Properties

Label 5.26.a
Level $5$
Weight $26$
Character orbit 5.a
Rep. character $\chi_{5}(1,\cdot)$
Character field $\Q$
Dimension $9$
Newform subspaces $2$
Sturm bound $13$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 5 \)
Weight: \( k \) \(=\) \( 26 \)
Character orbit: \([\chi]\) \(=\) 5.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(13\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{26}(\Gamma_0(5))\).

Total New Old
Modular forms 13 9 4
Cusp forms 11 9 2
Eisenstein series 2 0 2

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(5\)Dim
\(+\)\(4\)
\(-\)\(5\)

Trace form

\( 9 q - 4002 q^{2} - 172396 q^{3} + 183464148 q^{4} + 244140625 q^{5} + 1731399928 q^{6} + 6543128808 q^{7} - 101081972280 q^{8} + 2365562653957 q^{9} - 1270019531250 q^{10} - 27786412242132 q^{11} - 68422875582512 q^{12}+ \cdots - 42\!\cdots\!36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{26}^{\mathrm{new}}(\Gamma_0(5))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 5
5.26.a.a 5.a 1.a $4$ $19.800$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 5.26.a.a \(600\) \(-798600\) \(-976562500\) \(-48938107000\) $+$ $\mathrm{SU}(2)$ \(q+(150-\beta _{1})q^{2}+(-199650+17\beta _{1}+\cdots)q^{3}+\cdots\)
5.26.a.b 5.a 1.a $5$ $19.800$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 5.26.a.b \(-4602\) \(626204\) \(1220703125\) \(55481235808\) $-$ $\mathrm{SU}(2)$ \(q+(-920-\beta _{1})q^{2}+(125251-5^{2}\beta _{1}+\cdots)q^{3}+\cdots\)

Decomposition of \(S_{26}^{\mathrm{old}}(\Gamma_0(5))\) into lower level spaces

\( S_{26}^{\mathrm{old}}(\Gamma_0(5)) \simeq \) \(S_{26}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 2}\)