Properties

Label 5.14.a.b.1.3
Level $5$
Weight $14$
Character 5.1
Self dual yes
Analytic conductor $5.362$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5,14,Mod(1,5)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5.1"); S:= CuspForms(chi, 14); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 14, names="a")
 
Level: \( N \) \(=\) \( 5 \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 5.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.36154644760\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4466x - 18720 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{3}\cdot 5 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-64.1084\) of defining polynomial
Character \(\chi\) \(=\) 5.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+176.217 q^{2} -573.185 q^{3} +22860.4 q^{4} +15625.0 q^{5} -101005. q^{6} -201493. q^{7} +2.58481e6 q^{8} -1.26578e6 q^{9} +2.75339e6 q^{10} -3.34359e6 q^{11} -1.31032e7 q^{12} -7.80359e6 q^{13} -3.55065e7 q^{14} -8.95602e6 q^{15} +2.68215e8 q^{16} -8.71750e7 q^{17} -2.23052e8 q^{18} -1.66766e7 q^{19} +3.57193e8 q^{20} +1.15493e8 q^{21} -5.89196e8 q^{22} +1.13518e9 q^{23} -1.48158e9 q^{24} +2.44141e8 q^{25} -1.37512e9 q^{26} +1.63937e9 q^{27} -4.60620e9 q^{28} +2.60673e9 q^{29} -1.57820e9 q^{30} +8.33139e8 q^{31} +2.60892e10 q^{32} +1.91649e9 q^{33} -1.53617e10 q^{34} -3.14833e9 q^{35} -2.89362e10 q^{36} -1.05494e10 q^{37} -2.93870e9 q^{38} +4.47290e9 q^{39} +4.03877e10 q^{40} -4.33030e9 q^{41} +2.03518e10 q^{42} +1.93854e9 q^{43} -7.64356e10 q^{44} -1.97778e10 q^{45} +2.00038e11 q^{46} +2.85468e10 q^{47} -1.53737e11 q^{48} -5.62896e10 q^{49} +4.30217e10 q^{50} +4.99674e10 q^{51} -1.78393e11 q^{52} +1.23249e11 q^{53} +2.88884e11 q^{54} -5.22435e10 q^{55} -5.20821e11 q^{56} +9.55879e9 q^{57} +4.59349e11 q^{58} -5.55404e11 q^{59} -2.04738e11 q^{60} -4.10476e11 q^{61} +1.46813e11 q^{62} +2.55046e11 q^{63} +2.40014e12 q^{64} -1.21931e11 q^{65} +3.37718e11 q^{66} +3.36861e11 q^{67} -1.99285e12 q^{68} -6.50671e11 q^{69} -5.54788e11 q^{70} +1.57323e12 q^{71} -3.27181e12 q^{72} +2.05372e12 q^{73} -1.85898e12 q^{74} -1.39938e11 q^{75} -3.81234e11 q^{76} +6.73709e11 q^{77} +7.88201e11 q^{78} -6.93000e11 q^{79} +4.19086e12 q^{80} +1.07840e12 q^{81} -7.63071e11 q^{82} +2.01116e12 q^{83} +2.64021e12 q^{84} -1.36211e12 q^{85} +3.41604e11 q^{86} -1.49414e12 q^{87} -8.64253e12 q^{88} -8.51832e12 q^{89} -3.48519e12 q^{90} +1.57237e12 q^{91} +2.59507e13 q^{92} -4.77543e11 q^{93} +5.03042e12 q^{94} -2.60572e11 q^{95} -1.49540e13 q^{96} -7.99814e12 q^{97} -9.91916e12 q^{98} +4.23225e12 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 142 q^{2} + 416 q^{3} + 17876 q^{4} + 46875 q^{5} + 120376 q^{6} + 448292 q^{7} + 2580360 q^{8} + 1286119 q^{9} + 2218750 q^{10} - 6604004 q^{11} - 23722448 q^{12} - 33501974 q^{13} - 46562928 q^{14}+ \cdots + 126787366508 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 176.217 1.94694 0.973469 0.228817i \(-0.0734858\pi\)
0.973469 + 0.228817i \(0.0734858\pi\)
\(3\) −573.185 −0.453949 −0.226974 0.973901i \(-0.572883\pi\)
−0.226974 + 0.973901i \(0.572883\pi\)
\(4\) 22860.4 2.79057
\(5\) 15625.0 0.447214
\(6\) −101005. −0.883810
\(7\) −201493. −0.647326 −0.323663 0.946172i \(-0.604914\pi\)
−0.323663 + 0.946172i \(0.604914\pi\)
\(8\) 2.58481e6 3.48613
\(9\) −1.26578e6 −0.793931
\(10\) 2.75339e6 0.870698
\(11\) −3.34359e6 −0.569062 −0.284531 0.958667i \(-0.591838\pi\)
−0.284531 + 0.958667i \(0.591838\pi\)
\(12\) −1.31032e7 −1.26678
\(13\) −7.80359e6 −0.448397 −0.224198 0.974544i \(-0.571976\pi\)
−0.224198 + 0.974544i \(0.571976\pi\)
\(14\) −3.55065e7 −1.26030
\(15\) −8.95602e6 −0.203012
\(16\) 2.68215e8 3.99671
\(17\) −8.71750e7 −0.875939 −0.437969 0.898990i \(-0.644302\pi\)
−0.437969 + 0.898990i \(0.644302\pi\)
\(18\) −2.23052e8 −1.54573
\(19\) −1.66766e7 −0.0813223 −0.0406612 0.999173i \(-0.512946\pi\)
−0.0406612 + 0.999173i \(0.512946\pi\)
\(20\) 3.57193e8 1.24798
\(21\) 1.15493e8 0.293853
\(22\) −5.89196e8 −1.10793
\(23\) 1.13518e9 1.59895 0.799476 0.600698i \(-0.205111\pi\)
0.799476 + 0.600698i \(0.205111\pi\)
\(24\) −1.48158e9 −1.58253
\(25\) 2.44141e8 0.200000
\(26\) −1.37512e9 −0.873002
\(27\) 1.63937e9 0.814352
\(28\) −4.60620e9 −1.80641
\(29\) 2.60673e9 0.813783 0.406891 0.913477i \(-0.366613\pi\)
0.406891 + 0.913477i \(0.366613\pi\)
\(30\) −1.57820e9 −0.395252
\(31\) 8.33139e8 0.168604 0.0843018 0.996440i \(-0.473134\pi\)
0.0843018 + 0.996440i \(0.473134\pi\)
\(32\) 2.60892e10 4.29523
\(33\) 1.91649e9 0.258325
\(34\) −1.53617e10 −1.70540
\(35\) −3.14833e9 −0.289493
\(36\) −2.89362e10 −2.21552
\(37\) −1.05494e10 −0.675953 −0.337976 0.941155i \(-0.609742\pi\)
−0.337976 + 0.941155i \(0.609742\pi\)
\(38\) −2.93870e9 −0.158330
\(39\) 4.47290e9 0.203549
\(40\) 4.03877e10 1.55905
\(41\) −4.33030e9 −0.142371 −0.0711857 0.997463i \(-0.522678\pi\)
−0.0711857 + 0.997463i \(0.522678\pi\)
\(42\) 2.03518e10 0.572113
\(43\) 1.93854e9 0.0467660 0.0233830 0.999727i \(-0.492556\pi\)
0.0233830 + 0.999727i \(0.492556\pi\)
\(44\) −7.64356e10 −1.58801
\(45\) −1.97778e10 −0.355057
\(46\) 2.00038e11 3.11306
\(47\) 2.85468e10 0.386296 0.193148 0.981170i \(-0.438130\pi\)
0.193148 + 0.981170i \(0.438130\pi\)
\(48\) −1.53737e11 −1.81430
\(49\) −5.62896e10 −0.580969
\(50\) 4.30217e10 0.389388
\(51\) 4.99674e10 0.397631
\(52\) −1.78393e11 −1.25128
\(53\) 1.23249e11 0.763819 0.381910 0.924200i \(-0.375267\pi\)
0.381910 + 0.924200i \(0.375267\pi\)
\(54\) 2.88884e11 1.58549
\(55\) −5.22435e10 −0.254492
\(56\) −5.20821e11 −2.25666
\(57\) 9.55879e9 0.0369162
\(58\) 4.59349e11 1.58439
