Properties

Label 4950.2.a.bw.1.2
Level $4950$
Weight $2$
Character 4950.1
Self dual yes
Analytic conductor $39.526$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4950,2,Mod(1,4950)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4950, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4950.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4950 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4950.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.5259490005\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{33}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 110)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.37228\) of defining polynomial
Character \(\chi\) \(=\) 4950.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +2.37228 q^{7} -1.00000 q^{8} +1.00000 q^{11} -2.00000 q^{13} -2.37228 q^{14} +1.00000 q^{16} -4.37228 q^{17} +6.37228 q^{19} -1.00000 q^{22} -8.74456 q^{23} +2.00000 q^{26} +2.37228 q^{28} +4.37228 q^{29} -2.37228 q^{31} -1.00000 q^{32} +4.37228 q^{34} -3.62772 q^{37} -6.37228 q^{38} -11.4891 q^{41} +4.00000 q^{43} +1.00000 q^{44} +8.74456 q^{46} -8.74456 q^{47} -1.37228 q^{49} -2.00000 q^{52} +13.1168 q^{53} -2.37228 q^{56} -4.37228 q^{58} -8.74456 q^{59} +0.372281 q^{61} +2.37228 q^{62} +1.00000 q^{64} -8.00000 q^{67} -4.37228 q^{68} +7.11684 q^{71} -7.48913 q^{73} +3.62772 q^{74} +6.37228 q^{76} +2.37228 q^{77} -12.7446 q^{79} +11.4891 q^{82} +8.74456 q^{83} -4.00000 q^{86} -1.00000 q^{88} -4.37228 q^{89} -4.74456 q^{91} -8.74456 q^{92} +8.74456 q^{94} +1.25544 q^{97} +1.37228 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} - q^{7} - 2 q^{8} + 2 q^{11} - 4 q^{13} + q^{14} + 2 q^{16} - 3 q^{17} + 7 q^{19} - 2 q^{22} - 6 q^{23} + 4 q^{26} - q^{28} + 3 q^{29} + q^{31} - 2 q^{32} + 3 q^{34} - 13 q^{37}+ \cdots - 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) 2.37228 0.896638 0.448319 0.893874i \(-0.352023\pi\)
0.448319 + 0.893874i \(0.352023\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) −2.37228 −0.634019
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −4.37228 −1.06043 −0.530217 0.847862i \(-0.677890\pi\)
−0.530217 + 0.847862i \(0.677890\pi\)
\(18\) 0 0
\(19\) 6.37228 1.46190 0.730951 0.682430i \(-0.239077\pi\)
0.730951 + 0.682430i \(0.239077\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −1.00000 −0.213201
\(23\) −8.74456 −1.82337 −0.911684 0.410893i \(-0.865217\pi\)
−0.911684 + 0.410893i \(0.865217\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 2.00000 0.392232
\(27\) 0 0
\(28\) 2.37228 0.448319
\(29\) 4.37228 0.811912 0.405956 0.913893i \(-0.366939\pi\)
0.405956 + 0.913893i \(0.366939\pi\)
\(30\) 0 0
\(31\) −2.37228 −0.426074 −0.213037 0.977044i \(-0.568336\pi\)
−0.213037 + 0.977044i \(0.568336\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 4.37228 0.749840
\(35\) 0 0
\(36\) 0 0
\(37\) −3.62772 −0.596393 −0.298197 0.954504i \(-0.596385\pi\)
−0.298197 + 0.954504i \(0.596385\pi\)
\(38\) −6.37228 −1.03372
\(39\) 0 0
\(40\) 0 0
\(41\) −11.4891 −1.79430 −0.897150 0.441726i \(-0.854366\pi\)
−0.897150 + 0.441726i \(0.854366\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 1.00000 0.150756
\(45\) 0 0
\(46\) 8.74456 1.28932
\(47\) −8.74456 −1.27553 −0.637763 0.770233i \(-0.720140\pi\)
−0.637763 + 0.770233i \(0.720140\pi\)
\(48\) 0 0
\(49\) −1.37228 −0.196040
\(50\) 0 0
\(51\) 0 0
\(52\) −2.00000 −0.277350
\(53\) 13.1168 1.80174 0.900869 0.434092i \(-0.142931\pi\)
0.900869 + 0.434092i \(0.142931\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −2.37228 −0.317009
\(57\) 0 0
\(58\) −4.37228 −0.574109
\(59\) −8.74456 −1.13845 −0.569223 0.822183i \(-0.692756\pi\)
−0.569223 + 0.822183i \(0.692756\pi\)
\(60\) 0 0
\(61\) 0.372281 0.0476657 0.0238329 0.999716i \(-0.492413\pi\)
0.0238329 + 0.999716i \(0.492413\pi\)
\(62\) 2.37228 0.301280
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) −8.00000 −0.977356 −0.488678 0.872464i \(-0.662521\pi\)
−0.488678 + 0.872464i \(0.662521\pi\)
\(68\) −4.37228 −0.530217
\(69\) 0 0
\(70\) 0 0
\(71\) 7.11684 0.844614 0.422307 0.906453i \(-0.361220\pi\)
0.422307 + 0.906453i \(0.361220\pi\)
\(72\) 0 0
\(73\) −7.48913 −0.876536 −0.438268 0.898844i \(-0.644408\pi\)
−0.438268 + 0.898844i \(0.644408\pi\)
\(74\) 3.62772 0.421714
\(75\) 0 0
\(76\) 6.37228 0.730951
\(77\) 2.37228 0.270347
