Properties

Label 5.26.b
Level $5$
Weight $26$
Character orbit 5.b
Rep. character $\chi_{5}(4,\cdot)$
Character field $\Q$
Dimension $12$
Newform subspaces $1$
Sturm bound $13$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 5 \)
Weight: \( k \) \(=\) \( 26 \)
Character orbit: \([\chi]\) \(=\) 5.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(13\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{26}(5, [\chi])\).

Total New Old
Modular forms 14 14 0
Cusp forms 12 12 0
Eisenstein series 2 2 0

Trace form

\( 12 q - 166691544 q^{4} + 549543060 q^{5} + 10591544184 q^{6} - 3948466041036 q^{9} + 4435846671960 q^{10} - 1090673824176 q^{11} - 890646861445848 q^{14} + 443085522435120 q^{15} + 22\!\cdots\!32 q^{16}+ \cdots - 10\!\cdots\!72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{26}^{\mathrm{new}}(5, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
5.26.b.a 5.b 5.b $12$ $19.800$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 5.26.b.a \(0\) \(0\) \(549543060\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(-19\beta _{1}-\beta _{3})q^{3}+(-13890962+\cdots)q^{4}+\cdots\)