Properties

Label 5.26.a.a
Level $5$
Weight $26$
Character orbit 5.a
Self dual yes
Analytic conductor $19.800$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5,26,Mod(1,5)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 26, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5.1");
 
S:= CuspForms(chi, 26);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5 \)
Weight: \( k \) \(=\) \( 26 \)
Character orbit: \([\chi]\) \(=\) 5.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(19.7998389976\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 1769856x^{2} + 106836475x + 628040620025 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{14}\cdot 3^{2}\cdot 5^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 150) q^{2} + (\beta_{2} + 17 \beta_1 - 199650) q^{3} + (\beta_{3} - 4 \beta_{2} + \cdots + 23103472) q^{4} - 244140625 q^{5} + ( - 324 \beta_{3} - 1904 \beta_{2} + \cdots - 991293708) q^{6}+ \cdots + (70\!\cdots\!04 \beta_{3} + \cdots - 48\!\cdots\!04) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 600 q^{2} - 798600 q^{3} + 92413888 q^{4} - 976562500 q^{5} - 3965174832 q^{6} - 48938107000 q^{7} + 224433484800 q^{8} + 2087565807492 q^{9} - 146484375000 q^{10} - 23641453790592 q^{11} - 42051883516800 q^{12}+ \cdots - 19\!\cdots\!16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 1769856x^{2} + 106836475x + 628040620025 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 8\nu - 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 8\nu^{3} + 3344\nu^{2} - 8182184\nu - 2326754810 ) / 1863 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 32\nu^{3} + 132608\nu^{2} - 22087280\nu - 114821444708 ) / 1863 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 2 ) / 8 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} - 4\beta_{2} - 714\beta _1 + 56635408 ) / 64 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -209\beta_{3} + 8288\beta_{2} + 4240318\beta _1 - 2521598848 ) / 32 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1046.70
785.715
−642.094
−1189.32
−8221.63 987550. 3.40407e7 −2.44141e8 −8.11927e9 −1.93681e10 −3.99805e9 1.27967e11 2.00723e12
1.2 −6133.72 −1.60154e6 4.06809e6 −2.44141e8 9.82339e9 −2.17553e9 1.80861e11 1.71764e12 1.49749e12
1.3 5288.75 887362. −5.58351e6 −2.44141e8 4.69304e9 −4.61897e10 −2.06991e11 −5.98771e10 −1.29120e12
1.4 9666.59 −1.07197e6 5.98886e7 −2.44141e8 −1.03623e10 1.87952e10 2.54562e11 3.01839e11 −2.36001e12
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5.26.a.a 4
3.b odd 2 1 45.26.a.c 4
5.b even 2 1 25.26.a.b 4
5.c odd 4 2 25.26.b.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5.26.a.a 4 1.a even 1 1 trivial
25.26.a.b 4 5.b even 2 1
25.26.b.b 8 5.c odd 4 2
45.26.a.c 4 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - 600T_{2}^{3} - 113135808T_{2}^{2} - 20279449600T_{2} + 2578152318959616 \) acting on \(S_{26}^{\mathrm{new}}(\Gamma_0(5))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + \cdots + 25\!\cdots\!16 \) Copy content Toggle raw display
$3$ \( T^{4} + \cdots + 15\!\cdots\!56 \) Copy content Toggle raw display
$5$ \( (T + 244140625)^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots - 36\!\cdots\!04 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots - 12\!\cdots\!84 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots - 27\!\cdots\!84 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 10\!\cdots\!56 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 33\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots - 75\!\cdots\!24 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 14\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots - 11\!\cdots\!84 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots - 10\!\cdots\!24 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots - 11\!\cdots\!84 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 55\!\cdots\!96 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 38\!\cdots\!36 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots - 26\!\cdots\!44 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 24\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots - 88\!\cdots\!84 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 19\!\cdots\!56 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots - 14\!\cdots\!84 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots - 89\!\cdots\!24 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots - 89\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 33\!\cdots\!36 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 71\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots - 18\!\cdots\!64 \) Copy content Toggle raw display
show more
show less