\(78\) 0 0
\(79\) −12.7446 −1.43388 −0.716938 0.697137i \(-0.754457\pi\)
−0.716938 + 0.697137i \(0.754457\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 11.4891 1.26876
\(83\) 8.74456 0.959840 0.479920 0.877312i \(-0.340666\pi\)
0.479920 + 0.877312i \(0.340666\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −4.00000 −0.431331
\(87\) 0 0
\(88\) −1.00000 −0.106600
\(89\) −4.37228 −0.463461 −0.231730 0.972780i \(-0.574439\pi\)
−0.231730 + 0.972780i \(0.574439\pi\)
\(90\) 0 0
\(91\) −4.74456 −0.497365
\(92\) −8.74456 −0.911684
\(93\) 0 0
\(94\) 8.74456 0.901933
\(95\) 0 0
\(96\) 0 0
\(97\) 1.25544 0.127470 0.0637352 0.997967i \(-0.479699\pi\)
0.0637352 + 0.997967i \(0.479699\pi\)
\(98\) 1.37228 0.138621
\(99\) 0 0
\(100\) 0 0
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 0 0
\(103\) −13.4891 −1.32912 −0.664562 0.747234i \(-0.731382\pi\)
−0.664562 + 0.747234i \(0.731382\pi\)
\(104\) 2.00000 0.196116
\(105\) 0 0
\(106\) −13.1168 −1.27402
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 0 0
\(109\) 7.48913 0.717328 0.358664 0.933467i \(-0.383232\pi\)
0.358664 + 0.933467i \(0.383232\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 2.37228 0.224160
\(113\) 14.7446 1.38705 0.693526 0.720432i \(-0.256056\pi\)
0.693526 + 0.720432i \(0.256056\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 4.37228 0.405956
\(117\) 0 0
\(118\) 8.74456 0.805002
\(119\) −10.3723 −0.950825
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −0.372281 −0.0337048
\(123\) 0 0
\(124\) −2.37228 −0.213037
\(125\) 0 0
\(126\) 0 0
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) −4.88316 −0.426643 −0.213322 0.976982i \(-0.568428\pi\)
−0.213322 + 0.976982i \(0.568428\pi\)
\(132\) 0 0
\(133\) 15.1168 1.31080
\(134\) 8.00000 0.691095
\(135\) 0 0
\(136\) 4.37228 0.374920
\(137\) −2.74456 −0.234484 −0.117242 0.993103i \(-0.537405\pi\)
−0.117242 + 0.993103i \(0.537405\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −7.11684 −0.597232
\(143\) −2.00000 −0.167248
\(144\) 0 0
\(145\) 0 0
\(146\) 7.48913 0.619804
\(147\) 0 0
\(148\) −3.62772 −0.298197
\(149\) 18.6060 1.52426 0.762130 0.647424i \(-0.224154\pi\)
0.762130 + 0.647424i \(0.224154\pi\)
\(150\) 0 0
\(151\) 22.2337 1.80935 0.904676 0.426100i \(-0.140113\pi\)
0.904676 + 0.426100i \(0.140113\pi\)
\(152\) −6.37228 −0.516860
\(153\) 0 0
\(154\) −2.37228 −0.191164
\(155\) 0 0
\(156\) 0 0
\(157\) −3.62772 −0.289523 −0.144762 0.989467i \(-0.546242\pi\)
−0.144762 + 0.989467i \(0.546242\pi\)
\(158\) 12.7446 1.01390
\(159\) 0 0
\(160\) 0 0
\(161\) −20.7446 −1.63490
\(162\) 0 0
\(163\) 23.1168 1.81065 0.905325 0.424718i \(-0.139627\pi\)
0.905325 + 0.424718i \(0.139627\pi\)
\(164\) −11.4891 −0.897150
\(165\) 0 0
\(166\) −8.74456 −0.678710
\(167\) −10.3723 −0.802631 −0.401316 0.915940i \(-0.631447\pi\)
−0.401316 + 0.915940i \(0.631447\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) 4.00000 0.304997
\(173\) −6.00000 −0.456172 −0.228086 0.973641i \(-0.573247\pi\)
−0.228086 + 0.973641i \(0.573247\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.00000 0.0753778
\(177\) 0 0
\(178\) 4.37228 0.327716
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) 4.74456 0.351690
\(183\) 0 0
\(184\) 8.74456 0.644658
\(185\) 0 0
\(186\) 0 0
\(187\) −4.37228 −0.319733
\(188\) −8.74456 −0.637763
\(189\) 0 0
\(190\) 0 0
\(191\) −17.4891 −1.26547 −0.632734 0.774369i \(-0.718067\pi\)
−0.632734 + 0.774369i \(0.718067\pi\)
\(192\) 0 0
\(193\) 13.8614 0.997766 0.498883 0.866669i \(-0.333744\pi\)
0.498883 + 0.866669i \(0.333744\pi\)
\(194\) −1.25544 −0.0901351
\(195\) 0 0
\(196\) −1.37228 −0.0980201
\(197\) −9.25544 −0.659423 −0.329711 0.944082i \(-0.606951\pi\)
−0.329711 + 0.944082i \(0.606951\pi\)
\(198\) 0 0
\(199\) 0.883156 0.0626053 0.0313026 0.999510i \(-0.490034\pi\)
0.0313026 + 0.999510i \(0.490034\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 6.00000 0.422159
\(203\) 10.3723 0.727991
\(204\) 0 0
\(205\) 0 0
\(206\) 13.4891 0.939832
\(207\) 0 0
\(208\) −2.00000 −0.138675
\(209\) 6.37228 0.440780
\(210\) 0 0
\(211\) −11.1168 −0.765315 −0.382658 0.923890i \(-0.624991\pi\)
−0.382658 + 0.923890i \(0.624991\pi\)
\(212\) 13.1168 0.900869
\(213\) 0 0
\(214\) 12.0000 0.820303
\(215\) 0 0
\(216\) 0 0
\(217\) −5.62772 −0.382034
\(218\) −7.48913 −0.507228
\(219\) 0 0