\(59\) −5.55404e11 −1.71424 −0.857118 0.515120i \(-0.827747\pi\)
−0.857118 + 0.515120i \(0.827747\pi\)
\(60\) −2.04738e11 −0.566519
\(61\) −4.10476e11 −1.02010 −0.510051 0.860144i \(-0.670373\pi\)
−0.510051 + 0.860144i \(0.670373\pi\)
\(62\) 1.46813e11 0.328261
\(63\) 2.55046e11 0.513932
\(64\) 2.40014e12 4.36583
\(65\) −1.21931e11 −0.200529
\(66\) 3.37718e11 0.502943
\(67\) 3.36861e11 0.454951 0.227475 0.973784i \(-0.426953\pi\)
0.227475 + 0.973784i \(0.426953\pi\)
\(68\) −1.99285e12 −2.44437
\(69\) −6.50671e11 −0.725842
\(70\) −5.54788e11 −0.563625
\(71\) 1.57323e12 1.45751 0.728757 0.684772i \(-0.240098\pi\)
0.728757 + 0.684772i \(0.240098\pi\)
\(72\) −3.27181e12 −2.76775
\(73\) 2.05372e12 1.58834 0.794170 0.607695i \(-0.207906\pi\)
0.794170 + 0.607695i \(0.207906\pi\)
\(74\) −1.85898e12 −1.31604
\(75\) −1.39938e11 −0.0907897
\(76\) −3.81234e11 −0.226936
\(77\) 6.73709e11 0.368369
\(78\) 7.88201e11 0.396298
\(79\) −6.93000e11 −0.320743 −0.160372 0.987057i \(-0.551269\pi\)
−0.160372 + 0.987057i \(0.551269\pi\)
\(80\) 4.19086e12 1.78739
\(81\) 1.07840e12 0.424256
\(82\) −7.63071e11 −0.277188
\(83\) 2.01116e12 0.675212 0.337606 0.941288i \(-0.390383\pi\)
0.337606 + 0.941288i \(0.390383\pi\)
\(84\) 2.64021e12 0.820017
\(85\) −1.36211e12 −0.391732
\(86\) 3.41604e11 0.0910505
\(87\) −1.49414e12 −0.369416
\(88\) −8.64253e12 −1.98383
\(89\) −8.51832e12 −1.81685 −0.908424 0.418050i \(-0.862714\pi\)
−0.908424 + 0.418050i \(0.862714\pi\)
\(90\) −3.48519e12 −0.691273
\(91\) 1.57237e12 0.290259
\(92\) 2.59507e13 4.46199
\(93\) −4.77543e11 −0.0765374
\(94\) 5.03042e12 0.752096
\(95\) −2.60572e11 −0.0363684
\(96\) −1.49540e13 −1.94981
\(97\) −7.99814e12 −0.974929 −0.487464 0.873143i \(-0.662078\pi\)
−0.487464 + 0.873143i \(0.662078\pi\)
\(98\) −9.91916e12 −1.13111
\(99\) 4.23225e12 0.451796
\(100\) 5.58114e12 0.558114
\(101\) −1.60387e13 −1.50342 −0.751710 0.659494i \(-0.770771\pi\)
−0.751710 + 0.659494i \(0.770771\pi\)
\(102\) 8.80509e12 0.774164
\(103\) 1.72566e13 1.42401 0.712004 0.702176i \(-0.247788\pi\)
0.712004 + 0.702176i \(0.247788\pi\)
\(104\) −2.01708e13 −1.56317
\(105\) 1.80458e12 0.131415
\(106\) 2.17186e13 1.48711
\(107\) −3.98196e11 −0.0256509 −0.0128254 0.999918i \(-0.504083\pi\)
−0.0128254 + 0.999918i \(0.504083\pi\)
\(108\) 3.74766e13 2.27251
\(109\) 1.09886e13 0.627582 0.313791 0.949492i \(-0.398401\pi\)
0.313791 + 0.949492i \(0.398401\pi\)
\(110\) −9.20619e12 −0.495481
\(111\) 6.04676e12 0.306848
\(112\) −5.40435e13 −2.58718
\(113\) −2.06154e13 −0.931497 −0.465748 0.884917i \(-0.654215\pi\)
−0.465748 + 0.884917i \(0.654215\pi\)
\(114\) 1.68442e12 0.0718735
\(115\) 1.77372e13 0.715073
\(116\) 5.95907e13 2.27092
\(117\) 9.87764e12 0.355996
\(118\) −9.78714e13 −3.33751
\(119\) 1.75651e13 0.567018
\(120\) −2.31496e13 −0.707727
\(121\) −2.33431e13 −0.676168
\(122\) −7.23327e13 −1.98608
\(123\) 2.48206e12 0.0646293
\(124\) 1.90459e13 0.470500
\(125\) 3.81470e12 0.0894427
\(126\) 4.49434e13 1.00059
\(127\) 3.03181e13 0.641177 0.320588 0.947219i \(-0.396119\pi\)
0.320588 + 0.947219i \(0.396119\pi\)
\(128\) 2.09222e14 4.20478
\(129\) −1.11114e12 −0.0212294
\(130\) −2.14863e13 −0.390418
\(131\) −7.79100e13 −1.34688 −0.673441 0.739241i \(-0.735185\pi\)
−0.673441 + 0.739241i \(0.735185\pi\)
\(132\) 4.38117e13 0.720875
\(133\) 3.36022e12 0.0526420
\(134\) 5.93605e13 0.885761
\(135\) 2.56152e13 0.364190
\(136\) −2.25331e14 −3.05364
\(137\) −1.01051e14 −1.30574 −0.652871 0.757469i \(-0.726436\pi\)
−0.652871 + 0.757469i \(0.726436\pi\)
\(138\) −1.14659e14 −1.41317
\(139\) 1.42505e14 1.67585 0.837924 0.545787i \(-0.183769\pi\)
0.837924 + 0.545787i \(0.183769\pi\)
\(140\) −7.19719e13 −0.807850
\(141\) −1.63626e13 −0.175359
\(142\) 2.77230e14 2.83769
\(143\) 2.60920e13 0.255166
\(144\) −3.39502e14 −3.17311
\(145\) 4.07301e13 0.363935
\(146\) 3.61901e14 3.09240
\(147\) 3.22643e13 0.263730
\(148\) −2.41163e14 −1.88629
\(149\) −6.15555e13 −0.460846 −0.230423 0.973091i \(-0.574011\pi\)
−0.230423 + 0.973091i \(0.574011\pi\)
\(150\) −2.46594e13 −0.176762
\(151\) −4.43226e13 −0.304281 −0.152141 0.988359i \(-0.548617\pi\)
−0.152141 + 0.988359i \(0.548617\pi\)
\(152\) −4.31059e13 −0.283500
\(153\) 1.10344e14 0.695435
\(154\) 1.18719e14 0.717191
\(155\) 1.30178e13 0.0754018
\(156\) 1.02252e14 0.568019
\(157\) −1.81701e14 −0.968301 −0.484150 0.874985i \(-0.660871\pi\)
−0.484150 + 0.874985i \(0.660871\pi\)
\(158\) −1.22118e14 −0.624467
\(159\) −7.06446e13 −0.346735
\(160\) 4.07644e14 1.92088
\(161\) −2.28732e14 −1.03504
\(162\) 1.90033e14 0.826001
\(163\) 9.09336e13 0.379756 0.189878 0.981808i \(-0.439191\pi\)
0.189878 + 0.981808i \(0.439191\pi\)
\(164\) −9.89921e13 −0.397297
\(165\) 2.99452e13 0.115527
\(166\) 3.54401e14 1.31460
\(167\) −2.40022e14 −0.856237 −0.428118 0.903723i \(-0.640823\pi\)
−0.428118 + 0.903723i \(0.640823\pi\)
\(168\) 2.98527e14 1.02441
\(169\) −2.41979e14 −0.798940
\(170\) −2.40026e14 −0.762678
\(171\) 2.11090e13 0.0645643
\(172\) 4.43158e13 0.130504
\(173\) 4.10274e14 1.16352 0.581760 0.813360i \(-0.302364\pi\)
0.581760 + 0.813360i \(0.302364\pi\)
\(174\) −2.63292e14 −0.719230
\(175\) −4.91926e13 −0.129465
\(176\) −8.96800e14 −2.27438
\(177\) 3.18349e14 0.778175
\(178\) −1.50107e15 −3.53729
\(179\) −2.37588e14 −0.539858 −0.269929 0.962880i \(-0.587000\pi\)
−0.269929 + 0.962880i \(0.587000\pi\)
\(180\) −4.52128e14 −0.990810
\(181\) 5.41620e14 1.14494 0.572472 0.819924i \(-0.305985\pi\)
0.572472 + 0.819924i \(0.305985\pi\)
\(182\) 2.77078e14 0.565116
\(183\) 2.35279e14 0.463074
\(184\) 2.93424e15 5.57416
\(185\) −1.64834e14 −0.302295
