Properties

Label 4950.2.c.j
Level $4950$
Weight $2$
Character orbit 4950.c
Analytic conductor $39.526$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 4950 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4950.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(39.5259490005\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 330)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -i q^{2} - q^{4} + i q^{8} +O(q^{10})\) \( q -i q^{2} - q^{4} + i q^{8} - q^{11} -6 i q^{13} + q^{16} -2 i q^{17} + 4 q^{19} + i q^{22} -6 q^{26} -10 q^{29} -i q^{32} -2 q^{34} + 6 i q^{37} -4 i q^{38} -2 q^{41} -4 i q^{43} + q^{44} + 8 i q^{47} + 7 q^{49} + 6 i q^{52} -10 i q^{53} + 10 i q^{58} -4 q^{59} -2 q^{61} - q^{64} -4 i q^{67} + 2 i q^{68} + 8 q^{71} -2 i q^{73} + 6 q^{74} -4 q^{76} + 8 q^{79} + 2 i q^{82} -12 i q^{83} -4 q^{86} -i q^{88} -6 q^{89} + 8 q^{94} + 18 i q^{97} -7 i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{4} + O(q^{10}) \) \( 2q - 2q^{4} - 2q^{11} + 2q^{16} + 8q^{19} - 12q^{26} - 20q^{29} - 4q^{34} - 4q^{41} + 2q^{44} + 14q^{49} - 8q^{59} - 4q^{61} - 2q^{64} + 16q^{71} + 12q^{74} - 8q^{76} + 16q^{79} - 8q^{86} - 12q^{89} + 16q^{94} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4950\mathbb{Z}\right)^\times\).

\(n\) \(551\) \(2377\) \(4501\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
199.1
1.00000i
1.00000i
1.00000i 0 −1.00000 0 0 0 1.00000i 0 0
199.2 1.00000i 0 −1.00000 0 0 0 1.00000i 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4950.2.c.j 2
3.b odd 2 1 1650.2.c.g 2
5.b even 2 1 inner 4950.2.c.j 2
5.c odd 4 1 990.2.a.b 1
5.c odd 4 1 4950.2.a.bg 1
15.d odd 2 1 1650.2.c.g 2
15.e even 4 1 330.2.a.d 1
15.e even 4 1 1650.2.a.h 1
20.e even 4 1 7920.2.a.m 1
60.l odd 4 1 2640.2.a.t 1
165.l odd 4 1 3630.2.a.f 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
330.2.a.d 1 15.e even 4 1
990.2.a.b 1 5.c odd 4 1
1650.2.a.h 1 15.e even 4 1
1650.2.c.g 2 3.b odd 2 1
1650.2.c.g 2 15.d odd 2 1
2640.2.a.t 1 60.l odd 4 1
3630.2.a.f 1 165.l odd 4 1
4950.2.a.bg 1 5.c odd 4 1
4950.2.c.j 2 1.a even 1 1 trivial
4950.2.c.j 2 5.b even 2 1 inner
7920.2.a.m 1 20.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(4950, [\chi])\):

\( T_{7} \)
\( T_{13}^{2} + 36 \)
\( T_{17}^{2} + 4 \)
\( T_{19} - 4 \)
\( T_{29} + 10 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T^{2} \)
$3$ \( T^{2} \)
$5$ \( T^{2} \)
$7$ \( T^{2} \)
$11$ \( ( 1 + T )^{2} \)
$13$ \( 36 + T^{2} \)
$17$ \( 4 + T^{2} \)
$19$ \( ( -4 + T )^{2} \)
$23$ \( T^{2} \)
$29$ \( ( 10 + T )^{2} \)
$31$ \( T^{2} \)
$37$ \( 36 + T^{2} \)
$41$ \( ( 2 + T )^{2} \)
$43$ \( 16 + T^{2} \)
$47$ \( 64 + T^{2} \)
$53$ \( 100 + T^{2} \)
$59$ \( ( 4 + T )^{2} \)
$61$ \( ( 2 + T )^{2} \)
$67$ \( 16 + T^{2} \)
$71$ \( ( -8 + T )^{2} \)
$73$ \( 4 + T^{2} \)
$79$ \( ( -8 + T )^{2} \)
$83$ \( 144 + T^{2} \)
$89$ \( ( 6 + T )^{2} \)
$97$ \( 324 + T^{2} \)
show more
show less