Properties

Label 49725.2.a.h
Level $49725$
Weight $2$
Character orbit 49725.a
Self dual yes
Analytic conductor $397.056$
Dimension $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [49725,2,Mod(1,49725)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("49725.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(49725, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 49725 = 3^{2} \cdot 5^{2} \cdot 13 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 49725.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-1,0,-1,0,0,2,3,0,0,0,0,1,-2,0,-1,-1,0,2,0,0,0,0,0,0,-1,0, -2,10,0,-4,-5,0,1,0,0,-2,-2,0,0,-6,0,-6,0,0,0,-8,0,-3,0,0,-1,-2,0,0,6, 0,-10,-10,0,10,4,0,7,0,0,8,1,0,0,12,0,6,2,0,-2,0,0,-14,0,0,6,16,0,0,6, 0,0,10,0,2,0,0,8,0,0,-2,3,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(397.056124051\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: not computed
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - q^{2} - q^{4} + 2 q^{7} + 3 q^{8} + q^{13} - 2 q^{14} - q^{16} - q^{17} + 2 q^{19} - q^{26} - 2 q^{28} + 10 q^{29} - 4 q^{31} - 5 q^{32} + q^{34} - 2 q^{37} - 2 q^{38} - 6 q^{41} - 6 q^{43}+ \cdots + 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( +1 \)
\(13\) \( -1 \)
\(17\) \( +1 \)

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.