Properties

Label 5.13.c
Level $5$
Weight $13$
Character orbit 5.c
Rep. character $\chi_{5}(2,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $10$
Newform subspaces $1$
Sturm bound $6$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 5 \)
Weight: \( k \) \(=\) \( 13 \)
Character orbit: \([\chi]\) \(=\) 5.c (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(6\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{13}(5, [\chi])\).

Total New Old
Modular forms 14 14 0
Cusp forms 10 10 0
Eisenstein series 4 4 0

Trace form

\( 10 q - 2 q^{2} + 318 q^{3} - 4250 q^{5} - 175080 q^{6} + 279598 q^{7} - 469980 q^{8} + 1552150 q^{10} + 312620 q^{11} - 2359992 q^{12} + 5290738 q^{13} - 5821650 q^{15} + 30547960 q^{16} - 41269502 q^{17}+ \cdots - 1481746533298 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{13}^{\mathrm{new}}(5, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
5.13.c.a 5.c 5.c $10$ $4.570$ \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None 5.13.c.a \(-2\) \(318\) \(-4250\) \(279598\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{5}q^{2}+(31-31\beta _{1}-\beta _{3}+3\beta _{6}+\cdots)q^{3}+\cdots\)