Newspace parameters
Level: | \( N \) | \(=\) | \( 495 = 3^{2} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 495.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(79.3899908074\) |
Analytic rank: | \(1\) |
Dimension: | \(3\) |
Coefficient field: | 3.3.34253.1 |
Defining polynomial: |
\( x^{3} - x^{2} - 52x + 48 \)
|
Coefficient ring: | \(\Z[a_1, a_2]\) |
Coefficient ring index: | \( 2^{2} \) |
Twist minimal: | no (minimal twist has level 165) |
Fricke sign: | \(1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{3} - x^{2} - 52x + 48 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( \nu^{2} - 35 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{2} + 35 \)
|
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | |||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−5.17710 | 0 | −5.19759 | −25.0000 | 0 | −123.437 | 192.576 | 0 | 129.428 | |||||||||||||||||||||||||||
1.2 | 2.92180 | 0 | −23.4631 | −25.0000 | 0 | −85.0105 | −162.052 | 0 | −73.0450 | ||||||||||||||||||||||||||||
1.3 | 9.25531 | 0 | 53.6607 | −25.0000 | 0 | 36.4478 | 200.476 | 0 | −231.383 | ||||||||||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(3\) | \(-1\) |
\(5\) | \(1\) |
\(11\) | \(-1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 495.6.a.e | 3 | |
3.b | odd | 2 | 1 | 165.6.a.a | ✓ | 3 | |
15.d | odd | 2 | 1 | 825.6.a.j | 3 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
165.6.a.a | ✓ | 3 | 3.b | odd | 2 | 1 | |
495.6.a.e | 3 | 1.a | even | 1 | 1 | trivial | |
825.6.a.j | 3 | 15.d | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{3} - 7T_{2}^{2} - 36T_{2} + 140 \)
acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(495))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{3} - 7 T^{2} - 36 T + 140 \)
$3$
\( T^{3} \)
$5$
\( (T + 25)^{3} \)
$7$
\( T^{3} + 172 T^{2} + 2896 T - 382464 \)
$11$
\( (T - 121)^{3} \)
$13$
\( T^{3} + 654 T^{2} + \cdots - 317918392 \)
$17$
\( T^{3} - 2366 T^{2} + \cdots + 137826264 \)
$19$
\( T^{3} + 2872 T^{2} + \cdots + 11543616 \)
$23$
\( T^{3} + 2272 T^{2} + \cdots - 3706904576 \)
$29$
\( T^{3} - 7738 T^{2} + \cdots - 5220625848 \)
$31$
\( T^{3} - 568 T^{2} + \cdots - 289787904 \)
$37$
\( T^{3} + 9126 T^{2} + \cdots - 129972509048 \)
$41$
\( T^{3} - 8758 T^{2} + \cdots + 1122652557432 \)
$43$
\( T^{3} + 14672 T^{2} + \cdots - 518908872384 \)
$47$
\( T^{3} - 19392 T^{2} + \cdots + 1508908531200 \)
$53$
\( T^{3} - 4598 T^{2} + \cdots - 728896505288 \)
$59$
\( T^{3} - 9348 T^{2} + \cdots + 6267836310080 \)
$61$
\( T^{3} + 60078 T^{2} + \cdots - 13500896397400 \)
$67$
\( T^{3} + 38468 T^{2} + \cdots - 8479952260160 \)
$71$
\( T^{3} - 74032 T^{2} + \cdots + 17011990639616 \)
$73$
\( T^{3} + 44442 T^{2} + \cdots - 9750515676328 \)
$79$
\( T^{3} + 108116 T^{2} + \cdots + 9069370346752 \)
$83$
\( T^{3} + \cdots + 739830059345664 \)
$89$
\( T^{3} + \cdots + 158914472576552 \)
$97$
\( T^{3} + \cdots + 352998320493112 \)
show more
show less