\(186\) −8.41511e13 −0.149014
\(187\) 2.91477e14 0.498464
\(188\) 6.52589e14 1.07799
\(189\) −3.30322e14 −0.527151
\(190\) −4.59172e13 −0.0708071
\(191\) −2.56027e12 −0.00381565 −0.00190782 0.999998i \(-0.500607\pi\)
−0.00190782 + 0.999998i \(0.500607\pi\)
\(192\) −1.37572e15 −1.98186
\(193\) 1.10496e15 1.53895 0.769475 0.638677i \(-0.220518\pi\)
0.769475 + 0.638677i \(0.220518\pi\)
\(194\) −1.40941e15 −1.89813
\(195\) 6.98891e13 0.0910300
\(196\) −1.28680e15 −1.62124
\(197\) 7.90145e14 0.963110 0.481555 0.876416i \(-0.340072\pi\)
0.481555 + 0.876416i \(0.340072\pi\)
\(198\) 7.45793e14 0.879619
\(199\) −2.97088e14 −0.339109 −0.169555 0.985521i \(-0.554233\pi\)
−0.169555 + 0.985521i \(0.554233\pi\)
\(200\) 6.31057e14 0.697226
\(201\) −1.93084e14 −0.206524
\(202\) −2.82629e15 −2.92707
\(203\) −5.25237e14 −0.526782
\(204\) 1.14227e15 1.10962
\(205\) −6.76609e13 −0.0636704
\(206\) 3.04090e15 2.77246
\(207\) −1.43689e15 −1.26946
\(208\) −2.09304e15 −1.79211
\(209\) 5.57597e13 0.0462775
\(210\) 3.17997e14 0.255857
\(211\) −1.25602e15 −0.979851 −0.489926 0.871764i \(-0.662976\pi\)
−0.489926 + 0.871764i \(0.662976\pi\)
\(212\) 2.81752e15 2.13149
\(213\) −9.01752e14 −0.661637
\(214\) −7.01688e13 −0.0499407
\(215\) 3.02897e13 0.0209144
\(216\) 4.23746e15 2.83894
\(217\) −1.67872e14 −0.109141
\(218\) 1.93638e15 1.22186
\(219\) −1.17716e15 −0.721025
\(220\) −1.19431e15 −0.710179
\(221\) 6.80278e14 0.392768
\(222\) 1.06554e15 0.597414
\(223\) −1.17841e15 −0.641676 −0.320838 0.947134i \(-0.603964\pi\)
−0.320838 + 0.947134i \(0.603964\pi\)
\(224\) −5.25680e15 −2.78041
\(225\) −3.09029e14 −0.158786
\(226\) −3.63278e15 −1.81357
\(227\) 4.91498e14 0.238426 0.119213 0.992869i \(-0.461963\pi\)
0.119213 + 0.992869i \(0.461963\pi\)
\(228\) 2.18517e14 0.103017
\(229\) 3.17657e15 1.45555 0.727777 0.685814i \(-0.240554\pi\)
0.727777 + 0.685814i \(0.240554\pi\)
\(230\) 3.12560e15 1.39220
\(231\) −3.86160e14 −0.167221
\(232\) 6.73789e15 2.83695
\(233\) −2.05201e14 −0.0840168 −0.0420084 0.999117i \(-0.513376\pi\)
−0.0420084 + 0.999117i \(0.513376\pi\)
\(234\) 1.74061e15 0.693103
\(235\) 4.46043e14 0.172757
\(236\) −1.26967e16 −4.78370
\(237\) 3.97218e14 0.145601
\(238\) 3.09527e15 1.10395
\(239\) 4.78414e15 1.66042 0.830209 0.557453i \(-0.188221\pi\)
0.830209 + 0.557453i \(0.188221\pi\)
\(240\) −2.40214e15 −0.811381
\(241\) 2.83675e15 0.932633 0.466316 0.884618i \(-0.345581\pi\)
0.466316 + 0.884618i \(0.345581\pi\)
\(242\) −4.11345e15 −1.31646
\(243\) −3.23181e15 −1.00694
\(244\) −9.38362e15 −2.84667
\(245\) −8.79524e14 −0.259817
\(246\) 4.37381e14 0.125829
\(247\) 1.30138e14 0.0364647
\(248\) 2.15351e15 0.587774
\(249\) −1.15277e15 −0.306512
\(250\) 6.72214e14 0.174140
\(251\) 3.50075e15 0.883654 0.441827 0.897100i \(-0.354331\pi\)
0.441827 + 0.897100i \(0.354331\pi\)
\(252\) 5.83045e15 1.43416
\(253\) −3.79558e15 −0.909903
\(254\) 5.34256e15 1.24833
\(255\) 7.80740e14 0.177826
\(256\) 1.72065e16 3.82061
\(257\) −7.14451e14 −0.154670 −0.0773352 0.997005i \(-0.524641\pi\)
−0.0773352 + 0.997005i \(0.524641\pi\)
\(258\) −1.95802e14 −0.0413323
\(259\) 2.12563e15 0.437562
\(260\) −2.78739e15 −0.559591
\(261\) −3.29955e15 −0.646087
\(262\) −1.37290e16 −2.62230
\(263\) −6.41873e15 −1.19601 −0.598007 0.801491i \(-0.704041\pi\)
−0.598007 + 0.801491i \(0.704041\pi\)
\(264\) 4.95377e15 0.900556
\(265\) 1.92577e15 0.341590
\(266\) 5.92128e14 0.102491
\(267\) 4.88257e15 0.824756
\(268\) 7.70076e15 1.26957
\(269\) −1.09876e15 −0.176813 −0.0884063 0.996084i \(-0.528177\pi\)
−0.0884063 + 0.996084i \(0.528177\pi\)
\(270\) 4.51382e15 0.709055
\(271\) 1.60206e15 0.245684 0.122842 0.992426i \(-0.460799\pi\)
0.122842 + 0.992426i \(0.460799\pi\)
\(272\) −2.33816e16 −3.50088
\(273\) −9.01259e14 −0.131763
\(274\) −1.78069e16 −2.54220
\(275\) −8.16305e14 −0.113812
\(276\) −1.48746e16 −2.02551
\(277\) −6.91414e14 −0.0919644 −0.0459822 0.998942i \(-0.514642\pi\)
−0.0459822 + 0.998942i \(0.514642\pi\)
\(278\) 2.51118e16 3.26277
\(279\) −1.05457e15 −0.133860
\(280\) −8.13783e15 −1.00921
\(281\) 2.20744e15 0.267484 0.133742 0.991016i \(-0.457301\pi\)
0.133742 + 0.991016i \(0.457301\pi\)
\(282\) −2.88336e15 −0.341413
\(283\) 8.67634e15 1.00398 0.501990 0.864873i \(-0.332601\pi\)
0.501990 + 0.864873i \(0.332601\pi\)
\(284\) 3.59646e16 4.06730
\(285\) 1.49356e14 0.0165094
\(286\) 4.59784e15 0.496792
\(287\) 8.72525e14 0.0921606
\(288\) −3.30233e16 −3.41011
\(289\) −2.30511e15 −0.232731
\(290\) 7.17733e15 0.708559
\(291\) 4.58442e15 0.442568
\(292\) 4.69489e16 4.43238
\(293\) −7.81345e15 −0.721445 −0.360723 0.932673i \(-0.617470\pi\)
−0.360723 + 0.932673i \(0.617470\pi\)
\(294\) 5.68552e15 0.513467
\(295\) −8.67818e15 −0.766630
\(296\) −2.72682e16 −2.35646
\(297\) −5.48137e15 −0.463417
\(298\) −1.08471e16 −0.897239
\(299\) −8.85851e15 −0.716965
\(300\) −3.19903e15 −0.253355
\(301\) −3.90603e14 −0.0302728
\(302\) −7.81039e15 −0.592417
\(303\) 9.19315e15 0.682475
\(304\) −4.47292e15 −0.325022
\(305\) −6.41368e15 −0.456203
\(306\) 1.94445e16 1.35397
\(307\) 1.73583e16 1.18334 0.591668 0.806182i \(-0.298470\pi\)
0.591668 + 0.806182i \(0.298470\pi\)
\(308\) 1.54012e16 1.02796
\(309\) −9.89120e15 −0.646426
\(310\) 2.29396e15 0.146803
\(311\) −2.64097e15 −0.165509 −0.0827543 0.996570i \(-0.526372\pi\)
−0.0827543 + 0.996570i \(0.526372\pi\)
\(312\) 1.15616e16 0.709599
\(313\) 1.04071e16 0.625594 0.312797 0.949820i \(-0.398734\pi\)
0.312797 + 0.949820i \(0.398734\pi\)
\(314\) −3.20188e16 −1.88522
\(315\) 3.98510e15 0.229837
\(316\) −1.58422e16 −0.895057
\(317\) −1.64664e16 −0.911410 −0.455705 0.890131i \(-0.650613\pi\)
