Properties

 Label 4950.2.c.p Level $4950$ Weight $2$ Character orbit 4950.c Analytic conductor $39.526$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

Learn more about

Newspace parameters

 Level: $$N$$ $$=$$ $$4950 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 11$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 4950.c (of order $$2$$, degree $$1$$, not minimal)

Newform invariants

 Self dual: no Analytic conductor: $$39.5259490005$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ Defining polynomial: $$x^{2} + 1$$ Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 66) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + i q^{2} - q^{4} + 4 i q^{7} -i q^{8} +O(q^{10})$$ $$q + i q^{2} - q^{4} + 4 i q^{7} -i q^{8} + q^{11} -6 i q^{13} -4 q^{14} + q^{16} + 2 i q^{17} -4 q^{19} + i q^{22} -4 i q^{23} + 6 q^{26} -4 i q^{28} + 6 q^{29} + i q^{32} -2 q^{34} -6 i q^{37} -4 i q^{38} + 6 q^{41} + 4 i q^{43} - q^{44} + 4 q^{46} -12 i q^{47} -9 q^{49} + 6 i q^{52} -2 i q^{53} + 4 q^{56} + 6 i q^{58} + 12 q^{59} -14 q^{61} - q^{64} -4 i q^{67} -2 i q^{68} + 12 q^{71} -6 i q^{73} + 6 q^{74} + 4 q^{76} + 4 i q^{77} + 4 q^{79} + 6 i q^{82} -4 i q^{83} -4 q^{86} -i q^{88} + 10 q^{89} + 24 q^{91} + 4 i q^{92} + 12 q^{94} + 14 i q^{97} -9 i q^{98} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - 2q^{4} + O(q^{10})$$ $$2q - 2q^{4} + 2q^{11} - 8q^{14} + 2q^{16} - 8q^{19} + 12q^{26} + 12q^{29} - 4q^{34} + 12q^{41} - 2q^{44} + 8q^{46} - 18q^{49} + 8q^{56} + 24q^{59} - 28q^{61} - 2q^{64} + 24q^{71} + 12q^{74} + 8q^{76} + 8q^{79} - 8q^{86} + 20q^{89} + 48q^{91} + 24q^{94} + O(q^{100})$$

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/4950\mathbb{Z}\right)^\times$$.

 $$n$$ $$551$$ $$2377$$ $$4501$$ $$\chi(n)$$ $$1$$ $$-1$$ $$1$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
199.1
 − 1.00000i 1.00000i
1.00000i 0 −1.00000 0 0 4.00000i 1.00000i 0 0
199.2 1.00000i 0 −1.00000 0 0 4.00000i 1.00000i 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4950.2.c.p 2
3.b odd 2 1 1650.2.c.e 2
5.b even 2 1 inner 4950.2.c.p 2
5.c odd 4 1 198.2.a.a 1
5.c odd 4 1 4950.2.a.bu 1
15.d odd 2 1 1650.2.c.e 2
15.e even 4 1 66.2.a.b 1
15.e even 4 1 1650.2.a.k 1
20.e even 4 1 1584.2.a.f 1
35.f even 4 1 9702.2.a.x 1
40.i odd 4 1 6336.2.a.bw 1
40.k even 4 1 6336.2.a.cj 1
45.k odd 12 2 1782.2.e.v 2
45.l even 12 2 1782.2.e.e 2
55.e even 4 1 2178.2.a.g 1
60.l odd 4 1 528.2.a.j 1
105.k odd 4 1 3234.2.a.t 1
120.q odd 4 1 2112.2.a.e 1
120.w even 4 1 2112.2.a.r 1
165.l odd 4 1 726.2.a.c 1
165.u odd 20 4 726.2.e.o 4
165.v even 20 4 726.2.e.g 4
660.q even 4 1 5808.2.a.bc 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
66.2.a.b 1 15.e even 4 1
198.2.a.a 1 5.c odd 4 1
528.2.a.j 1 60.l odd 4 1
726.2.a.c 1 165.l odd 4 1
726.2.e.g 4 165.v even 20 4
726.2.e.o 4 165.u odd 20 4
1584.2.a.f 1 20.e even 4 1
1650.2.a.k 1 15.e even 4 1
1650.2.c.e 2 3.b odd 2 1
1650.2.c.e 2 15.d odd 2 1
1782.2.e.e 2 45.l even 12 2
1782.2.e.v 2 45.k odd 12 2
2112.2.a.e 1 120.q odd 4 1
2112.2.a.r 1 120.w even 4 1
2178.2.a.g 1 55.e even 4 1
3234.2.a.t 1 105.k odd 4 1
4950.2.a.bu 1 5.c odd 4 1
4950.2.c.p 2 1.a even 1 1 trivial
4950.2.c.p 2 5.b even 2 1 inner
5808.2.a.bc 1 660.q even 4 1
6336.2.a.bw 1 40.i odd 4 1
6336.2.a.cj 1 40.k even 4 1
9702.2.a.x 1 35.f even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(4950, [\chi])$$:

 $$T_{7}^{2} + 16$$ $$T_{13}^{2} + 36$$ $$T_{17}^{2} + 4$$ $$T_{19} + 4$$ $$T_{29} - 6$$

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$1 + T^{2}$$
$3$ $$T^{2}$$
$5$ $$T^{2}$$
$7$ $$16 + T^{2}$$
$11$ $$( -1 + T )^{2}$$
$13$ $$36 + T^{2}$$
$17$ $$4 + T^{2}$$
$19$ $$( 4 + T )^{2}$$
$23$ $$16 + T^{2}$$
$29$ $$( -6 + T )^{2}$$
$31$ $$T^{2}$$
$37$ $$36 + T^{2}$$
$41$ $$( -6 + T )^{2}$$
$43$ $$16 + T^{2}$$
$47$ $$144 + T^{2}$$
$53$ $$4 + T^{2}$$
$59$ $$( -12 + T )^{2}$$
$61$ $$( 14 + T )^{2}$$
$67$ $$16 + T^{2}$$
$71$ $$( -12 + T )^{2}$$
$73$ $$36 + T^{2}$$
$79$ $$( -4 + T )^{2}$$
$83$ $$16 + T^{2}$$
$89$ $$( -10 + T )^{2}$$
$97$ $$196 + T^{2}$$
show more
show less