\(220\) 0 0
\(221\) 8.74456 0.588223
\(222\) 0 0
\(223\) 7.25544 0.485860 0.242930 0.970044i \(-0.421891\pi\)
0.242930 + 0.970044i \(0.421891\pi\)
\(224\) −2.37228 −0.158505
\(225\) 0 0
\(226\) −14.7446 −0.980794
\(227\) 8.74456 0.580397 0.290199 0.956966i \(-0.406279\pi\)
0.290199 + 0.956966i \(0.406279\pi\)
\(228\) 0 0
\(229\) −10.0000 −0.660819 −0.330409 0.943838i \(-0.607187\pi\)
−0.330409 + 0.943838i \(0.607187\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −4.37228 −0.287054
\(233\) −4.37228 −0.286438 −0.143219 0.989691i \(-0.545745\pi\)
−0.143219 + 0.989691i \(0.545745\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −8.74456 −0.569223
\(237\) 0 0
\(238\) 10.3723 0.672335
\(239\) 3.25544 0.210577 0.105288 0.994442i \(-0.466423\pi\)
0.105288 + 0.994442i \(0.466423\pi\)
\(240\) 0 0
\(241\) −22.0000 −1.41714 −0.708572 0.705638i \(-0.750660\pi\)
−0.708572 + 0.705638i \(0.750660\pi\)
\(242\) −1.00000 −0.0642824
\(243\) 0 0
\(244\) 0.372281 0.0238329
\(245\) 0 0
\(246\) 0 0
\(247\) −12.7446 −0.810917
\(248\) 2.37228 0.150640
\(249\) 0 0
\(250\) 0 0
\(251\) 8.74456 0.551952 0.275976 0.961165i \(-0.410999\pi\)
0.275976 + 0.961165i \(0.410999\pi\)
\(252\) 0 0
\(253\) −8.74456 −0.549766
\(254\) 8.00000 0.501965
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 18.0000 1.12281 0.561405 0.827541i \(-0.310261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(258\) 0 0
\(259\) −8.60597 −0.534749
\(260\) 0 0
\(261\) 0 0
\(262\) 4.88316 0.301682
\(263\) 3.86141 0.238105 0.119052 0.992888i \(-0.462014\pi\)
0.119052 + 0.992888i \(0.462014\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −15.1168 −0.926873
\(267\) 0 0
\(268\) −8.00000 −0.488678
\(269\) −2.74456 −0.167339 −0.0836695 0.996494i \(-0.526664\pi\)
−0.0836695 + 0.996494i \(0.526664\pi\)
\(270\) 0 0
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) −4.37228 −0.265108
\(273\) 0 0
\(274\) 2.74456 0.165805
\(275\) 0 0
\(276\) 0 0
\(277\) 1.25544 0.0754319 0.0377160 0.999289i \(-0.487992\pi\)
0.0377160 + 0.999289i \(0.487992\pi\)
\(278\) 4.00000 0.239904
\(279\) 0 0
\(280\) 0 0
\(281\) −18.0000 −1.07379 −0.536895 0.843649i \(-0.680403\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) 0 0
\(283\) −16.7446 −0.995361 −0.497680 0.867360i \(-0.665815\pi\)
−0.497680 + 0.867360i \(0.665815\pi\)
\(284\) 7.11684 0.422307
\(285\) 0 0
\(286\) 2.00000 0.118262
\(287\) −27.2554 −1.60884
\(288\) 0 0
\(289\) 2.11684 0.124520
\(290\) 0 0
\(291\) 0 0
\(292\) −7.48913 −0.438268
\(293\) 0.510875 0.0298456 0.0149228 0.999889i \(-0.495250\pi\)
0.0149228 + 0.999889i \(0.495250\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 3.62772 0.210857
\(297\) 0 0
\(298\) −18.6060 −1.07781
\(299\) 17.4891 1.01142
\(300\) 0 0
\(301\) 9.48913 0.546944
\(302\) −22.2337 −1.27940
\(303\) 0 0
\(304\) 6.37228 0.365475
\(305\) 0 0
\(306\) 0 0
\(307\) −16.7446 −0.955663 −0.477831 0.878452i \(-0.658577\pi\)
−0.477831 + 0.878452i \(0.658577\pi\)
\(308\) 2.37228 0.135173
\(309\) 0 0
\(310\) 0 0
\(311\) −13.6277 −0.772757 −0.386379 0.922340i \(-0.626274\pi\)
−0.386379 + 0.922340i \(0.626274\pi\)
\(312\) 0 0
\(313\) 22.0000 1.24351 0.621757 0.783210i \(-0.286419\pi\)
0.621757 + 0.783210i \(0.286419\pi\)
\(314\) 3.62772 0.204724
\(315\) 0 0
\(316\) −12.7446 −0.716938
\(317\) 27.3505 1.53616 0.768079 0.640355i \(-0.221213\pi\)
0.768079 + 0.640355i \(0.221213\pi\)
\(318\) 0 0
\(319\) 4.37228 0.244801
\(320\) 0 0
\(321\) 0 0
\(322\) 20.7446 1.15605
\(323\) −27.8614 −1.55025
\(324\) 0 0
\(325\) 0 0
\(326\) −23.1168 −1.28032
\(327\) 0 0
\(328\) 11.4891 0.634381
\(329\) −20.7446 −1.14368
\(330\) 0 0
\(331\) −14.9783 −0.823279 −0.411640 0.911347i \(-0.635044\pi\)
−0.411640 + 0.911347i \(0.635044\pi\)
\(332\) 8.74456 0.479920
\(333\) 0 0
\(334\) 10.3723 0.567546
\(335\) 0 0
\(336\) 0 0
\(337\) −6.88316 −0.374949 −0.187475 0.982269i \(-0.560030\pi\)
−0.187475 + 0.982269i \(0.560030\pi\)
\(338\) 9.00000 0.489535
\(339\) 0 0
\(340\) 0 0
\(341\) −2.37228 −0.128466
\(342\) 0 0
\(343\) −19.8614 −1.07242
\(344\) −4.00000 −0.215666
\(345\) 0 0
\(346\) 6.00000 0.322562
\(347\) 2.23369 0.119911 0.0599553 0.998201i \(-0.480904\pi\)
0.0599553 + 0.998201i \(0.480904\pi\)
\(348\) 0 0
\(349\) −3.48913 −0.186769 −0.0933843 0.995630i \(-0.529769\pi\)