−0.455705 + 0.890131i \(0.650613\pi\)
\(318\) −1.24488e16 −0.675071
\(319\) −8.71581e15 −0.463093
\(320\) 3.75022e16 1.95246
\(321\) 2.28240e14 0.0116442
\(322\) −4.03064e16 −2.01516
\(323\) 1.45378e15 0.0712334
\(324\) 2.46527e16 1.18392
\(325\) −1.90517e15 −0.0896794
\(326\) 1.60240e16 0.739362
\(327\) −6.29851e15 −0.284890
\(328\) −1.11930e16 −0.496325
\(329\) −5.75197e15 −0.250060
\(330\) 5.27685e15 0.224923
\(331\) 1.40904e16 0.588900 0.294450 0.955667i \(-0.404863\pi\)
0.294450 + 0.955667i \(0.404863\pi\)
\(332\) 4.59759e16 1.88423
\(333\) 1.33532e16 0.536660
\(334\) −4.22959e16 −1.66704
\(335\) 5.26345e15 0.203460
\(336\) 3.09769e16 1.17445
\(337\) 1.51673e16 0.564044 0.282022 0.959408i \(-0.408995\pi\)
0.282022 + 0.959408i \(0.408995\pi\)
\(338\) −4.26408e16 −1.55549
\(339\) 1.18164e16 0.422852
\(340\) −3.11383e16 −1.09316
\(341\) −2.78567e15 −0.0959460
\(342\) 3.71975e15 0.125703
\(343\) 3.08644e16 1.02340
\(344\) 5.01076e15 0.163032
\(345\) −1.01667e16 −0.324606
\(346\) 7.22971e16 2.26530
\(347\) 3.87222e15 0.119074 0.0595372 0.998226i \(-0.481038\pi\)
0.0595372 + 0.998226i \(0.481038\pi\)
\(348\) −3.41565e16 −1.03088
\(349\) 5.50673e16 1.63128 0.815640 0.578560i \(-0.196385\pi\)
0.815640 + 0.578560i \(0.196385\pi\)
\(350\) −8.66857e15 −0.252061
\(351\) −1.27930e16 −0.365153
\(352\) −8.72315e16 −2.44425
\(353\) −4.84424e15 −0.133257 −0.0666285 0.997778i \(-0.521224\pi\)
−0.0666285 + 0.997778i \(0.521224\pi\)
\(354\) 5.60985e16 1.51506
\(355\) 2.45817e16 0.651820
\(356\) −1.94732e17 −5.07004
\(357\) −1.00681e16 −0.257397
\(358\) −4.18670e16 −1.05107
\(359\) −5.71730e16 −1.40954 −0.704770 0.709436i \(-0.748950\pi\)
−0.704770 + 0.709436i \(0.748950\pi\)
\(360\) −5.11220e16 −1.23777
\(361\) −4.17749e16 −0.993387
\(362\) 9.54426e16 2.22914
\(363\) 1.33799e16 0.306946
\(364\) 3.59449e16 0.809988
\(365\) 3.20894e16 0.710328
\(366\) 4.14600e16 0.901576
\(367\) −3.48286e16 −0.744057 −0.372028 0.928221i \(-0.621338\pi\)
−0.372028 + 0.928221i \(0.621338\pi\)
\(368\) 3.04473e17 6.39055
\(369\) 5.48121e15 0.113033
\(370\) −2.90466e16 −0.588551
\(371\) −2.48338e16 −0.494440
\(372\) −1.09168e16 −0.213583
\(373\) −2.14588e16 −0.412570 −0.206285 0.978492i \(-0.566137\pi\)
−0.206285 + 0.978492i \(0.566137\pi\)
\(374\) 5.13631e16 0.970479
\(375\) −2.18653e15 −0.0406024
\(376\) 7.37880e16 1.34668
\(377\) −2.03418e16 −0.364898
\(378\) −5.82082e16 −1.02633
\(379\) −1.90361e16 −0.329930 −0.164965 0.986299i \(-0.552751\pi\)
−0.164965 + 0.986299i \(0.552751\pi\)
\(380\) −5.95677e15 −0.101489
\(381\) −1.73779e16 −0.291061
\(382\) −4.51162e14 −0.00742884
\(383\) −1.03414e17 −1.67412 −0.837059 0.547112i \(-0.815727\pi\)
−0.837059 + 0.547112i \(0.815727\pi\)
\(384\) −1.19923e17 −1.90875
\(385\) 1.05267e16 0.164740
\(386\) 1.94713e17 2.99624
\(387\) −2.45377e15 −0.0371290
\(388\) −1.82840e17 −2.72061
\(389\) 9.11608e16 1.33394 0.666969 0.745085i \(-0.267591\pi\)
0.666969 + 0.745085i \(0.267591\pi\)
\(390\) 1.23156e16 0.177230
\(391\) −9.89596e16 −1.40058
\(392\) −1.45498e17 −2.02534
\(393\) 4.46568e16 0.611416
\(394\) 1.39237e17 1.87512
\(395\) −1.08281e16 −0.143441
\(396\) 9.67507e16 1.26077
\(397\) 7.19989e15 0.0922970 0.0461485 0.998935i \(-0.485305\pi\)
0.0461485 + 0.998935i \(0.485305\pi\)
\(398\) −5.23518e16 −0.660225
\(399\) −1.92603e15 −0.0238968
\(400\) 6.54822e16 0.799343
\(401\) 1.06602e17 1.28034 0.640172 0.768231i \(-0.278863\pi\)
0.640172 + 0.768231i \(0.278863\pi\)
\(402\) −3.40246e16 −0.402090
\(403\) −6.50148e15 −0.0756013
\(404\) −3.66650e17 −4.19540
\(405\) 1.68500e16 0.189733
\(406\) −9.25556e16 −1.02561
\(407\) 3.52728e16 0.384659
\(408\) 1.29156e17 1.38620
\(409\) 6.00154e16 0.633959 0.316980 0.948432i \(-0.397331\pi\)
0.316980 + 0.948432i \(0.397331\pi\)
\(410\) −1.19230e16 −0.123962
\(411\) 5.79210e16 0.592740
\(412\) 3.94491e17 3.97379
\(413\) 1.11910e17 1.10967
\(414\) −2.53205e17 −2.47155
\(415\) 3.14244e16 0.301964
\(416\) −2.03590e17 −1.92597
\(417\) −8.16819e16 −0.760749
\(418\) 9.82580e15 0.0900994
\(419\) 1.22532e17 1.10626 0.553130 0.833095i \(-0.313433\pi\)
0.553130 + 0.833095i \(0.313433\pi\)
\(420\) 4.12532e16 0.366723
\(421\) −1.19508e17 −1.04607 −0.523037 0.852310i \(-0.675201\pi\)
−0.523037 + 0.852310i \(0.675201\pi\)
\(422\) −2.21332e17 −1.90771
\(423\) −3.61340e16 −0.306693
\(424\) 3.18576e17 2.66277
\(425\) −2.12829e16 −0.175188
\(426\) −1.58904e17 −1.28817
\(427\) 8.27080e16 0.660338
\(428\) −9.10290e15 −0.0715806
\(429\) −1.49555e16 −0.115832
\(430\) 5.33756e15 0.0407190
\(431\) −3.18425e16 −0.239279 −0.119640 0.992817i \(-0.538174\pi\)
−0.119640 + 0.992817i \(0.538174\pi\)
\(432\) 4.39704e17 3.25473
\(433\) 1.24850e16 0.0910366 0.0455183 0.998964i \(-0.485506\pi\)
0.0455183 + 0.998964i \(0.485506\pi\)
\(434\) −2.95818e16 −0.212492
\(435\) −2.33459e16 −0.165208
\(436\) 2.51204e17 1.75131
\(437\) −1.89310e16 −0.130030
\(438\) −2.07436e17 −1.40379
\(439\) −2.58876e17 −1.72613 −0.863063 0.505095i \(-0.831457\pi\)
−0.863063 + 0.505095i \(0.831457\pi\)
\(440\) −1.35040e17 −0.887194
\(441\) 7.12503e16 0.461249
\(442\) 1.19876e17 0.764696
\(443\) 1.53844e17 0.967068 0.483534 0.875326i \(-0.339353\pi\)
0.483534 + 0.875326i \(0.339353\pi\)
\(444\) 1.38231e17 0.856281
\(445\) −1.33099e17 −0.812519
\(446\) −2.07656e17 −1.24930
\(447\) 3.52827e16 0.209201
\(448\) −4.83612e17 −2.82611
\(449\) −9.02887e16 −0.520034 −0.260017 0.965604i \(-0.583728\pi\)
−0.260017 + 0.965604i \(0.583728\pi\)
\(450\) −5.44561e16 −0.309147
\(451\) 1.44787e16 0.0810182
\(452\) −4.71275e17 −2.59941
\(453\) 2.54051e16 0.138128
