Defining parameters
Level: | \( N \) | \(=\) | \( 5 \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 5.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(5\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(5))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 5 | 3 | 2 |
Cusp forms | 3 | 3 | 0 |
Eisenstein series | 2 | 0 | 2 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(5\) | Dim |
---|---|
\(+\) | \(1\) |
\(-\) | \(2\) |
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(5))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 5 | |||||||
5.10.a.a | $1$ | $2.575$ | \(\Q\) | None | \(-8\) | \(-114\) | \(-625\) | \(4242\) | $+$ | \(q-8q^{2}-114q^{3}-448q^{4}-5^{4}q^{5}+\cdots\) | |
5.10.a.b | $2$ | $2.575$ | \(\Q(\sqrt{1009}) \) | None | \(-10\) | \(260\) | \(1250\) | \(1700\) | $-$ | \(q+(-5-\beta )q^{2}+(130+2\beta )q^{3}+(522+\cdots)q^{4}+\cdots\) |