−0.0933843 + 0.995630i \(0.529769\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1.00000 −0.0533002
\(353\) −23.4891 −1.25020 −0.625100 0.780545i \(-0.714942\pi\)
−0.625100 + 0.780545i \(0.714942\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −4.37228 −0.231730
\(357\) 0 0
\(358\) −12.0000 −0.634220
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 21.6060 1.13716
\(362\) 10.0000 0.525588
\(363\) 0 0
\(364\) −4.74456 −0.248683
\(365\) 0 0
\(366\) 0 0
\(367\) 4.00000 0.208798 0.104399 0.994535i \(-0.466708\pi\)
0.104399 + 0.994535i \(0.466708\pi\)
\(368\) −8.74456 −0.455842
\(369\) 0 0
\(370\) 0 0
\(371\) 31.1168 1.61551
\(372\) 0 0
\(373\) −8.51087 −0.440676 −0.220338 0.975424i \(-0.570716\pi\)
−0.220338 + 0.975424i \(0.570716\pi\)
\(374\) 4.37228 0.226085
\(375\) 0 0
\(376\) 8.74456 0.450966
\(377\) −8.74456 −0.450368
\(378\) 0 0
\(379\) 34.2337 1.75847 0.879233 0.476392i \(-0.158056\pi\)
0.879233 + 0.476392i \(0.158056\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 17.4891 0.894821
\(383\) −2.23369 −0.114136 −0.0570681 0.998370i \(-0.518175\pi\)
−0.0570681 + 0.998370i \(0.518175\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −13.8614 −0.705527
\(387\) 0 0
\(388\) 1.25544 0.0637352
\(389\) −6.00000 −0.304212 −0.152106 0.988364i \(-0.548606\pi\)
−0.152106 + 0.988364i \(0.548606\pi\)
\(390\) 0 0
\(391\) 38.2337 1.93356
\(392\) 1.37228 0.0693107
\(393\) 0 0
\(394\) 9.25544 0.466282
\(395\) 0 0
\(396\) 0 0
\(397\) 20.9783 1.05287 0.526434 0.850216i \(-0.323529\pi\)
0.526434 + 0.850216i \(0.323529\pi\)
\(398\) −0.883156 −0.0442686
\(399\) 0 0
\(400\) 0 0
\(401\) −7.62772 −0.380910 −0.190455 0.981696i \(-0.560996\pi\)
−0.190455 + 0.981696i \(0.560996\pi\)
\(402\) 0 0
\(403\) 4.74456 0.236343
\(404\) −6.00000 −0.298511
\(405\) 0 0
\(406\) −10.3723 −0.514768
\(407\) −3.62772 −0.179819
\(408\) 0 0
\(409\) −36.2337 −1.79164 −0.895820 0.444417i \(-0.853411\pi\)
−0.895820 + 0.444417i \(0.853411\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −13.4891 −0.664562
\(413\) −20.7446 −1.02077
\(414\) 0 0
\(415\) 0 0
\(416\) 2.00000 0.0980581
\(417\) 0 0
\(418\) −6.37228 −0.311678
\(419\) 12.0000 0.586238 0.293119 0.956076i \(-0.405307\pi\)
0.293119 + 0.956076i \(0.405307\pi\)
\(420\) 0 0
\(421\) −24.2337 −1.18108 −0.590539 0.807009i \(-0.701085\pi\)
−0.590539 + 0.807009i \(0.701085\pi\)
\(422\) 11.1168 0.541159
\(423\) 0 0
\(424\) −13.1168 −0.637010
\(425\) 0 0
\(426\) 0 0
\(427\) 0.883156 0.0427389
\(428\) −12.0000 −0.580042
\(429\) 0 0
\(430\) 0 0
\(431\) −10.9783 −0.528804 −0.264402 0.964413i \(-0.585175\pi\)
−0.264402 + 0.964413i \(0.585175\pi\)
\(432\) 0 0
\(433\) 29.7228 1.42839 0.714194 0.699948i \(-0.246794\pi\)
0.714194 + 0.699948i \(0.246794\pi\)
\(434\) 5.62772 0.270139
\(435\) 0 0
\(436\) 7.48913 0.358664
\(437\) −55.7228 −2.66558
\(438\) 0 0
\(439\) −26.9783 −1.28760 −0.643801 0.765193i \(-0.722643\pi\)
−0.643801 + 0.765193i \(0.722643\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −8.74456 −0.415936
\(443\) 6.51087 0.309341 0.154670 0.987966i \(-0.450568\pi\)
0.154670 + 0.987966i \(0.450568\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −7.25544 −0.343555
\(447\) 0 0
\(448\) 2.37228 0.112080
\(449\) 16.9783 0.801253 0.400627 0.916241i \(-0.368792\pi\)
0.400627 + 0.916241i \(0.368792\pi\)
\(450\) 0 0
\(451\) −11.4891 −0.541002
\(452\) 14.7446 0.693526
\(453\) 0 0
\(454\) −8.74456 −0.410403
\(455\) 0 0
\(456\) 0 0
\(457\) −35.3505 −1.65363 −0.826814 0.562475i \(-0.809849\pi\)
−0.826814 + 0.562475i \(0.809849\pi\)
\(458\) 10.0000 0.467269
\(459\) 0 0
\(460\) 0 0
\(461\) 1.11684 0.0520166 0.0260083 0.999662i \(-0.491720\pi\)
0.0260083 + 0.999662i \(0.491720\pi\)
\(462\) 0 0
\(463\) −34.2337 −1.59097 −0.795487 0.605970i \(-0.792785\pi\)
−0.795487 + 0.605970i \(0.792785\pi\)
\(464\) 4.37228 0.202978
\(465\) 0 0
\(466\) 4.37228 0.202542
\(467\) −13.6277 −0.630616 −0.315308 0.948989i \(-0.602108\pi\)
−0.315308 + 0.948989i \(0.602108\pi\)
\(468\) 0 0
\(469\) −18.9783 −0.876334
\(470\) 0 0
\(471\) 0 0
\(472\) 8.74456 0.402501
\(473\) 4.00000 0.183920
\(474\) 0 0
\(475\) 0 0
\(476\) −10.3723 −0.475413
\(477\) 0 0
\(478\) −3.25544 −0.148900
\(479\) 17.4891 0.799099 0.399549 0.916712i \(-0.369167\pi\)
0.399549 + 0.916712i \(0.369167\pi\)
\(480\) 0 0
\(481\) 7.25544 0.330819
\(482\) 22.0000 1.00207