\(454\) 8.66102e16 0.464201
\(455\) 2.45683e16 0.129808
\(456\) 2.47077e16 0.128695
\(457\) −9.78643e16 −0.502538 −0.251269 0.967917i \(-0.580848\pi\)
−0.251269 + 0.967917i \(0.580848\pi\)
\(458\) 5.59765e17 2.83387
\(459\) −1.42912e17 −0.713323
\(460\) 4.05480e17 1.99546
\(461\) 2.08140e17 1.00995 0.504976 0.863134i \(-0.331501\pi\)
0.504976 + 0.863134i \(0.331501\pi\)
\(462\) −6.80479e16 −0.325568
\(463\) −2.44823e17 −1.15498 −0.577491 0.816397i \(-0.695968\pi\)
−0.577491 + 0.816397i \(0.695968\pi\)
\(464\) 6.99163e17 3.25246
\(465\) −7.46161e15 −0.0342286
\(466\) −3.61599e16 −0.163576
\(467\) 3.54401e17 1.58101 0.790506 0.612454i \(-0.209818\pi\)
0.790506 + 0.612454i \(0.209818\pi\)
\(468\) 2.25806e17 0.993432
\(469\) −6.78751e16 −0.294501
\(470\) 7.86003e16 0.336347
\(471\) 1.04148e17 0.439559
\(472\) −1.43561e18 −5.97605
\(473\) −6.48168e15 −0.0266128
\(474\) 6.99964e16 0.283476
\(475\) −4.07144e15 −0.0162645
\(476\) 4.01546e17 1.58230
\(477\) −1.56006e17 −0.606419
\(478\) 8.43045e17 3.23273
\(479\) −1.54040e17 −0.582712 −0.291356 0.956615i \(-0.594106\pi\)
−0.291356 + 0.956615i \(0.594106\pi\)
\(480\) −2.33655e17 −0.871983
\(481\) 8.23232e16 0.303095
\(482\) 4.99883e17 1.81578
\(483\) 1.31106e17 0.469856
\(484\) −5.33633e17 −1.88689
\(485\) −1.24971e17 −0.436001
\(486\) −5.69499e17 −1.96046
\(487\) 2.11302e17 0.717736 0.358868 0.933388i \(-0.383163\pi\)
0.358868 + 0.933388i \(0.383163\pi\)
\(488\) −1.06100e18 −3.55621
\(489\) −5.21218e16 −0.172390
\(490\) −1.54987e17 −0.505849
\(491\) 2.61474e17 0.842167 0.421083 0.907022i \(-0.361650\pi\)
0.421083 + 0.907022i \(0.361650\pi\)
\(492\) 5.67408e16 0.180353
\(493\) −2.27241e17 −0.712824
\(494\) 2.29324e16 0.0709945
\(495\) 6.61289e16 0.202049
\(496\) 2.23460e17 0.673860
\(497\) −3.16995e17 −0.943487
\(498\) −2.03137e17 −0.596759
\(499\) 3.87524e17 1.12369 0.561843 0.827244i \(-0.310092\pi\)
0.561843 + 0.827244i \(0.310092\pi\)
\(500\) 8.72053e16 0.249596
\(501\) 1.37577e17 0.388688
\(502\) 6.16891e17 1.72042
\(503\) −4.12680e17 −1.13611 −0.568056 0.822990i \(-0.692304\pi\)
−0.568056 + 0.822990i \(0.692304\pi\)
\(504\) 6.59246e17 1.79163
\(505\) −2.50605e17 −0.672350
\(506\) −6.68846e17 −1.77153
\(507\) 1.38699e17 0.362678
\(508\) 6.93083e17 1.78925
\(509\) 8.09532e16 0.206333 0.103166 0.994664i \(-0.467103\pi\)
0.103166 + 0.994664i \(0.467103\pi\)
\(510\) 1.37580e17 0.346217
\(511\) −4.13811e17 −1.02817
\(512\) 1.31813e18 3.23372
\(513\) −2.73391e16 −0.0662250
\(514\) −1.25898e17 −0.301134
\(515\) 2.69634e17 0.636836
\(516\) −2.54011e16 −0.0592420
\(517\) −9.54485e16 −0.219827
\(518\) 3.74572e17 0.851906
\(519\) −2.35163e17 −0.528178
\(520\) −3.15169e17 −0.699071
\(521\) −2.79201e17 −0.611607 −0.305803 0.952095i \(-0.598925\pi\)
−0.305803 + 0.952095i \(0.598925\pi\)
\(522\) −5.81436e17 −1.25789
\(523\) 9.97401e16 0.213112 0.106556 0.994307i \(-0.466018\pi\)
0.106556 + 0.994307i \(0.466018\pi\)
\(524\) −1.78105e18 −3.75857
\(525\) 2.81965e16 0.0587705
\(526\) −1.13109e18 −2.32857
\(527\) −7.26289e16 −0.147686
\(528\) 5.14032e17 1.03245
\(529\) 7.84606e17 1.55665
\(530\) 3.39353e17 0.665056
\(531\) 7.03020e17 1.36098
\(532\) 7.68159e16 0.146901
\(533\) 3.37919e16 0.0638389
\(534\) 8.60391e17 1.60575
\(535\) −6.22181e15 −0.0114714
\(536\) 8.70721e17 1.58602
\(537\) 1.36182e17 0.245068
\(538\) −1.93620e17 −0.344243
\(539\) 1.88209e17 0.330608
\(540\) 5.85571e17 1.01630
\(541\) −2.15125e17 −0.368899 −0.184450 0.982842i \(-0.559050\pi\)
−0.184450 + 0.982842i \(0.559050\pi\)
\(542\) 2.82309e17 0.478332
\(543\) −3.10449e17 −0.519746
\(544\) −2.27433e18 −3.76236
\(545\) 1.71697e17 0.280663
\(546\) −1.58817e17 −0.256534
\(547\) 9.04541e17 1.44381 0.721906 0.691991i \(-0.243266\pi\)
0.721906 + 0.691991i \(0.243266\pi\)
\(548\) −2.31007e18 −3.64377
\(549\) 5.19573e17 0.809890
\(550\) −1.43847e17 −0.221586
\(551\) −4.34714e16 −0.0661787
\(552\) −1.68186e18 −2.53038
\(553\) 1.39635e17 0.207625
\(554\) −1.21839e17 −0.179049
\(555\) 9.44806e16 0.137227
\(556\) 3.25772e18 4.67657
\(557\) −9.25130e17 −1.31263 −0.656317 0.754485i \(-0.727887\pi\)
−0.656317 + 0.754485i \(0.727887\pi\)
\(558\) −1.85833e17 −0.260616
\(559\) −1.51276e16 −0.0209697
\(560\) −8.44429e17 −1.15702
\(561\) −1.67070e17 −0.226277
\(562\) 3.88987e17 0.520774
\(563\) −7.77258e17 −1.02863 −0.514317 0.857600i \(-0.671954\pi\)
−0.514317 + 0.857600i \(0.671954\pi\)
\(564\) −3.74054e17 −0.489351
\(565\) −3.22115e17 −0.416578
\(566\) 1.52892e18 1.95469
\(567\) −2.17291e17 −0.274632
\(568\) 4.06650e18 5.08109
\(569\) 5.27222e17 0.651274 0.325637 0.945495i \(-0.394421\pi\)
0.325637 + 0.945495i \(0.394421\pi\)
\(570\) 2.63191e16 0.0321428
\(571\) −8.57655e17 −1.03557 −0.517783 0.855512i \(-0.673243\pi\)
−0.517783 + 0.855512i \(0.673243\pi\)
\(572\) 5.96472e17 0.712059
\(573\) 1.46751e15 0.00173211
\(574\) 1.53753e17 0.179431
\(575\) 2.77144e17 0.319790
\(576\) −3.03805e18 −3.46617
\(577\) −6.01001e17 −0.678004 −0.339002 0.940786i \(-0.610089\pi\)
−0.339002 + 0.940786i \(0.610089\pi\)
\(578\) −4.06198e17 −0.453114
\(579\) −6.33347e17 −0.698604
\(580\) 9.31105e17 1.01559
\(581\) −4.05236e17 −0.437082
\(582\) 8.07851e17 0.861652
\(583\) −4.12094e17 −0.434661
\(584\) 5.30849e18 5.53716
\(585\) 1.54338e17 0.159206
\(586\) −1.37686e18 −1.40461
\(587\) 2.25235e17 0.227241 0.113621 0.993524i \(-0.463755\pi\)
0.113621 + 0.993524i \(0.463755\pi\)
\(588\) 7.37574e17 0.735958
\(589\) −1.38940e16 −0.0137112
\(590\) −1.52924e18 −1.49258
\(591\) −4.52899e17 −0.437203
\(592\) −2.82951e18 −2.70159
\(593\) 8.69033e17 0.820693 0.410347 0.911930i \(-0.365408\pi\)
