Properties

 Label 4950.2.c.r Level $4950$ Weight $2$ Character orbit 4950.c Analytic conductor $39.526$ Analytic rank $0$ Dimension $2$ Inner twists $2$

Related objects

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [4950,2,Mod(199,4950)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(4950, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 1, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("4950.199");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$4950 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 11$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 4950.c (of order $$2$$, degree $$1$$, not minimal)

Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$39.5259490005$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} + 1$$ x^2 + 1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 66) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + i q^{2} - q^{4} + 2 i q^{7} - i q^{8} +O(q^{10})$$ q + i * q^2 - q^4 + 2*i * q^7 - i * q^8 $$q + i q^{2} - q^{4} + 2 i q^{7} - i q^{8} + q^{11} + 4 i q^{13} - 2 q^{14} + q^{16} + 6 i q^{17} + 4 q^{19} + i q^{22} + 6 i q^{23} - 4 q^{26} - 2 i q^{28} + 6 q^{29} + 8 q^{31} + i q^{32} - 6 q^{34} - 10 i q^{37} + 4 i q^{38} - 6 q^{41} - 8 i q^{43} - q^{44} - 6 q^{46} + 6 i q^{47} + 3 q^{49} - 4 i q^{52} + 2 q^{56} + 6 i q^{58} + 8 q^{61} + 8 i q^{62} - q^{64} - 4 i q^{67} - 6 i q^{68} - 6 q^{71} - 2 i q^{73} + 10 q^{74} - 4 q^{76} + 2 i q^{77} - 14 q^{79} - 6 i q^{82} - 12 i q^{83} + 8 q^{86} - i q^{88} - 6 q^{89} - 8 q^{91} - 6 i q^{92} - 6 q^{94} + 14 i q^{97} + 3 i q^{98} +O(q^{100})$$ q + i * q^2 - q^4 + 2*i * q^7 - i * q^8 + q^11 + 4*i * q^13 - 2 * q^14 + q^16 + 6*i * q^17 + 4 * q^19 + i * q^22 + 6*i * q^23 - 4 * q^26 - 2*i * q^28 + 6 * q^29 + 8 * q^31 + i * q^32 - 6 * q^34 - 10*i * q^37 + 4*i * q^38 - 6 * q^41 - 8*i * q^43 - q^44 - 6 * q^46 + 6*i * q^47 + 3 * q^49 - 4*i * q^52 + 2 * q^56 + 6*i * q^58 + 8 * q^61 + 8*i * q^62 - q^64 - 4*i * q^67 - 6*i * q^68 - 6 * q^71 - 2*i * q^73 + 10 * q^74 - 4 * q^76 + 2*i * q^77 - 14 * q^79 - 6*i * q^82 - 12*i * q^83 + 8 * q^86 - i * q^88 - 6 * q^89 - 8 * q^91 - 6*i * q^92 - 6 * q^94 + 14*i * q^97 + 3*i * q^98 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - 2 q^{4}+O(q^{10})$$ 2 * q - 2 * q^4 $$2 q - 2 q^{4} + 2 q^{11} - 4 q^{14} + 2 q^{16} + 8 q^{19} - 8 q^{26} + 12 q^{29} + 16 q^{31} - 12 q^{34} - 12 q^{41} - 2 q^{44} - 12 q^{46} + 6 q^{49} + 4 q^{56} + 16 q^{61} - 2 q^{64} - 12 q^{71} + 20 q^{74} - 8 q^{76} - 28 q^{79} + 16 q^{86} - 12 q^{89} - 16 q^{91} - 12 q^{94}+O(q^{100})$$ 2 * q - 2 * q^4 + 2 * q^11 - 4 * q^14 + 2 * q^16 + 8 * q^19 - 8 * q^26 + 12 * q^29 + 16 * q^31 - 12 * q^34 - 12 * q^41 - 2 * q^44 - 12 * q^46 + 6 * q^49 + 4 * q^56 + 16 * q^61 - 2 * q^64 - 12 * q^71 + 20 * q^74 - 8 * q^76 - 28 * q^79 + 16 * q^86 - 12 * q^89 - 16 * q^91 - 12 * q^94

