Properties

Label 4950.2.c.r
Level 4950
Weight 2
Character orbit 4950.c
Analytic conductor 39.526
Analytic rank 0
Dimension 2
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 4950 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 4950.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(39.5259490005\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 66)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + i q^{2} - q^{4} + 2 i q^{7} -i q^{8} +O(q^{10})\) \( q + i q^{2} - q^{4} + 2 i q^{7} -i q^{8} + q^{11} + 4 i q^{13} -2 q^{14} + q^{16} + 6 i q^{17} + 4 q^{19} + i q^{22} + 6 i q^{23} -4 q^{26} -2 i q^{28} + 6 q^{29} + 8 q^{31} + i q^{32} -6 q^{34} -10 i q^{37} + 4 i q^{38} -6 q^{41} -8 i q^{43} - q^{44} -6 q^{46} + 6 i q^{47} + 3 q^{49} -4 i q^{52} + 2 q^{56} + 6 i q^{58} + 8 q^{61} + 8 i q^{62} - q^{64} -4 i q^{67} -6 i q^{68} -6 q^{71} -2 i q^{73} + 10 q^{74} -4 q^{76} + 2 i q^{77} -14 q^{79} -6 i q^{82} -12 i q^{83} + 8 q^{86} -i q^{88} -6 q^{89} -8 q^{91} -6 i q^{92} -6 q^{94} + 14 i q^{97} + 3 i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{4} + O(q^{10}) \) \( 2q - 2q^{4} + 2q^{11} - 4q^{14} + 2q^{16} + 8q^{19} - 8q^{26} + 12q^{29} + 16q^{31} - 12q^{34} - 12q^{41} - 2q^{44} - 12q^{46} + 6q^{49} + 4q^{56} + 16q^{61} - 2q^{64} - 12q^{71} + 20q^{74} - 8q^{76} - 28q^{79} + 16q^{86} - 12q^{89} - 16q^{91} - 12q^{94} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4950\mathbb{Z}\right)^\times\).

\(n\) \(551\) \(2377\) \(4501\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
199.1
1.00000i
1.00000i
1.00000i 0 −1.00000 0 0 2.00000i 1.00000i 0 0
199.2 1.00000i 0 −1.00000 0 0 2.00000i 1.00000i 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4950.2.c.r 2
3.b odd 2 1 1650.2.c.d 2
5.b even 2 1 inner 4950.2.c.r 2
5.c odd 4 1 198.2.a.e 1
5.c odd 4 1 4950.2.a.g 1
15.d odd 2 1 1650.2.c.d 2
15.e even 4 1 66.2.a.a 1
15.e even 4 1 1650.2.a.m 1
20.e even 4 1 1584.2.a.h 1
35.f even 4 1 9702.2.a.bu 1
40.i odd 4 1 6336.2.a.bj 1
40.k even 4 1 6336.2.a.bf 1
45.k odd 12 2 1782.2.e.f 2
45.l even 12 2 1782.2.e.s 2
55.e even 4 1 2178.2.a.b 1
60.l odd 4 1 528.2.a.d 1
105.k odd 4 1 3234.2.a.d 1
120.q odd 4 1 2112.2.a.v 1
120.w even 4 1 2112.2.a.i 1
165.l odd 4 1 726.2.a.i 1
165.u odd 20 4 726.2.e.b 4
165.v even 20 4 726.2.e.k 4
660.q even 4 1 5808.2.a.l 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
66.2.a.a 1 15.e even 4 1
198.2.a.e 1 5.c odd 4 1
528.2.a.d 1 60.l odd 4 1
726.2.a.i 1 165.l odd 4 1
726.2.e.b 4 165.u odd 20 4
726.2.e.k 4 165.v even 20 4
1584.2.a.h 1 20.e even 4 1
1650.2.a.m 1 15.e even 4 1
1650.2.c.d 2 3.b odd 2 1
1650.2.c.d 2 15.d odd 2 1
1782.2.e.f 2 45.k odd 12 2
1782.2.e.s 2 45.l even 12 2
2112.2.a.i 1 120.w even 4 1
2112.2.a.v 1 120.q odd 4 1
2178.2.a.b 1 55.e even 4 1
3234.2.a.d 1 105.k odd 4 1
4950.2.a.g 1 5.c odd 4 1
4950.2.c.r 2 1.a even 1 1 trivial
4950.2.c.r 2 5.b even 2 1 inner
5808.2.a.l 1 660.q even 4 1
6336.2.a.bf 1 40.k even 4 1
6336.2.a.bj 1 40.i odd 4 1
9702.2.a.bu 1 35.f even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(4950, [\chi])\):

\( T_{7}^{2} + 4 \)
\( T_{13}^{2} + 16 \)
\( T_{17}^{2} + 36 \)
\( T_{19} - 4 \)
\( T_{29} - 6 \)

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( 1 + T^{2} \)
$3$ 1
$5$ 1
$7$ \( 1 - 10 T^{2} + 49 T^{4} \)
$11$ \( ( 1 - T )^{2} \)
$13$ \( ( 1 - 6 T + 13 T^{2} )( 1 + 6 T + 13 T^{2} ) \)
$17$ \( 1 + 2 T^{2} + 289 T^{4} \)
$19$ \( ( 1 - 4 T + 19 T^{2} )^{2} \)
$23$ \( 1 - 10 T^{2} + 529 T^{4} \)
$29$ \( ( 1 - 6 T + 29 T^{2} )^{2} \)
$31$ \( ( 1 - 8 T + 31 T^{2} )^{2} \)
$37$ \( 1 + 26 T^{2} + 1369 T^{4} \)
$41$ \( ( 1 + 6 T + 41 T^{2} )^{2} \)
$43$ \( 1 - 22 T^{2} + 1849 T^{4} \)
$47$ \( 1 - 58 T^{2} + 2209 T^{4} \)
$53$ \( ( 1 - 53 T^{2} )^{2} \)
$59$ \( ( 1 + 59 T^{2} )^{2} \)
$61$ \( ( 1 - 8 T + 61 T^{2} )^{2} \)
$67$ \( 1 - 118 T^{2} + 4489 T^{4} \)
$71$ \( ( 1 + 6 T + 71 T^{2} )^{2} \)
$73$ \( 1 - 142 T^{2} + 5329 T^{4} \)
$79$ \( ( 1 + 14 T + 79 T^{2} )^{2} \)
$83$ \( 1 - 22 T^{2} + 6889 T^{4} \)
$89$ \( ( 1 + 6 T + 89 T^{2} )^{2} \)
$97$ \( 1 + 2 T^{2} + 9409 T^{4} \)
show more
show less