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) 0 0
\(486\) 0 0
\(487\) −20.0000 −0.906287 −0.453143 0.891438i \(-0.649697\pi\)
−0.453143 + 0.891438i \(0.649697\pi\)
\(488\) −0.372281 −0.0168524
\(489\) 0 0
\(490\) 0 0
\(491\) 1.62772 0.0734579 0.0367290 0.999325i \(-0.488306\pi\)
0.0367290 + 0.999325i \(0.488306\pi\)
\(492\) 0 0
\(493\) −19.1168 −0.860979
\(494\) 12.7446 0.573405
\(495\) 0 0
\(496\) −2.37228 −0.106519
\(497\) 16.8832 0.757313
\(498\) 0 0
\(499\) −10.5109 −0.470531 −0.235266 0.971931i \(-0.575596\pi\)
−0.235266 + 0.971931i \(0.575596\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −8.74456 −0.390289
\(503\) 10.9783 0.489496 0.244748 0.969587i \(-0.421295\pi\)
0.244748 + 0.969587i \(0.421295\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 8.74456 0.388743
\(507\) 0 0
\(508\) −8.00000 −0.354943
\(509\) −44.2337 −1.96062 −0.980312 0.197455i \(-0.936732\pi\)
−0.980312 + 0.197455i \(0.936732\pi\)
\(510\) 0 0
\(511\) −17.7663 −0.785935
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −18.0000 −0.793946
\(515\) 0 0
\(516\) 0 0
\(517\) −8.74456 −0.384585
\(518\) 8.60597 0.378125
\(519\) 0 0
\(520\) 0 0
\(521\) −35.4891 −1.55481 −0.777403 0.629002i \(-0.783464\pi\)
−0.777403 + 0.629002i \(0.783464\pi\)
\(522\) 0 0
\(523\) 14.9783 0.654953 0.327477 0.944859i \(-0.393802\pi\)
0.327477 + 0.944859i \(0.393802\pi\)
\(524\) −4.88316 −0.213322
\(525\) 0 0
\(526\) −3.86141 −0.168365
\(527\) 10.3723 0.451824
\(528\) 0 0
\(529\) 53.4674 2.32467
\(530\) 0 0
\(531\) 0 0
\(532\) 15.1168 0.655398
\(533\) 22.9783 0.995299
\(534\) 0 0
\(535\) 0 0
\(536\) 8.00000 0.345547
\(537\) 0 0
\(538\) 2.74456 0.118326
\(539\) −1.37228 −0.0591083
\(540\) 0 0
\(541\) −2.88316 −0.123957 −0.0619783 0.998077i \(-0.519741\pi\)
−0.0619783 + 0.998077i \(0.519741\pi\)
\(542\) 16.0000 0.687259
\(543\) 0 0
\(544\) 4.37228 0.187460
\(545\) 0 0
\(546\) 0 0
\(547\) −20.0000 −0.855138 −0.427569 0.903983i \(-0.640630\pi\)
−0.427569 + 0.903983i \(0.640630\pi\)
\(548\) −2.74456 −0.117242
\(549\) 0 0
\(550\) 0 0
\(551\) 27.8614 1.18694
\(552\) 0 0
\(553\) −30.2337 −1.28567
\(554\) −1.25544 −0.0533384
\(555\) 0 0
\(556\) −4.00000 −0.169638
\(557\) −40.9783 −1.73630 −0.868152 0.496298i \(-0.834692\pi\)
−0.868152 + 0.496298i \(0.834692\pi\)
\(558\) 0 0
\(559\) −8.00000 −0.338364
\(560\) 0 0
\(561\) 0 0
\(562\) 18.0000 0.759284
\(563\) 26.2337 1.10562 0.552809 0.833308i \(-0.313556\pi\)
0.552809 + 0.833308i \(0.313556\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 16.7446 0.703826
\(567\) 0 0
\(568\) −7.11684 −0.298616
\(569\) 26.7446 1.12119 0.560595 0.828090i \(-0.310572\pi\)
0.560595 + 0.828090i \(0.310572\pi\)
\(570\) 0 0
\(571\) 9.62772 0.402907 0.201454 0.979498i \(-0.435433\pi\)
0.201454 + 0.979498i \(0.435433\pi\)
\(572\) −2.00000 −0.0836242
\(573\) 0 0
\(574\) 27.2554 1.13762
\(575\) 0 0
\(576\) 0 0
\(577\) 8.97825 0.373769 0.186885 0.982382i \(-0.440161\pi\)
0.186885 + 0.982382i \(0.440161\pi\)
\(578\) −2.11684 −0.0880491
\(579\) 0 0
\(580\) 0 0
\(581\) 20.7446 0.860629
\(582\) 0 0
\(583\) 13.1168 0.543244
\(584\) 7.48913 0.309902
\(585\) 0 0
\(586\) −0.510875 −0.0211040
\(587\) −3.86141 −0.159377 −0.0796887 0.996820i \(-0.525393\pi\)
−0.0796887 + 0.996820i \(0.525393\pi\)
\(588\) 0 0
\(589\) −15.1168 −0.622879
\(590\) 0 0
\(591\) 0 0
\(592\) −3.62772 −0.149098
\(593\) −35.4891 −1.45736 −0.728682 0.684852i \(-0.759867\pi\)
−0.728682 + 0.684852i \(0.759867\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 18.6060 0.762130
\(597\) 0 0
\(598\) −17.4891 −0.715184
\(599\) −0.605969 −0.0247592 −0.0123796 0.999923i \(-0.503941\pi\)
−0.0123796 + 0.999923i \(0.503941\pi\)
\(600\) 0 0
\(601\) −39.4891 −1.61080 −0.805398 0.592735i \(-0.798048\pi\)
−0.805398 + 0.592735i \(0.798048\pi\)
\(602\) −9.48913 −0.386748
\(603\) 0 0
\(604\) 22.2337 0.904676
\(605\) 0 0
\(606\) 0 0
\(607\) 23.1168 0.938284 0.469142 0.883123i \(-0.344563\pi\)
0.469142 + 0.883123i \(0.344563\pi\)
\(608\) −6.37228 −0.258430
\(609\) 0 0
\(610\) 0 0
\(611\) 17.4891 0.707534
\(612\) 0 0
\(613\) −43.4891 −1.75651 −0.878255 0.478193i \(-0.841292\pi\)
−0.878255 + 0.478193i \(0.841292\pi\)
\(614\) 16.7446 0.675756
\(615\) 0 0
\(616\) −2.37228 −0.0955819
\(617\) 32.2337 1.29768 0.648840 0.760925i \(-0.275255\pi\)
0.648840 + 0.760925i \(0.275255\pi\)
\(618\) 0 0
