# Properties

 Label 4950.2.c.g Level $4950$ Weight $2$ Character orbit 4950.c Analytic conductor $39.526$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$4950 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 11$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 4950.c (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$39.5259490005$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ Defining polynomial: $$x^{2} + 1$$ Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 330) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + i q^{2} - q^{4} -i q^{8} +O(q^{10})$$ $$q + i q^{2} - q^{4} -i q^{8} - q^{11} -2 i q^{13} + q^{16} + 2 i q^{17} -8 q^{19} -i q^{22} + 4 i q^{23} + 2 q^{26} + 2 q^{29} + 8 q^{31} + i q^{32} -2 q^{34} -2 i q^{37} -8 i q^{38} -6 q^{41} -8 i q^{43} + q^{44} -4 q^{46} + 4 i q^{47} + 7 q^{49} + 2 i q^{52} + 2 i q^{53} + 2 i q^{58} + 4 q^{59} -6 q^{61} + 8 i q^{62} - q^{64} -12 i q^{67} -2 i q^{68} + 12 q^{71} -2 i q^{73} + 2 q^{74} + 8 q^{76} -6 i q^{82} + 4 i q^{83} + 8 q^{86} + i q^{88} -6 q^{89} -4 i q^{92} -4 q^{94} -14 i q^{97} + 7 i q^{98} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - 2q^{4} + O(q^{10})$$ $$2q - 2q^{4} - 2q^{11} + 2q^{16} - 16q^{19} + 4q^{26} + 4q^{29} + 16q^{31} - 4q^{34} - 12q^{41} + 2q^{44} - 8q^{46} + 14q^{49} + 8q^{59} - 12q^{61} - 2q^{64} + 24q^{71} + 4q^{74} + 16q^{76} + 16q^{86} - 12q^{89} - 8q^{94} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/4950\mathbb{Z}\right)^\times$$.

 $$n$$ $$551$$ $$2377$$ $$4501$$ $$\chi(n)$$ $$1$$ $$-1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
199.1
 − 1.00000i 1.00000i
1.00000i 0 −1.00000 0 0 0 1.00000i 0 0
199.2 1.00000i 0 −1.00000 0 0 0 1.00000i 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4950.2.c.g 2
3.b odd 2 1 1650.2.c.l 2
5.b even 2 1 inner 4950.2.c.g 2
5.c odd 4 1 990.2.a.j 1
5.c odd 4 1 4950.2.a.k 1
15.d odd 2 1 1650.2.c.l 2
15.e even 4 1 330.2.a.a 1
15.e even 4 1 1650.2.a.r 1
20.e even 4 1 7920.2.a.bb 1
60.l odd 4 1 2640.2.a.n 1
165.l odd 4 1 3630.2.a.n 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
330.2.a.a 1 15.e even 4 1
990.2.a.j 1 5.c odd 4 1
1650.2.a.r 1 15.e even 4 1
1650.2.c.l 2 3.b odd 2 1
1650.2.c.l 2 15.d odd 2 1
2640.2.a.n 1 60.l odd 4 1
3630.2.a.n 1 165.l odd 4 1
4950.2.a.k 1 5.c odd 4 1
4950.2.c.g 2 1.a even 1 1 trivial
4950.2.c.g 2 5.b even 2 1 inner
7920.2.a.bb 1 20.e even 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(4950, [\chi])$$:

 $$T_{7}$$ $$T_{13}^{2} + 4$$ $$T_{17}^{2} + 4$$ $$T_{19} + 8$$ $$T_{29} - 2$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$1 + T^{2}$$
$3$ $$T^{2}$$
$5$ $$T^{2}$$
$7$ $$T^{2}$$
$11$ $$( 1 + T )^{2}$$
$13$ $$4 + T^{2}$$
$17$ $$4 + T^{2}$$
$19$ $$( 8 + T )^{2}$$
$23$ $$16 + T^{2}$$
$29$ $$( -2 + T )^{2}$$
$31$ $$( -8 + T )^{2}$$
$37$ $$4 + T^{2}$$
$41$ $$( 6 + T )^{2}$$
$43$ $$64 + T^{2}$$
$47$ $$16 + T^{2}$$
$53$ $$4 + T^{2}$$
$59$ $$( -4 + T )^{2}$$
$61$ $$( 6 + T )^{2}$$
$67$ $$144 + T^{2}$$
$71$ $$( -12 + T )^{2}$$
$73$ $$4 + T^{2}$$
$79$ $$T^{2}$$
$83$ $$16 + T^{2}$$
$89$ $$( 6 + T )^{2}$$
$97$ $$196 + T^{2}$$