Defining parameters
Level: | \( N \) | \(=\) | \( 5 \) |
Weight: | \( k \) | \(=\) | \( 26 \) |
Character orbit: | \([\chi]\) | \(=\) | 5.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(13\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{26}(5, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 14 | 14 | 0 |
Cusp forms | 12 | 12 | 0 |
Eisenstein series | 2 | 2 | 0 |
Trace form
Decomposition of \(S_{26}^{\mathrm{new}}(5, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
5.26.b.a | $12$ | $19.800$ | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) | None | \(0\) | \(0\) | \(549543060\) | \(0\) | \(q+\beta _{1}q^{2}+(-19\beta _{1}-\beta _{3})q^{3}+(-13890962+\cdots)q^{4}+\cdots\) |