\(619\) 24.4674 0.983427 0.491713 0.870757i \(-0.336371\pi\)
0.491713 + 0.870757i \(0.336371\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 13.6277 0.546422
\(623\) −10.3723 −0.415557
\(624\) 0 0
\(625\) 0 0
\(626\) −22.0000 −0.879297
\(627\) 0 0
\(628\) −3.62772 −0.144762
\(629\) 15.8614 0.632436
\(630\) 0 0
\(631\) 24.8832 0.990583 0.495291 0.868727i \(-0.335061\pi\)
0.495291 + 0.868727i \(0.335061\pi\)
\(632\) 12.7446 0.506951
\(633\) 0 0
\(634\) −27.3505 −1.08623
\(635\) 0 0
\(636\) 0 0
\(637\) 2.74456 0.108744
\(638\) −4.37228 −0.173100
\(639\) 0 0
\(640\) 0 0
\(641\) −36.0951 −1.42567 −0.712835 0.701332i \(-0.752589\pi\)
−0.712835 + 0.701332i \(0.752589\pi\)
\(642\) 0 0
\(643\) 23.1168 0.911639 0.455820 0.890072i \(-0.349346\pi\)
0.455820 + 0.890072i \(0.349346\pi\)
\(644\) −20.7446 −0.817450
\(645\) 0 0
\(646\) 27.8614 1.09619
\(647\) 19.7228 0.775384 0.387692 0.921789i \(-0.373272\pi\)
0.387692 + 0.921789i \(0.373272\pi\)
\(648\) 0 0
\(649\) −8.74456 −0.343254
\(650\) 0 0
\(651\) 0 0
\(652\) 23.1168 0.905325
\(653\) 16.3723 0.640697 0.320348 0.947300i \(-0.396200\pi\)
0.320348 + 0.947300i \(0.396200\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −11.4891 −0.448575
\(657\) 0 0
\(658\) 20.7446 0.808707
\(659\) 15.8614 0.617873 0.308936 0.951083i \(-0.400027\pi\)
0.308936 + 0.951083i \(0.400027\pi\)
\(660\) 0 0
\(661\) 31.4891 1.22479 0.612393 0.790554i \(-0.290207\pi\)
0.612393 + 0.790554i \(0.290207\pi\)
\(662\) 14.9783 0.582146
\(663\) 0 0
\(664\) −8.74456 −0.339355
\(665\) 0 0
\(666\) 0 0
\(667\) −38.2337 −1.48041
\(668\) −10.3723 −0.401316
\(669\) 0 0
\(670\) 0 0
\(671\) 0.372281 0.0143718
\(672\) 0 0
\(673\) 13.8614 0.534318 0.267159 0.963652i \(-0.413915\pi\)
0.267159 + 0.963652i \(0.413915\pi\)
\(674\) 6.88316 0.265129
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) 14.7446 0.566680 0.283340 0.959020i \(-0.408558\pi\)
0.283340 + 0.959020i \(0.408558\pi\)
\(678\) 0 0
\(679\) 2.97825 0.114295
\(680\) 0 0
\(681\) 0 0
\(682\) 2.37228 0.0908393
\(683\) −34.3723 −1.31522 −0.657609 0.753359i \(-0.728432\pi\)
−0.657609 + 0.753359i \(0.728432\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 19.8614 0.758312
\(687\) 0 0
\(688\) 4.00000 0.152499
\(689\) −26.2337 −0.999424
\(690\) 0 0
\(691\) 5.76631 0.219361 0.109680 0.993967i \(-0.465017\pi\)
0.109680 + 0.993967i \(0.465017\pi\)
\(692\) −6.00000 −0.228086
\(693\) 0 0
\(694\) −2.23369 −0.0847896
\(695\) 0 0
\(696\) 0 0
\(697\) 50.2337 1.90274
\(698\) 3.48913 0.132065
\(699\) 0 0
\(700\) 0 0
\(701\) 31.6277 1.19456 0.597281 0.802032i \(-0.296248\pi\)
0.597281 + 0.802032i \(0.296248\pi\)
\(702\) 0 0
\(703\) −23.1168 −0.871868
\(704\) 1.00000 0.0376889
\(705\) 0 0
\(706\) 23.4891 0.884025
\(707\) −14.2337 −0.535313
\(708\) 0 0
\(709\) −10.0000 −0.375558 −0.187779 0.982211i \(-0.560129\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 4.37228 0.163858
\(713\) 20.7446 0.776890
\(714\) 0 0
\(715\) 0 0
\(716\) 12.0000 0.448461
\(717\) 0 0
\(718\) 0 0
\(719\) −31.1168 −1.16046 −0.580231 0.814452i \(-0.697038\pi\)
−0.580231 + 0.814452i \(0.697038\pi\)
\(720\) 0 0
\(721\) −32.0000 −1.19174
\(722\) −21.6060 −0.804091
\(723\) 0 0
\(724\) −10.0000 −0.371647
\(725\) 0 0
\(726\) 0 0
\(727\) −10.2337 −0.379546 −0.189773 0.981828i \(-0.560775\pi\)
−0.189773 + 0.981828i \(0.560775\pi\)
\(728\) 4.74456 0.175845
\(729\) 0 0
\(730\) 0 0
\(731\) −17.4891 −0.646859
\(732\) 0 0
\(733\) −11.7663 −0.434599 −0.217299 0.976105i \(-0.569725\pi\)
−0.217299 + 0.976105i \(0.569725\pi\)
\(734\) −4.00000 −0.147643
\(735\) 0 0
\(736\) 8.74456 0.322329
\(737\) −8.00000 −0.294684
\(738\) 0 0
\(739\) 48.4674 1.78290 0.891451 0.453118i \(-0.149688\pi\)
0.891451 + 0.453118i \(0.149688\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −31.1168 −1.14234
\(743\) −10.3723 −0.380522 −0.190261 0.981734i \(-0.560933\pi\)
−0.190261 + 0.981734i \(0.560933\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 8.51087 0.311605
\(747\) 0 0
\(748\) −4.37228 −0.159866
\(749\) −28.4674 −1.04018
\(750\) 0 0
\(751\) −19.8614 −0.724753 −0.362377 0.932032i \(-0.618035\pi\)
−0.362377 + 0.932032i \(0.618035\pi\)
\(752\) −8.74456 −0.318881
\(753\) 0 0
\(754\) 8.74456 0.318458
\(755\) 0 0
\(756\) 0 0
\(757\) −24.9783 −0.907850 −0.453925 0.891040i \(-0.649977\pi\)
−0.453925 + 0.891040i \(0.649977\pi\)