0.410347 + 0.911930i \(0.365408\pi\)
\(594\) −9.65910e17 −0.902245
\(595\) 2.74455e17 0.253578
\(596\) −1.40718e18 −1.28602
\(597\) 1.70286e17 0.153938
\(598\) −1.56102e18 −1.39589
\(599\) −1.94567e18 −1.72105 −0.860527 0.509405i \(-0.829866\pi\)
−0.860527 + 0.509405i \(0.829866\pi\)
\(600\) −3.61713e17 −0.316505
\(601\) 2.96725e17 0.256844 0.128422 0.991720i \(-0.459009\pi\)
0.128422 + 0.991720i \(0.459009\pi\)
\(602\) −6.88307e16 −0.0589393
\(603\) −4.26392e17 −0.361199
\(604\) −1.01323e18 −0.849118
\(605\) −3.64737e17 −0.302391
\(606\) 1.61999e18 1.32874
\(607\) 2.06953e18 1.67937 0.839683 0.543076i \(-0.182741\pi\)
0.839683 + 0.543076i \(0.182741\pi\)
\(608\) −4.35080e17 −0.349298
\(609\) 3.01058e17 0.239132
\(610\) −1.13020e18 −0.888200
\(611\) −2.22767e17 −0.173214
\(612\) 2.52251e18 1.94066
\(613\) 2.27988e18 1.73548 0.867738 0.497022i \(-0.165573\pi\)
0.867738 + 0.497022i \(0.165573\pi\)
\(614\) 3.05883e18 2.30388
\(615\) 3.87822e16 0.0289031
\(616\) 1.74141e18 1.28418
\(617\) −2.03478e18 −1.48479 −0.742394 0.669964i \(-0.766310\pi\)
−0.742394 + 0.669964i \(0.766310\pi\)
\(618\) −1.74300e18 −1.25855
\(619\) −7.79671e17 −0.557086 −0.278543 0.960424i \(-0.589851\pi\)
−0.278543 + 0.960424i \(0.589851\pi\)
\(620\) 2.97592e17 0.210414
\(621\) 1.86099e18 1.30211
\(622\) −4.65383e17 −0.322235
\(623\) 1.71638e18 1.17609
\(624\) 1.19970e18 0.813528
\(625\) 5.96046e16 0.0400000
\(626\) 1.83391e18 1.21799
\(627\) −3.19606e16 −0.0210076
\(628\) −4.15376e18 −2.70211
\(629\) 9.19643e17 0.592093
\(630\) 7.02241e17 0.447479
\(631\) −1.75763e18 −1.10850 −0.554252 0.832349i \(-0.686995\pi\)
−0.554252 + 0.832349i \(0.686995\pi\)
\(632\) −1.79128e18 −1.11815
\(633\) 7.19931e17 0.444802
\(634\) −2.90166e18 −1.77446
\(635\) 4.73720e17 0.286743
\(636\) −1.61496e18 −0.967588
\(637\) 4.39261e17 0.260505
\(638\) −1.53587e18 −0.901614
\(639\) −1.99137e18 −1.15717
\(640\) 3.26910e18 1.88043
\(641\) 2.32621e18 1.32456 0.662279 0.749257i \(-0.269589\pi\)
0.662279 + 0.749257i \(0.269589\pi\)
\(642\) 4.02197e16 0.0226705
\(643\) 2.60316e18 1.45254 0.726272 0.687408i \(-0.241251\pi\)
0.726272 + 0.687408i \(0.241251\pi\)
\(644\) −5.22889e18 −2.88836
\(645\) −1.73616e16 −0.00949406
\(646\) 2.56181e17 0.138687
\(647\) −1.20524e18 −0.645947 −0.322974 0.946408i \(-0.604682\pi\)
−0.322974 + 0.946408i \(0.604682\pi\)
\(648\) 2.78747e18 1.47901
\(649\) 1.85704e18 0.975507
\(650\) −3.35724e17 −0.174600
\(651\) 9.62216e16 0.0495446
\(652\) 2.07877e18 1.05974
\(653\) 1.72181e18 0.869061 0.434531 0.900657i \(-0.356914\pi\)
0.434531 + 0.900657i \(0.356914\pi\)
\(654\) −1.10990e18 −0.554664
\(655\) −1.21734e18 −0.602344
\(656\) −1.16145e18 −0.569018
\(657\) −2.59957e18 −1.26103
\(658\) −1.01359e18 −0.486851
\(659\) −3.66491e18 −1.74304 −0.871521 0.490358i \(-0.836866\pi\)
−0.871521 + 0.490358i \(0.836866\pi\)
\(660\) 6.84558e17 0.322385
\(661\) −3.66523e18 −1.70920 −0.854599 0.519289i \(-0.826197\pi\)
−0.854599 + 0.519289i \(0.826197\pi\)
\(662\) 2.48297e18 1.14655
\(663\) −3.89925e17 −0.178297
\(664\) 5.19848e18 2.35388
\(665\) 5.25035e16 0.0235422
\(666\) 2.35306e18 1.04484
\(667\) 2.95911e18 1.30120
\(668\) −5.48699e18 −2.38939
\(669\) 6.75448e17 0.291288
\(670\) 9.27508e17 0.396124
\(671\) 1.37246e18 0.580502
\(672\) 3.01312e18 1.26216
\(673\) −3.60071e18 −1.49379 −0.746897 0.664940i \(-0.768457\pi\)
−0.746897 + 0.664940i \(0.768457\pi\)
\(674\) 2.67273e18 1.09816
\(675\) 4.00237e17 0.162870
\(676\) −5.53173e18 −2.22950
\(677\) 1.46169e17 0.0583484 0.0291742 0.999574i \(-0.490712\pi\)
0.0291742 + 0.999574i \(0.490712\pi\)
\(678\) 2.08225e18 0.823267
\(679\) 1.61157e18 0.631097
\(680\) −3.52079e18 −1.36563
\(681\) −2.81720e17 −0.108233
\(682\) −4.90882e17 −0.186801
\(683\) −2.32270e18 −0.875505 −0.437753 0.899095i \(-0.644225\pi\)
−0.437753 + 0.899095i \(0.644225\pi\)
\(684\) 4.82558e17 0.180171
\(685\) −1.57892e18 −0.583946
\(686\) 5.43883e18 1.99250
\(687\) −1.82076e18 −0.660747
\(688\) 5.19946e17 0.186910
\(689\) −9.61786e17 −0.342494
\(690\) −1.79155e18 −0.631989
\(691\) −6.92473e16 −0.0241989 −0.0120994 0.999927i \(-0.503851\pi\)
−0.0120994 + 0.999927i \(0.503851\pi\)
\(692\) 9.37900e18 3.24688
\(693\) −8.52769e17 −0.292459
\(694\) 6.82350e17 0.231831
\(695\) 2.22664e18 0.749462
\(696\) −3.86206e18 −1.28783
\(697\) 3.77493e17 0.124709
\(698\) 9.70378e18 3.17600
\(699\) 1.17618e17 0.0381393
\(700\) −1.12456e18 −0.361282
\(701\) −6.22383e16 −0.0198103 −0.00990514 0.999951i \(-0.503153\pi\)
−0.00990514 + 0.999951i \(0.503153\pi\)
\(702\) −2.25434e18 −0.710931
\(703\) 1.75928e17 0.0549700
\(704\) −8.02507e18 −2.48443
\(705\) −2.55665e17 −0.0784228
\(706\) −8.53637e17 −0.259443
\(707\) 3.23169e18 0.973202
\(708\) 7.27757e18 2.17155
\(709\) 2.94114e18 0.869592 0.434796 0.900529i \(-0.356820\pi\)
0.434796 + 0.900529i \(0.356820\pi\)
\(710\) 4.33171e18 1.26905
\(711\) 8.77187e17 0.254648
\(712\) −2.20182e19 −6.33377
\(713\) 9.45766e17 0.269589
\(714\) −1.77417e18 −0.501136
\(715\) 4.07687e17 0.114114
\(716\) −5.43134e18 −1.50651
\(717\) −2.74220e18 −0.753744
\(718\) −1.00748e19 −2.74429
\(719\) 4.39694e18 1.18690 0.593448 0.804872i \(-0.297766\pi\)
0.593448 + 0.804872i \(0.297766\pi\)
\(720\) −5.30471e18 −1.41906
\(721\) −3.47708e18 −0.921797
\(722\) −7.36143e18 −1.93406
\(723\) −1.62598e18 −0.423367
\(724\) 1.23816e19 3.19505
\(725\) 6.36408e17 0.162757
\(726\) 2.35777e18 0.597604
\(727\) 6.21513e18 1.56126 0.780632 0.624991i \(-0.214897\pi\)
0.780632 + 0.624991i \(0.214897\pi\)
\(728\) 4.06428e18 1.01188
\(729\) 1.33103e17 0.0328442
