Properties

Label 5.12.a.b
Level 5
Weight 12
Character orbit 5.a
Self dual yes
Analytic conductor 3.842
Analytic rank 0
Dimension 2
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 5 \)
Weight: \( k \) = \( 12 \)
Character orbit: \([\chi]\) = 5.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(3.84171590280\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{151}) \)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{151}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -10 + 3 \beta ) q^{2} + ( -110 + 16 \beta ) q^{3} + ( 3488 - 60 \beta ) q^{4} -3125 q^{5} + ( 30092 - 490 \beta ) q^{6} + ( 28950 + 528 \beta ) q^{7} + ( -123120 + 4920 \beta ) q^{8} + ( -10423 - 3520 \beta ) q^{9} +O(q^{10})\) \( q + ( -10 + 3 \beta ) q^{2} + ( -110 + 16 \beta ) q^{3} + ( 3488 - 60 \beta ) q^{4} -3125 q^{5} + ( 30092 - 490 \beta ) q^{6} + ( 28950 + 528 \beta ) q^{7} + ( -123120 + 4920 \beta ) q^{8} + ( -10423 - 3520 \beta ) q^{9} + ( 31250 - 9375 \beta ) q^{10} + ( -309088 - 26400 \beta ) q^{11} + ( -963520 + 62408 \beta ) q^{12} + ( 1707130 - 12864 \beta ) q^{13} + ( 667236 + 81570 \beta ) q^{14} + ( 343750 - 50000 \beta ) q^{15} + ( 3002816 - 295680 \beta ) q^{16} + ( 658970 + 126528 \beta ) q^{17} + ( -6274010 + 3931 \beta ) q^{18} + ( 2662660 + 274560 \beta ) q^{19} + ( -10900000 + 187500 \beta ) q^{20} + ( 1918092 + 405120 \beta ) q^{21} + ( -44745920 - 663264 \beta ) q^{22} + ( 29471970 + 33456 \beta ) q^{23} + ( 61090080 - 2511120 \beta ) q^{24} + 9765625 q^{25} + ( -40380868 + 5250030 \beta ) q^{26} + ( -13384580 - 2613920 \beta ) q^{27} + ( 81842880 + 104664 \beta ) q^{28} + ( 47070190 + 2298240 \beta ) q^{29} + ( -94037500 + 1531250 \beta ) q^{30} + ( 122271732 - 7207200 \beta ) q^{31} + ( -313650560 + 1889088 \beta ) q^{32} + ( -221129920 - 2041408 \beta ) q^{33} + ( 222679036 + 711630 \beta ) q^{34} + ( -90468750 - 1650000 \beta ) q^{35} + ( 91209376 - 11652380 \beta ) q^{36} + ( 10501610 + 19033728 \beta ) q^{37} + ( 470876120 + 5242380 \beta ) q^{38} + ( -312101996 + 28729120 \beta ) q^{39} + ( 384750000 - 15375000 \beta ) q^{40} + ( -372871658 - 22651200 \beta ) q^{41} + ( 714896520 + 1703076 \beta ) q^{42} + ( 314975050 - 13909104 \beta ) q^{43} + ( -121362944 - 73537920 \beta ) q^{44} + ( 32571875 + 11000000 \beta ) q^{45} + ( -234097428 + 88081350 \beta ) q^{46} + ( -701030770 - 20505072 \beta ) q^{47} + ( -3187761280 + 80569856 \beta ) q^{48} + ( -970838707 + 30571200 \beta ) q^{49} + ( -97656250 + 29296875 \beta ) q^{50} + ( 1150279892 - 3374560 \beta ) q^{51} + ( 6420660800 - 147297432 \beta ) q^{52} + ( 569160290 - 186753984 \beta ) q^{53} + ( -4602577240 - 14014540 \beta ) q^{54} + ( 965900000 + 82500000 \beta ) q^{55} + ( -1995276960 + 77426640 \beta ) q^{56} + ( 2360455240 + 12400960 \beta ) q^{57} + ( 3693708980 + 118228170 \beta ) q^{58} + ( 3658757780 + 175817280 \beta ) q^{59} + ( 3011000000 - 195025000 \beta ) q^{60} + ( -758212838 - 53568000 \beta ) q^{61} + ( -14282163720 + 438887196 \beta ) q^{62} + ( -1424316090 - 107407344 \beta ) q^{63} + ( 409765888 - 354289920 \beta ) q^{64} + ( -5334781250 + 40200000 \beta ) q^{65} + ( -1487732096 - 642975680 \beta ) q^{66} + ( 7867145070 - 91691472 \beta ) q^{67} + ( -2286887360 + 401791464 \beta ) q^{68} + ( -2918597916 + 467871360 \beta ) q^{69} + ( -2085112500 - 254906250 \beta ) q^{70} + ( 16469235772 - 54804000 \beta ) q^{71} + ( -9177033840 + 382101240 \beta ) q^{72} + ( -14991424430 + 339617856 \beta ) q^{73} + ( 34384099036 - 158832450 \beta ) q^{74} + ( -1074218750 + 156250000 \beta ) q^{75} + ( -662696320 + 797905680 \beta ) q^{76} + ( -17367374400 - 927478464 \beta ) q^{77} + ( 55178185400 - 1223597188 \beta ) q^{78} + ( -1651411560 - 575636160 \beta ) q^{79} + ( -9383800000 + 924000000 \beta ) q^{80} + ( -21942215899 + 696935360 \beta ) q^{81} + ( -37315257820 - 892102974 \beta ) q^{82} + ( 6649551210 - 1100818224 \beta ) q^{83} + ( -7991243904 + 1297973040 \beta ) q^{84} + ( -2059281250 - 395400000 \beta ) q^{85} + ( -28353046948 + 1084016190 \beta ) q^{86} + ( 17032470460 + 500316640 \beta ) q^{87} + ( -40397437440 + 1729655040 \beta ) q^{88} + ( -6337385430 - 1455281280 \beta ) q^{89} + ( 19606281250 - 12284375 \beta ) q^{90} + ( 45318929532 + 528951840 \beta ) q^{91} + ( 101585785920 - 1651623672 \beta ) q^{92} + ( -83100271320 + 2749139712 \beta ) q^{93} + ( -30144882764 - 1898041590 \beta ) q^{94} + ( -8320812500 - 858000000 \beta ) q^{95} + ( 52757708032 - 5226208640 \beta ) q^{96} + ( -1540351870 + 4545870528 \beta ) q^{97} + ( 65103401470 - 3218228121 \beta ) q^{98} + ( 59350136224 + 1363156960 \beta ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 20q^{2} - 220q^{3} + 6976q^{4} - 6250q^{5} + 60184q^{6} + 57900q^{7} - 246240q^{8} - 20846q^{9} + O(q^{10}) \) \( 2q - 20q^{2} - 220q^{3} + 6976q^{4} - 6250q^{5} + 60184q^{6} + 57900q^{7} - 246240q^{8} - 20846q^{9} + 62500q^{10} - 618176q^{11} - 1927040q^{12} + 3414260q^{13} + 1334472q^{14} + 687500q^{15} + 6005632q^{16} + 1317940q^{17} - 12548020q^{18} + 5325320q^{19} - 21800000q^{20} + 3836184q^{21} - 89491840q^{22} + 58943940q^{23} + 122180160q^{24} + 19531250q^{25} - 80761736q^{26} - 26769160q^{27} + 163685760q^{28} + 94140380q^{29} - 188075000q^{30} + 244543464q^{31} - 627301120q^{32} - 442259840q^{33} + 445358072q^{34} - 180937500q^{35} + 182418752q^{36} + 21003220q^{37} + 941752240q^{38} - 624203992q^{39} + 769500000q^{40} - 745743316q^{41} + 1429793040q^{42} + 629950100q^{43} - 242725888q^{44} + 65143750q^{45} - 468194856q^{46} - 1402061540q^{47} - 6375522560q^{48} - 1941677414q^{49} - 195312500q^{50} + 2300559784q^{51} + 12841321600q^{52} + 1138320580q^{53} - 9205154480q^{54} + 1931800000q^{55} - 3990553920q^{56} + 4720910480q^{57} + 7387417960q^{58} + 7317515560q^{59} + 6022000000q^{60} - 1516425676q^{61} - 28564327440q^{62} - 2848632180q^{63} + 819531776q^{64} - 10669562500q^{65} - 2975464192q^{66} + 15734290140q^{67} - 4573774720q^{68} - 5837195832q^{69} - 4170225000q^{70} + 32938471544q^{71} - 18354067680q^{72} - 29982848860q^{73} + 68768198072q^{74} - 2148437500q^{75} - 1325392640q^{76} - 34734748800q^{77} + 110356370800q^{78} - 3302823120q^{79} - 18767600000q^{80} - 43884431798q^{81} - 74630515640q^{82} + 13299102420q^{83} - 15982487808q^{84} - 4118562500q^{85} - 56706093896q^{86} + 34064940920q^{87} - 80794874880q^{88} - 12674770860q^{89} + 39212562500q^{90} + 90637859064q^{91} + 203171571840q^{92} - 166200542640q^{93} - 60289765528q^{94} - 16641625000q^{95} + 105515416064q^{96} - 3080703740q^{97} + 130206802940q^{98} + 118700272448q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−12.2882
12.2882
−83.7292 −503.223 4962.58 −3125.00 42134.4 15973.7 −244036. 76086.0 261654.
1.2 63.7292 283.223 2013.42 −3125.00 18049.6 41926.3 −2204.06 −96932.0 −199154.
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5.12.a.b 2
3.b odd 2 1 45.12.a.d 2
4.b odd 2 1 80.12.a.j 2
5.b even 2 1 25.12.a.c 2
5.c odd 4 2 25.12.b.c 4
7.b odd 2 1 245.12.a.b 2
15.d odd 2 1 225.12.a.h 2
15.e even 4 2 225.12.b.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5.12.a.b 2 1.a even 1 1 trivial
25.12.a.c 2 5.b even 2 1
25.12.b.c 4 5.c odd 4 2
45.12.a.d 2 3.b odd 2 1
80.12.a.j 2 4.b odd 2 1
225.12.a.h 2 15.d odd 2 1
225.12.b.f 4 15.e even 4 2
245.12.a.b 2 7.b odd 2 1

Atkin-Lehner signs

\( p \) Sign
\(5\) \(1\)

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + 20 T_{2} - 5336 \) acting on \(S_{12}^{\mathrm{new}}(\Gamma_0(5))\).