\(758\) −34.2337 −1.24342
\(759\) 0 0
\(760\) 0 0
\(761\) 40.9783 1.48546 0.742730 0.669591i \(-0.233531\pi\)
0.742730 + 0.669591i \(0.233531\pi\)
\(762\) 0 0
\(763\) 17.7663 0.643184
\(764\) −17.4891 −0.632734
\(765\) 0 0
\(766\) 2.23369 0.0807064
\(767\) 17.4891 0.631496
\(768\) 0 0
\(769\) −22.0000 −0.793340 −0.396670 0.917961i \(-0.629834\pi\)
−0.396670 + 0.917961i \(0.629834\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 13.8614 0.498883
\(773\) 6.60597 0.237600 0.118800 0.992918i \(-0.462095\pi\)
0.118800 + 0.992918i \(0.462095\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −1.25544 −0.0450676
\(777\) 0 0
\(778\) 6.00000 0.215110
\(779\) −73.2119 −2.62309
\(780\) 0 0
\(781\) 7.11684 0.254661
\(782\) −38.2337 −1.36723
\(783\) 0 0
\(784\) −1.37228 −0.0490100
\(785\) 0 0
\(786\) 0 0
\(787\) −24.4674 −0.872168 −0.436084 0.899906i \(-0.643635\pi\)
−0.436084 + 0.899906i \(0.643635\pi\)
\(788\) −9.25544 −0.329711
\(789\) 0 0
\(790\) 0 0
\(791\) 34.9783 1.24368
\(792\) 0 0
\(793\) −0.744563 −0.0264402
\(794\) −20.9783 −0.744490
\(795\) 0 0
\(796\) 0.883156 0.0313026
\(797\) −11.4891 −0.406966 −0.203483 0.979079i \(-0.565226\pi\)
−0.203483 + 0.979079i \(0.565226\pi\)
\(798\) 0 0
\(799\) 38.2337 1.35261
\(800\) 0 0
\(801\) 0 0
\(802\) 7.62772 0.269344
\(803\) −7.48913 −0.264285
\(804\) 0 0
\(805\) 0 0
\(806\) −4.74456 −0.167120
\(807\) 0 0
\(808\) 6.00000 0.211079
\(809\) −18.0000 −0.632846 −0.316423 0.948618i \(-0.602482\pi\)
−0.316423 + 0.948618i \(0.602482\pi\)
\(810\) 0 0
\(811\) 16.1386 0.566703 0.283351 0.959016i \(-0.408554\pi\)
0.283351 + 0.959016i \(0.408554\pi\)
\(812\) 10.3723 0.363996
\(813\) 0 0
\(814\) 3.62772 0.127151
\(815\) 0 0
\(816\) 0 0
\(817\) 25.4891 0.891752
\(818\) 36.2337 1.26688
\(819\) 0 0
\(820\) 0 0
\(821\) 11.4891 0.400973 0.200487 0.979696i \(-0.435748\pi\)
0.200487 + 0.979696i \(0.435748\pi\)
\(822\) 0 0
\(823\) 28.0000 0.976019 0.488009 0.872838i \(-0.337723\pi\)
0.488009 + 0.872838i \(0.337723\pi\)
\(824\) 13.4891 0.469916
\(825\) 0 0
\(826\) 20.7446 0.721796
\(827\) 1.02175 0.0355297 0.0177649 0.999842i \(-0.494345\pi\)
0.0177649 + 0.999842i \(0.494345\pi\)
\(828\) 0 0
\(829\) −13.2554 −0.460380 −0.230190 0.973146i \(-0.573935\pi\)
−0.230190 + 0.973146i \(0.573935\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −2.00000 −0.0693375
\(833\) 6.00000 0.207888
\(834\) 0 0
\(835\) 0 0
\(836\) 6.37228 0.220390
\(837\) 0 0
\(838\) −12.0000 −0.414533
\(839\) −34.9783 −1.20758 −0.603792 0.797142i \(-0.706344\pi\)
−0.603792 + 0.797142i \(0.706344\pi\)
\(840\) 0 0
\(841\) −9.88316 −0.340798
\(842\) 24.2337 0.835148
\(843\) 0 0
\(844\) −11.1168 −0.382658
\(845\) 0 0
\(846\) 0 0
\(847\) 2.37228 0.0815126
\(848\) 13.1168 0.450434
\(849\) 0 0
\(850\) 0 0
\(851\) 31.7228 1.08744
\(852\) 0 0
\(853\) −30.4674 −1.04318 −0.521592 0.853195i \(-0.674661\pi\)
−0.521592 + 0.853195i \(0.674661\pi\)
\(854\) −0.883156 −0.0302210
\(855\) 0 0
\(856\) 12.0000 0.410152
\(857\) −15.3505 −0.524364 −0.262182 0.965018i \(-0.584442\pi\)
−0.262182 + 0.965018i \(0.584442\pi\)
\(858\) 0 0
\(859\) −31.2554 −1.06642 −0.533211 0.845982i \(-0.679015\pi\)
−0.533211 + 0.845982i \(0.679015\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 10.9783 0.373921
\(863\) 32.7446 1.11464 0.557319 0.830299i \(-0.311830\pi\)
0.557319 + 0.830299i \(0.311830\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −29.7228 −1.01002
\(867\) 0 0
\(868\) −5.62772 −0.191017
\(869\) −12.7446 −0.432330
\(870\) 0 0
\(871\) 16.0000 0.542139
\(872\) −7.48913 −0.253614
\(873\) 0 0
\(874\) 55.7228 1.88485
\(875\) 0 0
\(876\) 0 0
\(877\) 8.97825 0.303174 0.151587 0.988444i \(-0.451562\pi\)
0.151587 + 0.988444i \(0.451562\pi\)
\(878\) 26.9783 0.910472
\(879\) 0 0
\(880\) 0 0
\(881\) −18.0000 −0.606435 −0.303218 0.952921i \(-0.598061\pi\)
−0.303218 + 0.952921i \(0.598061\pi\)
\(882\) 0 0
\(883\) 2.37228 0.0798336 0.0399168 0.999203i \(-0.487291\pi\)
0.0399168 + 0.999203i \(0.487291\pi\)
\(884\) 8.74456 0.294111
\(885\) 0 0
\(886\) −6.51087 −0.218737
\(887\) 34.9783 1.17445 0.587227 0.809422i \(-0.300219\pi\)
0.587227 + 0.809422i \(0.300219\pi\)
\(888\) 0 0
\(889\) −18.9783 −0.636510
\(890\) 0 0
\(891\) 0 0
\(892\) 7.25544 0.242930
\(893\) −55.7228 −1.86469
\(894\) 0 0
\(895\) 0 0
\(896\) −2.37228 −0.0792524
\(897\) 0 0
\(898\) −16.9783 −0.566572