\(730\) 5.65470e18 1.38296
\(731\) −1.68992e17 −0.0409641
\(732\) 5.37855e18 1.29224
\(733\) −1.54714e18 −0.368429 −0.184215 0.982886i \(-0.558974\pi\)
−0.184215 + 0.982886i \(0.558974\pi\)
\(734\) −6.13738e18 −1.44863
\(735\) 5.04130e17 0.117944
\(736\) 2.96161e19 6.86786
\(737\) −1.12632e18 −0.258895
\(738\) 9.65881e17 0.220068
\(739\) −1.96669e18 −0.444167 −0.222084 0.975028i \(-0.571286\pi\)
−0.222084 + 0.975028i \(0.571286\pi\)
\(740\) −3.76817e18 −0.843577
\(741\) −7.45929e16 −0.0165531
\(742\) −4.37614e18 −0.962644
\(743\) −5.66492e18 −1.23528 −0.617641 0.786460i \(-0.711912\pi\)
−0.617641 + 0.786460i \(0.711912\pi\)
\(744\) −1.23436e18 −0.266819
\(745\) −9.61805e17 −0.206097
\(746\) −3.78140e18 −0.803249
\(747\) −2.54570e18 −0.536071
\(748\) 6.66327e18 1.39100
\(749\) 8.02337e16 0.0166045
\(750\) −3.85303e17 −0.0790504
\(751\) 4.65838e18 0.947491 0.473745 0.880662i \(-0.342902\pi\)
0.473745 + 0.880662i \(0.342902\pi\)
\(752\) 7.65667e18 1.54392
\(753\) −2.00658e18 −0.401133
\(754\) −3.58457e18 −0.710434
\(755\) −6.92541e17 −0.136079
\(756\) −7.55127e18 −1.47105
\(757\) −3.51348e18 −0.678602 −0.339301 0.940678i \(-0.610190\pi\)
−0.339301 + 0.940678i \(0.610190\pi\)
\(758\) −3.35447e18 −0.642354
\(759\) 2.17557e18 0.413049
\(760\) −6.73530e17 −0.126785
\(761\) 4.55489e18 0.850116 0.425058 0.905166i \(-0.360254\pi\)
0.425058 + 0.905166i \(0.360254\pi\)
\(762\) −3.06228e18 −0.566679
\(763\) −2.21413e18 −0.406250
\(764\) −5.85286e16 −0.0106478
\(765\) 1.72413e18 0.311008
\(766\) −1.82232e19 −3.25941
\(767\) 4.33414e18 0.768658
\(768\) −9.86252e18 −1.73436
\(769\) 5.81779e18 1.01446 0.507232 0.861810i \(-0.330669\pi\)
0.507232 + 0.861810i \(0.330669\pi\)
\(770\) 1.85498e18 0.320738
\(771\) 4.09513e17 0.0702124
\(772\) 2.52598e19 4.29455
\(773\) −3.52257e18 −0.593871 −0.296936 0.954897i \(-0.595965\pi\)
−0.296936 + 0.954897i \(0.595965\pi\)
\(774\) −4.32396e17 −0.0722878
\(775\) 2.03403e17 0.0337207
\(776\) −2.06737e19 −3.39873
\(777\) −1.21838e18 −0.198631
\(778\) 1.60641e19 2.59710
\(779\) 7.22147e16 0.0115780
\(780\) 1.59769e18 0.254026
\(781\) −5.26023e18 −0.829417
\(782\) −1.74383e19 −2.72685
\(783\) 4.27339e18 0.662706
\(784\) −1.50977e19 −2.32197
\(785\) −2.83908e18 −0.433037
\(786\) 7.86929e18 1.19039
\(787\) 1.48350e18 0.222562 0.111281 0.993789i \(-0.464505\pi\)
0.111281 + 0.993789i \(0.464505\pi\)
\(788\) 1.80630e19 2.68763
\(789\) 3.67912e18 0.542929
\(790\) −1.90810e18 −0.279270
\(791\) 4.15386e18 0.602982
\(792\) 1.09396e19 1.57502
\(793\) 3.20318e18 0.457411
\(794\) 1.26874e18 0.179697
\(795\) −1.10382e18 −0.155065
\(796\) −6.79153e18 −0.946309
\(797\) 3.72381e18 0.514645 0.257323 0.966326i \(-0.417160\pi\)
0.257323 + 0.966326i \(0.417160\pi\)
\(798\) −3.39399e17 −0.0465256
\(799\) −2.48856e18 −0.338372
\(800\) 6.36944e18 0.859045
\(801\) 1.07823e19 1.44245
\(802\) 1.87851e19 2.49275
\(803\) −6.86680e18 −0.903865
\(804\) −4.41396e18 −0.576320
\(805\) −3.57393e18 −0.462885
\(806\) −1.14567e18 −0.147191
\(807\) 6.29794e17 0.0802639
\(808\) −4.14570e19 −5.24112
\(809\) −1.30799e19 −1.64036 −0.820181 0.572104i \(-0.806127\pi\)
−0.820181 + 0.572104i \(0.806127\pi\)
\(810\) 2.96926e18 0.369399
\(811\) −4.17968e18 −0.515832 −0.257916 0.966167i \(-0.583036\pi\)
−0.257916 + 0.966167i \(0.583036\pi\)
\(812\) −1.20071e19 −1.47002
\(813\) −9.18274e17 −0.111528
\(814\) 6.21566e18 0.748908
\(815\) 1.42084e18 0.169832
\(816\) 1.34020e19 1.58922
\(817\) −3.23283e16 −0.00380312
\(818\) 1.05757e19 1.23428
\(819\) −1.99028e18 −0.230445
\(820\) −1.54675e18 −0.177677
\(821\) 5.28864e18 0.602717 0.301358 0.953511i \(-0.402560\pi\)
0.301358 + 0.953511i \(0.402560\pi\)
\(822\) 1.02067e19 1.15403
\(823\) 7.96616e18 0.893614 0.446807 0.894630i \(-0.352561\pi\)
0.446807 + 0.894630i \(0.352561\pi\)
\(824\) 4.46049e19 4.96428
\(825\) 4.67894e17 0.0516650
\(826\) 1.97204e19 2.16046
\(827\) −1.49178e19 −1.62150 −0.810752 0.585389i \(-0.800942\pi\)
−0.810752 + 0.585389i \(0.800942\pi\)
\(828\) −3.28479e19 −3.54251
\(829\) −8.50781e18 −0.910360 −0.455180 0.890399i \(-0.650425\pi\)
−0.455180 + 0.890399i \(0.650425\pi\)
\(830\) 5.53752e18 0.587905
\(831\) 3.96308e17 0.0417471
\(832\) −1.87297e19 −1.95763
\(833\) 4.90704e18 0.508894
\(834\) −1.43937e19 −1.48113
\(835\) −3.75034e18 −0.382921
\(836\) 1.27469e18 0.129141
\(837\) 1.36582e18 0.137303
\(838\) 2.15921e19 2.15382
\(839\) −6.82788e18 −0.675823 −0.337912 0.941178i \(-0.609720\pi\)
−0.337912 + 0.941178i \(0.609720\pi\)
\(840\) 4.66449e18 0.458130
\(841\) −3.46561e18 −0.337758
\(842\) −2.10593e19 −2.03664
\(843\) −1.26527e18 −0.121424
\(844\) −2.87130e19 −2.73434
\(845\) −3.78092e18 −0.357297
\(846\) −6.36741e18 −0.597112
\(847\) 4.70348e18 0.437701
\(848\) 3.30573e19 3.05277
\(849\) −4.97315e18 −0.455755
\(850\) −3.75041e18 −0.341080
\(851\) −1.19755e19 −1.08082
\(852\) −2.06144e19 −1.84634
\(853\) 6.17395e18 0.548775 0.274387 0.961619i \(-0.411525\pi\)
0.274387 + 0.961619i \(0.411525\pi\)
\(854\) 1.45745e19 1.28564
\(855\) 3.29828e17 0.0288740
\(856\) −1.02926e18 −0.0894224
\(857\) 1.69937e18 0.146525 0.0732625 0.997313i \(-0.476659\pi\)
0.0732625 + 0.997313i \(0.476659\pi\)
\(858\) −2.63542e18 −0.225518
\(859\) 3.92966e18 0.333734 0.166867 0.985979i \(-0.446635\pi\)
0.166867 + 0.985979i \(0.446635\pi\)
\(860\) 6.92434e17 0.0583631
\(861\) −5.00118e17 −0.0418362
\(862\) −5.61118e18 −0.465862
\(863\) 6.77611e18 0.558354 0.279177 0.960240i \(-0.409938\pi\)
0.279177 + 0.960240i \(0.409938\pi\)
\(864\) 4.27699e19 3.49783
\(865\) 6.41052e18 0.520342
\(866\) 2.20006e18 0.177243
\(867\) 1.32125e18 0.105648