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/4950\mathbb{Z}\right)^\times$$.

 $$n$$ $$551$$ $$2377$$ $$4501$$ $$\chi(n)$$ $$1$$ $$-1$$ $$1$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
199.1
 − 1.00000i 1.00000i
1.00000i 0 −1.00000 0 0 2.00000i 1.00000i 0 0
199.2 1.00000i 0 −1.00000 0 0 2.00000i 1.00000i 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4950.2.c.r 2
3.b odd 2 1 1650.2.c.d 2
5.b even 2 1 inner 4950.2.c.r 2
5.c odd 4 1 198.2.a.e 1
5.c odd 4 1 4950.2.a.g 1
15.d odd 2 1 1650.2.c.d 2
15.e even 4 1 66.2.a.a 1
15.e even 4 1 1650.2.a.m 1
20.e even 4 1 1584.2.a.h 1
35.f even 4 1 9702.2.a.bu 1
40.i odd 4 1 6336.2.a.bj 1
40.k even 4 1 6336.2.a.bf 1
45.k odd 12 2 1782.2.e.f 2
45.l even 12 2 1782.2.e.s 2
55.e even 4 1 2178.2.a.b 1
60.l odd 4 1 528.2.a.d 1
105.k odd 4 1 3234.2.a.d 1
120.q odd 4 1 2112.2.a.v 1
120.w even 4 1 2112.2.a.i 1
165.l odd 4 1 726.2.a.i 1
165.u odd 20 4 726.2.e.b 4
165.v even 20 4 726.2.e.k 4
660.q even 4 1 5808.2.a.l 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
66.2.a.a 1 15.e even 4 1
198.2.a.e 1 5.c odd 4 1
528.2.a.d 1 60.l odd 4 1
726.2.a.i 1 165.l odd 4 1
726.2.e.b 4 165.u odd 20 4
726.2.e.k 4 165.v even 20 4
1584.2.a.h 1 20.e even 4 1
1650.2.a.m 1 15.e even 4 1
1650.2.c.d 2 3.b odd 2 1
1650.2.c.d 2 15.d odd 2 1
1782.2.e.f 2 45.k odd 12 2
1782.2.e.s 2 45.l even 12 2
2112.2.a.i 1 120.w even 4 1
2112.2.a.v 1 120.q odd 4 1
2178.2.a.b 1 55.e even 4 1
3234.2.a.d 1 105.k odd 4 1
4950.2.a.g 1 5.c odd 4 1
4950.2.c.r 2 1.a even 1 1 trivial
4950.2.c.r 2 5.b even 2 1 inner
5808.2.a.l 1 660.q even 4 1
6336.2.a.bf 1 40.k even 4 1
6336.2.a.bj 1 40.i odd 4 1
9702.2.a.bu 1 35.f even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(4950, [\chi])$$:

 $$T_{7}^{2} + 4$$ T7^2 + 4 $$T_{13}^{2} + 16$$ T13^2 + 16 $$T_{17}^{2} + 36$$ T17^2 + 36 $$T_{19} - 4$$ T19 - 4 $$T_{29} - 6$$ T29 - 6

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2} + 1$$
$3$ $$T^{2}$$
$5$ $$T^{2}$$
$7$ $$T^{2} + 4$$
$11$ $$(T - 1)^{2}$$
$13$ $$T^{2} + 16$$
$17$ $$T^{2} + 36$$
$19$ $$(T - 4)^{2}$$
$23$ $$T^{2} + 36$$
$29$ $$(T - 6)^{2}$$
$31$ $$(T - 8)^{2}$$
$37$ $$T^{2} + 100$$
$41$ $$(T + 6)^{2}$$
$43$ $$T^{2} + 64$$
$47$ $$T^{2} + 36$$
$53$ $$T^{2}$$
$59$ $$T^{2}$$
$61$ $$(T - 8)^{2}$$
$67$ $$T^{2} + 16$$
$71$ $$(T + 6)^{2}$$
$73$ $$T^{2} + 4$$
$79$ $$(T + 14)^{2}$$
$83$ $$T^{2} + 144$$
$89$ $$(T + 6)^{2}$$
$97$ $$T^{2} + 196$$