e35 −0.304186
\(820\) −2.38746e36 1.58229e35i −0.902118 0.0597877i
\(821\) −3.44892e36 −1.28349 −0.641746 0.766917i \(-0.721790\pi\)
−0.641746 + 0.766917i \(0.721790\pi\)
\(822\) 4.74724e36i 1.73998i
\(823\) 6.75510e35i 0.243856i −0.992539 0.121928i \(-0.961092\pi\)
0.992539 0.121928i \(-0.0389078\pi\)
\(824\) −2.98803e36 −1.06242
\(825\) 1.93777e35 1.45550e36i 0.0678624 0.509728i
\(826\) −2.72370e36 −0.939527
\(827\) 1.98402e36i 0.674105i −0.941486 0.337053i \(-0.890570\pi\)
0.941486 0.337053i \(-0.109430\pi\)
\(828\) 2.78286e36i 0.931349i
\(829\) −1.25430e36 −0.413496 −0.206748 0.978394i \(-0.566288\pi\)
−0.206748 + 0.978394i \(0.566288\pi\)
\(830\) 5.00334e36 + 3.31596e35i 1.62474 + 0.107679i
\(831\) 1.57545e36 0.503955
\(832\) 6.24537e36i 1.96796i
\(833\) 3.52777e36i 1.09506i
\(834\) 1.34985e36 0.412771
\(835\) −4.70954e33 + 7.10607e34i −0.00141872 + 0.0214066i
\(836\) 2.50971e36 0.744808
\(837\) 2.42326e36i 0.708487i
\(838\) 1.04488e37i 3.00965i
\(839\) −3.59072e36 −1.01896 −0.509480 0.860483i \(-0.670162\pi\)
−0.509480 + 0.860483i \(0.670162\pi\)
\(840\) −5.07371e34 + 7.65557e35i −0.0141852 + 0.214036i
\(841\) 6.37178e36 1.75514
\(842\) 4.61106e36i 1.25141i
\(843\) 2.01214e36i 0.538038i
\(844\) −1.13633e36 −0.299381
\(845\) 1.82650e36 + 1.21051e35i 0.474145 + 0.0314239i
\(846\) 5.12656e36 1.31128
\(847\) 3.08390e35i 0.0777245i
\(848\) 9.16091e34i 0.0227505i
\(849\) 2.70599e36 0.662185
\(850\) −8.47067e36 1.12774e36i −2.04259 0.271939i
\(851\) −1.44964e36 −0.344462
\(852\) 1.13883e36i 0.266664i
\(853\) 4.77260e35i 0.110127i 0.998483 + 0.0550633i \(0.0175361\pi\)
−0.998483 + 0.0550633i \(0.982464\pi\)
\(854\) 9.85483e35 0.224092
\(855\) −1.54008e36 1.02069e35i −0.345118 0.0228726i
\(856\) 7.52468e36 1.66175
\(857\) 3.37504e36i 0.734545i 0.930113 + 0.367272i \(0.119708\pi\)
−0.930113 + 0.367272i \(0.880292\pi\)
\(858\) 4.70588e36i 1.00937i
\(859\) −4.53153e36 −0.957923 −0.478961 0.877836i \(-0.658987\pi\)
−0.478961 + 0.877836i \(0.658987\pi\)
\(860\) 7.76299e35 1.17133e37i 0.161733 2.44034i
\(861\) −5.92608e35 −0.121683
\(862\) 4.41394e35i 0.0893276i
\(863\) 2.57027e36i 0.512677i −0.966587 0.256338i \(-0.917484\pi\)
0.966587 0.256338i \(-0.0825161\pi\)
\(864\) 4.94935e36 0.973030
\(865\) −2.40027e35 + 3.62169e36i −0.0465114 + 0.701795i
\(866\) −3.38162e34 −0.00645878
\(867\) 1.91914e36i 0.361299i
\(868\) 2.40262e36i 0.445849i
\(869\) 8.57490e36 1.56849
\(870\) −8.57168e36 5.68087e35i −1.54552 0.102429i
\(871\) 3.79814e36 0.675062
\(872\) 3.78625e36i 0.663366i
\(873\) 1.99328e36i 0.344262i
\(874\) 4.26920e36 0.726865
\(875\) −4.41499e35 + 2.19450e36i −0.0741019 + 0.368328i
\(876\) −1.22798e36 −0.203185
\(877\) 1.02943e37i 1.67919i −0.543213 0.839595i \(-0.682792\pi\)
0.543213 0.839595i \(-0.317208\pi\)
\(878\) 3.34234e36i 0.537488i
\(879\) −3.34106e36 −0.529692
\(880\) −7.86276e34 5.21103e33i −0.0122897 0.000814498i