\(899\) −10.3723 −0.345935
\(900\) 0 0
\(901\) −57.3505 −1.91062
\(902\) 11.4891 0.382546
\(903\) 0 0
\(904\) −14.7446 −0.490397
\(905\) 0 0
\(906\) 0 0
\(907\) 40.6060 1.34830 0.674150 0.738595i \(-0.264510\pi\)
0.674150 + 0.738595i \(0.264510\pi\)
\(908\) 8.74456 0.290199
\(909\) 0 0
\(910\) 0 0
\(911\) 48.6060 1.61039 0.805194 0.593012i \(-0.202061\pi\)
0.805194 + 0.593012i \(0.202061\pi\)
\(912\) 0 0
\(913\) 8.74456 0.289403
\(914\) 35.3505 1.16929
\(915\) 0 0
\(916\) −10.0000 −0.330409
\(917\) −11.5842 −0.382545
\(918\) 0 0
\(919\) −26.9783 −0.889930 −0.444965 0.895548i \(-0.646784\pi\)
−0.444965 + 0.895548i \(0.646784\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −1.11684 −0.0367813
\(923\) −14.2337 −0.468508
\(924\) 0 0
\(925\) 0 0
\(926\) 34.2337 1.12499
\(927\) 0 0
\(928\) −4.37228 −0.143527
\(929\) 27.3505 0.897342 0.448671 0.893697i \(-0.351898\pi\)
0.448671 + 0.893697i \(0.351898\pi\)
\(930\) 0 0
\(931\) −8.74456 −0.286591
\(932\) −4.37228 −0.143219
\(933\) 0 0
\(934\) 13.6277 0.445913
\(935\) 0 0
\(936\) 0 0
\(937\) 51.4891 1.68208 0.841038 0.540976i \(-0.181945\pi\)
0.841038 + 0.540976i \(0.181945\pi\)
\(938\) 18.9783 0.619662
\(939\) 0 0
\(940\) 0 0
\(941\) −48.0951 −1.56786 −0.783928 0.620852i \(-0.786787\pi\)
−0.783928 + 0.620852i \(0.786787\pi\)
\(942\) 0 0
\(943\) 100.467 3.27167
\(944\) −8.74456 −0.284611
\(945\) 0 0
\(946\) −4.00000 −0.130051
\(947\) 20.1386 0.654416 0.327208 0.944952i \(-0.393892\pi\)
0.327208 + 0.944952i \(0.393892\pi\)
\(948\) 0 0
\(949\) 14.9783 0.486215
\(950\) 0 0
\(951\) 0 0
\(952\) 10.3723 0.336168
\(953\) 22.8832 0.741258 0.370629 0.928781i \(-0.379142\pi\)
0.370629 + 0.928781i \(0.379142\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 3.25544 0.105288
\(957\) 0 0
\(958\) −17.4891 −0.565048
\(959\) −6.51087 −0.210247
\(960\) 0 0
\(961\) −25.3723 −0.818461
\(962\) −7.25544 −0.233925
\(963\) 0 0
\(964\) −22.0000 −0.708572
\(965\) 0 0
\(966\) 0 0
\(967\) −7.39403 −0.237776 −0.118888 0.992908i \(-0.537933\pi\)
−0.118888 + 0.992908i \(0.537933\pi\)
\(968\) −1.00000 −0.0321412
\(969\) 0 0
\(970\) 0 0
\(971\) 46.9783 1.50760 0.753802 0.657102i \(-0.228218\pi\)
0.753802 + 0.657102i \(0.228218\pi\)
\(972\) 0 0
\(973\) −9.48913 −0.304207
\(974\) 20.0000 0.640841
\(975\) 0 0
\(976\) 0.372281 0.0119164
\(977\) −20.2337 −0.647333 −0.323667 0.946171i \(-0.604916\pi\)
−0.323667 + 0.946171i \(0.604916\pi\)
\(978\) 0 0
\(979\) −4.37228 −0.139739
\(980\) 0 0
\(981\) 0 0
\(982\) −1.62772 −0.0519426
\(983\) 43.7228 1.39454 0.697271 0.716808i \(-0.254398\pi\)
0.697271 + 0.716808i \(0.254398\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 19.1168 0.608804
\(987\) 0 0
\(988\) −12.7446 −0.405459
\(989\) −34.9783 −1.11224
\(990\) 0 0
\(991\) 8.00000 0.254128 0.127064 0.991894i \(-0.459445\pi\)
0.127064 + 0.991894i \(0.459445\pi\)
\(992\) 2.37228 0.0753200
\(993\) 0 0
\(994\) −16.8832 −0.535501
\(995\) 0 0
\(996\) 0 0
\(997\) 12.2337 0.387445 0.193722 0.981056i \(-0.437944\pi\)
0.193722 + 0.981056i \(0.437944\pi\)
\(998\) 10.5109 0.332716
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4950.2.a.bw.1.2 2
3.2 odd 2 550.2.a.n.1.1 2
5.2 odd 4 4950.2.c.bc.199.2 4
5.3 odd 4 4950.2.c.bc.199.3 4
5.4 even 2 990.2.a.m.1.1 2
12.11 even 2 4400.2.a.bl.1.2 2
15.2 even 4 550.2.b.f.199.4 4
15.8 even 4 550.2.b.f.199.1 4
15.14 odd 2 110.2.a.d.1.2 2
20.19 odd 2 7920.2.a.bq.1.2 2
33.32 even 2 6050.2.a.cb.1.1 2
60.23 odd 4 4400.2.b.p.4049.3 4
60.47 odd 4 4400.2.b.p.4049.2 4
60.59 even 2 880.2.a.n.1.1 2
105.104 even 2 5390.2.a.bp.1.1 2
120.29 odd 2 3520.2.a.bq.1.1 2
120.59 even 2 3520.2.a.bj.1.2 2
165.164 even 2 1210.2.a.r.1.2 2
660.659 odd 2 9680.2.a.bt.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.2.a.d.1.2 2 15.14 odd 2
550.2.a.n.1.1 2 3.2 odd 2
550.2.b.f.199.1 4 15.8 even 4
550.2.b.f.199.4 4 15.2 even 4
880.2.a.n.1.1 2 60.59 even 2
990.2.a.m.1.1 2 5.4 even 2
1210.2.a.r.1.2 2 165.164 even 2
3520.2.a.bj.1.2 2 120.59 even 2
3520.2.a.bq.1.1 2 120.29 odd 2
4400.2.a.bl.1.2 2 12.11 even 2
4400.2.b.p.4049.2 4 60.47 odd 4
4400.2.b.p.4049.3 4 60.23 odd 4
4950.2.a.bw.1.2 2 1.1 even 1 trivial
4950.2.c.bc.199.2 4 5.2 odd 4
4950.2.c.bc.199.3 4 5.3 odd 4
5390.2.a.bp.1.1 2 105.104 even 2
6050.2.a.cb.1.1 2 33.32 even 2
7920.2.a.bq.1.2 2 20.19 odd 2
9680.2.a.bt.1.1 2 660.659 odd 2