\(868\) −3.83761e18 −0.304567
\(869\) 2.31711e18 0.182523
\(870\) −4.11394e18 −0.321649
\(871\) −2.62872e18 −0.203998
\(872\) 2.84035e19 2.18783
\(873\) 1.01239e19 0.774026
\(874\) −3.33597e18 −0.253161
\(875\) −7.68635e17 −0.0578986
\(876\) −2.69104e19 −2.01207
\(877\) 1.66517e19 1.23583 0.617917 0.786243i \(-0.287977\pi\)
0.617917 + 0.786243i \(0.287977\pi\)
\(878\) −4.56183e19 −3.36066
\(879\) 4.47855e18 0.327499
\(880\) −1.40125e19 −1.01713
\(881\) 1.72426e19 1.24239 0.621195 0.783656i \(-0.286647\pi\)
0.621195 + 0.783656i \(0.286647\pi\)
\(882\) 1.25555e19 0.898024
\(883\) 3.03788e18 0.215688 0.107844 0.994168i \(-0.465605\pi\)
0.107844 + 0.994168i \(0.465605\pi\)
\(884\) 1.55514e19 1.09605
\(885\) 4.97421e18 0.348011
\(886\) 2.71099e19 1.88282
\(887\) 6.51405e18 0.449105 0.224552 0.974462i \(-0.427908\pi\)
0.224552 + 0.974462i \(0.427908\pi\)
\(888\) 1.56297e19 1.06971
\(889\) −6.10889e18 −0.415050
\(890\) −2.34542e19 −1.58193
\(891\) −3.60573e18 −0.241428
\(892\) −2.69389e19 −1.79064
\(893\) −4.76063e17 −0.0314145
\(894\) 6.21740e18 0.407301
\(895\) −3.71231e18 −0.241432
\(896\) −4.21568e19 −2.72186
\(897\) 5.07757e18 0.325465
\(898\) −1.59104e19 −1.01248
\(899\) 2.17177e18 0.137207
\(900\) −7.06451e18 −0.443104
\(901\) −1.07442e19 −0.669059
\(902\) 2.55139e18 0.157737
\(903\) 2.23888e17 0.0137423
\(904\) −5.32868e19 −3.24732
\(905\) 8.46282e18 0.512035
\(906\) 4.47680e18 0.268927
\(907\) −2.62324e19 −1.56455 −0.782277 0.622931i \(-0.785942\pi\)
−0.782277 + 0.622931i \(0.785942\pi\)
\(908\) 1.12358e19 0.665345
\(909\) 2.03015e19 1.19361
\(910\) 4.32934e18 0.252728
\(911\) −9.93847e18 −0.576037 −0.288018 0.957625i \(-0.592996\pi\)
−0.288018 + 0.957625i \(0.592996\pi\)
\(912\) 2.56381e18 0.147543
\(913\) −6.72450e18 −0.384238
\(914\) −1.72453e19 −0.978411
\(915\) 3.67623e18 0.207093
\(916\) 7.26176e19 4.06182
\(917\) 1.56983e19 0.871872
\(918\) −2.51835e19 −1.38880
\(919\) 1.61779e19 0.885874 0.442937 0.896553i \(-0.353937\pi\)
0.442937 + 0.896553i \(0.353937\pi\)
\(920\) 4.58474e19 2.49284
\(921\) −9.94953e18 −0.537174
\(922\) 3.66778e19 1.96631
\(923\) −1.22768e19 −0.653545
\(924\) −8.82776e18 −0.466641
\(925\) −2.57554e18 −0.135191
\(926\) −4.31419e19 −2.24868
\(927\) −2.18430e19 −1.13056
\(928\) 6.80074e19 3.49538
\(929\) 2.14431e18 0.109442 0.0547211 0.998502i \(-0.482573\pi\)
0.0547211 + 0.998502i \(0.482573\pi\)
\(930\) −1.31486e18 −0.0666409
\(931\) 9.38720e17 0.0472458
\(932\) −4.69097e18 −0.234455
\(933\) 1.51376e18 0.0751325
\(934\) 6.24514e19 3.07813
\(935\) 4.55433e18 0.222920
\(936\) 2.55318e19 1.24105
\(937\) −3.39502e19 −1.63883 −0.819417 0.573199i \(-0.805702\pi\)
−0.819417 + 0.573199i \(0.805702\pi\)
\(938\) −1.19607e19 −0.573376
\(939\) −5.96521e18 −0.283988
\(940\) 1.01967e19 0.482091
\(941\) −1.95970e19 −0.920149 −0.460074 0.887880i \(-0.652177\pi\)
−0.460074 + 0.887880i \(0.652177\pi\)
\(942\) 1.83527e19 0.855794
\(943\) −4.91568e18 −0.227645
\(944\) −1.48968e20 −6.85131
\(945\) −5.16128e18 −0.235749
\(946\) −1.14218e18 −0.0518134
\(947\) −1.67818e19 −0.756072 −0.378036 0.925791i \(-0.623400\pi\)
−0.378036 + 0.925791i \(0.623400\pi\)
\(948\) 9.08054e18 0.406310
\(949\) −1.60264e19 −0.712207
\(950\) −7.17456e17 −0.0316659
\(951\) 9.43831e18 0.413734
\(952\) 4.54026e19 1.97670
\(953\) 9.68702e18 0.418877 0.209438 0.977822i \(-0.432836\pi\)
0.209438 + 0.977822i \(0.432836\pi\)
\(954\) −2.74910e19 −1.18066
\(955\) −4.00042e16 −0.00170641
\(956\) 1.09367e20 4.63351
\(957\) 4.99577e18 0.210221
\(958\) −2.71445e19 −1.13450
\(959\) 2.03611e19 0.845241
\(960\) −2.14957e19 −0.886316
\(961\) −2.37234e19 −0.971573
\(962\) 1.45067e19 0.590108
\(963\) 5.04029e17 0.0203650
\(964\) 6.48492e19 2.60258
\(965\) 1.72650e19 0.688239
\(966\) 2.31030e19 0.914781
\(967\) 2.34907e18 0.0923899 0.0461949 0.998932i \(-0.485290\pi\)
0.0461949 + 0.998932i \(0.485290\pi\)
\(968\) −6.03376e19 −2.35721
\(969\) −8.33287e17 −0.0323363
\(970\) −2.20220e19 −0.848868
\(971\) 2.00271e19 0.766818 0.383409 0.923579i \(-0.374750\pi\)
0.383409 + 0.923579i \(0.374750\pi\)
\(972\) −7.38803e19 −2.80995
\(973\) −2.87138e19 −1.08482
\(974\) 3.72349e19 1.39739
\(975\) 1.09202e18 0.0407098
\(976\) −1.10096e20 −4.07706
\(977\) 3.98189e19 1.46479 0.732394 0.680881i \(-0.238403\pi\)
0.732394 + 0.680881i \(0.238403\pi\)
\(978\) −9.18473e18 −0.335633
\(979\) 2.84817e19 1.03390
\(980\) −2.01062e19 −0.725039
\(981\) −1.39092e19 −0.498257
\(982\) 4.60760e19 1.63965
\(983\) 2.29985e19 0.813022 0.406511 0.913646i \(-0.366745\pi\)
0.406511 + 0.913646i \(0.366745\pi\)
\(984\) 6.41566e18 0.225306
\(985\) 1.23460e19 0.430716
\(986\) −4.00437e19 −1.38782
\(987\) 3.29695e18 0.113514
\(988\) 2.97499e18 0.101757
\(989\) 2.20060e18 0.0747765
\(990\) 1.16530e19 0.393378
\(991\) 8.09114e18 0.271351 0.135675 0.990753i \(-0.456680\pi\)
0.135675 + 0.990753i \(0.456680\pi\)
\(992\) 2.17360e19 0.724191
\(993\) −8.07642e18 −0.267331
\(994\) −5.58598e19 −1.83691
\(995\) −4.64200e18 −0.151654
\(996\) −2.63527e19 −0.855342
\(997\) −2.26704e19 −0.731039 −0.365519 0.930804i \(-0.619109\pi\)
−0.365519 + 0.930804i \(0.619109\pi\)
\(998\) 6.82883e19 2.18775
\(999\) −1.72944e19 −0.550464
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5.14.a.b.1.3 3
3.2 odd 2 45.14.a.e.1.1 3
4.3 odd 2 80.14.a.g.1.2 3
5.2 odd 4 25.14.b.b.24.6 6
5.3 odd 4 25.14.b.b.24.1 6
5.4 even 2 25.14.a.b.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5.14.a.b.1.3 3 1.1 even 1 trivial
25.14.a.b.1.1 3 5.4 even 2
25.14.b.b.24.1 6 5.3 odd 4
25.14.b.b.24.6 6 5.2 odd 4
45.14.a.e.1.1 3 3.2 odd 2
80.14.a.g.1.2 3 4.3 odd 2