Properties

Label 5.14.a
Level $5$
Weight $14$
Character orbit 5.a
Rep. character $\chi_{5}(1,\cdot)$
Character field $\Q$
Dimension $5$
Newform subspaces $2$
Sturm bound $7$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 5 \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 5.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(7\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{14}(\Gamma_0(5))\).

Total New Old
Modular forms 7 5 2
Cusp forms 5 5 0
Eisenstein series 2 0 2

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(5\)TotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(3\)\(2\)\(1\)\(2\)\(2\)\(0\)\(1\)\(0\)\(1\)
\(-\)\(4\)\(3\)\(1\)\(3\)\(3\)\(0\)\(1\)\(0\)\(1\)

Trace form

\( 5 q + 62 q^{2} + 1196 q^{3} + 20660 q^{4} + 15625 q^{5} - 102440 q^{6} - 168008 q^{7} + 1846920 q^{8} + 701065 q^{9} + 3468750 q^{10} - 9071140 q^{11} - 7307408 q^{12} - 26984114 q^{13} + 4212720 q^{14}+ \cdots - 10958886660820 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{14}^{\mathrm{new}}(\Gamma_0(5))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 5
5.14.a.a 5.a 1.a $2$ $5.362$ \(\Q(\sqrt{499}) \) None 5.14.a.a \(-80\) \(780\) \(-31250\) \(-616300\) $+$ $\mathrm{SU}(2)$ \(q+(-40+\beta )q^{2}+(390-12\beta )q^{3}+(1392+\cdots)q^{4}+\cdots\)
5.14.a.b 5.a 1.a $3$ $5.362$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 5.14.a.b \(142\) \(416\) \(46875\) \(448292\) $-$ $\mathrm{SU}(2)$ \(q+(47-\beta _{1})q^{2}+(138-3\beta _{1}-\beta _{2})q^{3}+\cdots\)