\(881\) −1.32860e36 −0.204737 −0.102369 0.994747i \(-0.532642\pi\)
−0.102369 + 0.994747i \(0.532642\pi\)
\(882\) 6.08989e36i 0.925235i
\(883\) 8.24109e36i 1.23446i 0.786784 + 0.617228i \(0.211745\pi\)
−0.786784 + 0.617228i \(0.788255\pi\)
\(884\) −1.69013e37 −2.49613
\(885\) −4.05748e35 + 6.12221e36i −0.0590835 + 0.891492i
\(886\) −1.44937e37 −2.08093
\(887\) 2.45432e36i 0.347445i 0.984795 + 0.173722i \(0.0555795\pi\)
−0.984795 + 0.173722i \(0.944421\pi\)
\(888\) 1.62541e36i 0.226883i
\(889\) 1.53035e36 0.210629
\(890\) −4.47366e35 + 6.75016e36i −0.0607139 + 0.916092i
\(891\) −7.38400e35 −0.0988144
\(892\) 1.60286e37i 2.11512i
\(893\) 4.85351e36i 0.631557i
\(894\) 1.47604e36 0.189399
\(895\) 7.48148e36 + 4.95834e35i 0.946673 + 0.0627406i
\(896\) 4.83989e36 0.603928
\(897\) 4.94014e36i 0.607902i
\(898\) 2.33778e37i 2.83693i
\(899\) −1.02114e37 −1.22205
\(900\) −9.02405e36 1.20141e36i −1.06505 0.141795i
\(901\) 1.80199e37 2.09745
\(902\) 7.03267e36i 0.807307i
\(903\) 2.90745e36i 0.329166i
\(904\) 8.11028e36 0.905587
\(905\) 1.22126e37 + 8.09386e35i 1.34493 + 0.0891351i
\(906\) −1.22713e36 −0.133287
\(907\) 7.87438e36i 0.843578i −0.906694 0.421789i \(-0.861402\pi\)
0.906694 0.421789i \(-0.138598\pi\)
\(908\) 1.56312e37i 1.65166i
\(909\) −5.88804e36 −0.613652
\(910\) −4.74418e35 + 7.15834e36i −0.0487689 + 0.735859i
\(911\) −1.36078e37 −1.37978 −0.689889 0.723915i \(-0.742341\pi\)
−0.689889 + 0.723915i \(0.742341\pi\)
\(912\) 4.14280e34i 0.00414342i
\(913\) 9.09534e36i 0.897293i
\(914\) 3.71758e36 0.361770
\(915\) 1.46807e35 2.21512e36i 0.0140923 0.212634i
\(916\) 7.50112e36 0.710286
\(917\) 2.96530e36i 0.276982i
\(918\) 2.15201e37i 1.98294i
\(919\) 9.86137e35 0.0896382 0.0448191 0.998995i \(-0.485729\pi\)
0.0448191 + 0.998995i \(0.485729\pi\)
\(920\) 9.53736e36 + 6.32087e35i 0.855225 + 0.0566799i
\(921\) −5.86315e35 −0.0518663
\(922\) 7.56338e36i 0.660054i
\(923\) 4.04209e36i 0.348004i
\(924\) 3.66626e36 0.311404
\(925\) 6.25837e35 4.70079e36i 0.0524432 0.393912i
\(926\) −9.33494e36 −0.771746
\(927\) 8.78117e36i 0.716236i
\(928\) 2.08561e37i 1.67835i
\(929\) −3.38052e36 −0.268403 −0.134202 0.990954i \(-0.542847\pi\)
−0.134202 + 0.990954i \(0.542847\pi\)
\(930\) 8.75101e36 + 5.79972e35i 0.685522 + 0.0454329i
\(931\) 5.76553e36 0.445623
\(932\) 5.45304e36i 0.415853i
\(933\) 1.28554e37i 0.967305i
\(934\) 3.21709e37 2.38851
\(935\) −1.02503e36 + 1.54664e37i −0.0750917 + 1.13303i
\(936\) −1.10749e37 −0.800559
\(937\) 1.23256e37i 0.879151i 0.898206 + 0.439576i \(0.144871\pi\)
−0.898206 + 0.439576i \(0.855129\pi\)
\(938\) 4.79489e36i 0.337476i
\(939\) −8.83912e36 −0.613888
\(940\) 1.89310e36 2.85644e37i 0.129740 1.95761i
\(941\) 6.55312e36 0.443178 0.221589 0.975140i \(-0.428876\pi\)
0.221589 + 0.975140i \(0.428876\pi\)
\(942\) 3.23040e36i 0.215586i
\(943\) 7.38276e36i 0.486208i
\(944\) 3.29275e35 0.0213997
\(945\) −5.62485e36 3.72786e35i −0.360756 0.0239090i
\(946\) −3.45036e37 −2.18386
\(947\) 1.42694e37i 0.891316i −0.895203 0.445658i \(-0.852970\pi\)
0.895203 0.445658i \(-0.147030\pi\)
\(948\) 2.65900e37i 1.63913i
\(949\) −4.35853e36 −0.265163
\(950\) −1.84309e36 + 1.38438e37i −0.110663 + 0.831211i
\(951\) −1.54732e37 −0.916905
\(952\) 8.09918e36i 0.473673i
\(953\) 2.38480e36i 0.137655i 0.997629 + 0.0688274i \(0.0219258\pi\)
−0.997629 + 0.0688274i \(0.978074\pi\)
\(954\) 3.11072e37 1.77217
\(955\) 3.76860e35 + 2.49763e34i 0.0211903 + 0.00140439i
\(956\) −2.86202e37 −1.58836
\(957\) 1.55820e37i 0.853543i
\(958\) 4.02643e37i 2.17697i
\(959\) −1.31272e37 −0.700549
\(960\) 1.17453e36 1.77221e37i 0.0618690 0.933522i
\(961\) −8.80775e36 −0.457955
\(962\) 1.51984e37i 0.780028i
\(963\) 2.21134e37i 1.12028i
\(964\) 2.18635e36 0.109334
\(965\) 2.35153e36 3.54816e37i 0.116081 1.75150i
\(966\) 6.23659e36 0.303902
\(967\) 1.64185e37i 0.789774i 0.918730 + 0.394887i \(0.129216\pi\)
−0.918730 + 0.394887i \(0.870784\pi\)
\(968\) 4.30778e36i 0.204556i
\(969\) −8.14906e36 −0.381997
\(970\) −1.79967e37 1.19273e36i −0.832809 0.0551943i
\(971\) 2.07297e37 0.947007 0.473503 0.880792i \(-0.342989\pi\)
0.473503 + 0.880792i \(0.342989\pi\)
\(972\) 3.66821e37i 1.65434i
\(973\) 3.73263e36i 0.166190i
\(974\) −1.66060e37 −0.729925
\(975\) 1.60195e37 + 2.13275e36i 0.695170 + 0.0925510i
\(976\) −1.19137e35 −0.00510417
\(977\) 3.93106e36i 0.166275i 0.996538 + 0.0831376i \(0.0264941\pi\)
−0.996538 + 0.0831376i \(0.973506\pi\)
\(978\) 2.15538e36i 0.0900093i
\(979\) 1.22708e37 0.505929
\(980\) 3.39319e37 + 2.24883e36i 1.38128 + 0.0915442i
\(981\) −1.11270e37 −0.447213
\(982\) 7.10771e37i 2.82056i
\(983\) 9.80814e36i 0.384298i −0.981366 0.192149i \(-0.938454\pi\)
0.981366 0.192149i \(-0.0615456\pi\)
\(984\) −8.27792e36 −0.320245
\(985\) −1.70989e35 + 2.58000e36i −0.00653155 + 0.0985524i
\(986\) 9.06837e37 3.42033
\(987\) 7.09017e36i 0.264054i
\(988\) 2.76222e37i 1.01577i
\(989\) −3.62212e37 −1.31525
\(990\) −1.76948e36 + 2.66991e37i −0.0634462 + 0.957320i
\(991\) −9.07369e36 −0.321265 −0.160632 0.987014i \(-0.551353\pi\)
−0.160632 + 0.987014i \(0.551353\pi\)
\(992\) 2.12925e37i 0.744441i
\(993\) 1.02975e37i 0.355521i
\(994\) −5.10287e36 −0.173974
\(995\) −2.04832e37 1.35752e36i −0.689618 0.0457043i
\(996\) 2.82038e37 0.937704
\(997\) 1.44463e37i 0.474315i 0.971471 + 0.237158i \(0.0762158\pi\)
−0.971471 + 0.237158i \(0.923784\pi\)
\(998\) 2.74931e37i 0.891439i
\(999\) 1.19425e37 0.382409
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5.26.b.a.4.11 yes 12
3.2 odd 2 45.26.b.b.19.2 12
5.2 odd 4 25.26.a.f.1.2 12
5.3 odd 4 25.26.a.f.1.11 12
5.4 even 2 inner 5.26.b.a.4.2 12
15.14 odd 2 45.26.b.b.19.11 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5.26.b.a.4.2 12 5.4 even 2 inner
5.26.b.a.4.11 yes 12 1.1 even 1 trivial
25.26.a.f.1.2 12 5.2 odd 4
25.26.a.f.1.11 12 5.3 odd 4
45.26.b.b.19.2 12 3.2 odd 2
45.26.b.b.19.11 12 15.14 odd 2