Properties

Label 495.6.a.b.1.2
Level $495$
Weight $6$
Character 495.1
Self dual yes
Analytic conductor $79.390$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [495,6,Mod(1,495)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(495, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("495.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 495.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(79.3899908074\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.18257.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 26x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 165)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(0.305203\) of defining polynomial
Character \(\chi\) \(=\) 495.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.694797 q^{2} -31.5173 q^{4} -25.0000 q^{5} +83.1683 q^{7} +44.1316 q^{8} +O(q^{10})\) \(q-0.694797 q^{2} -31.5173 q^{4} -25.0000 q^{5} +83.1683 q^{7} +44.1316 q^{8} +17.3699 q^{10} -121.000 q^{11} -674.655 q^{13} -57.7851 q^{14} +977.890 q^{16} -1927.66 q^{17} -149.751 q^{19} +787.931 q^{20} +84.0704 q^{22} +1355.59 q^{23} +625.000 q^{25} +468.748 q^{26} -2621.24 q^{28} +7320.99 q^{29} -4215.76 q^{31} -2091.65 q^{32} +1339.33 q^{34} -2079.21 q^{35} -13420.1 q^{37} +104.046 q^{38} -1103.29 q^{40} -2865.39 q^{41} -22078.1 q^{43} +3813.59 q^{44} -941.861 q^{46} +14556.4 q^{47} -9890.04 q^{49} -434.248 q^{50} +21263.3 q^{52} -13349.7 q^{53} +3025.00 q^{55} +3670.35 q^{56} -5086.60 q^{58} -45803.3 q^{59} +18996.5 q^{61} +2929.10 q^{62} -29839.2 q^{64} +16866.4 q^{65} +6651.05 q^{67} +60754.5 q^{68} +1444.63 q^{70} +61028.7 q^{71} -17353.4 q^{73} +9324.27 q^{74} +4719.73 q^{76} -10063.4 q^{77} +61676.5 q^{79} -24447.2 q^{80} +1990.87 q^{82} +65230.8 q^{83} +48191.4 q^{85} +15339.8 q^{86} -5339.92 q^{88} +109563. q^{89} -56109.9 q^{91} -42724.5 q^{92} -10113.8 q^{94} +3743.76 q^{95} +83736.1 q^{97} +6871.57 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 2 q^{2} - 42 q^{4} - 75 q^{5} - 68 q^{7} + 24 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - 2 q^{2} - 42 q^{4} - 75 q^{5} - 68 q^{7} + 24 q^{8} + 50 q^{10} - 363 q^{11} + 290 q^{13} - 916 q^{14} - 590 q^{16} - 434 q^{17} - 2856 q^{19} + 1050 q^{20} + 242 q^{22} + 640 q^{23} + 1875 q^{25} - 2132 q^{26} - 580 q^{28} + 4538 q^{29} - 14968 q^{31} + 2496 q^{32} - 13704 q^{34} + 1700 q^{35} - 6190 q^{37} + 11668 q^{38} - 600 q^{40} + 8926 q^{41} - 33592 q^{43} + 5082 q^{44} - 35680 q^{46} + 24640 q^{47} - 14693 q^{49} - 1250 q^{50} + 18780 q^{52} + 22934 q^{53} + 9075 q^{55} + 40012 q^{56} - 32304 q^{58} + 13756 q^{59} + 24602 q^{61} + 7704 q^{62} + 35474 q^{64} - 7250 q^{65} + 16868 q^{67} + 71288 q^{68} + 22900 q^{70} - 4856 q^{71} + 1910 q^{73} - 29404 q^{74} + 6116 q^{76} + 8228 q^{77} - 36844 q^{79} + 14750 q^{80} + 84000 q^{82} + 48796 q^{83} + 10850 q^{85} + 83492 q^{86} - 2904 q^{88} + 188978 q^{89} - 93208 q^{91} + 6976 q^{92} + 70472 q^{94} + 71400 q^{95} + 247526 q^{97} + 154654 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.694797 −0.122824 −0.0614120 0.998113i \(-0.519560\pi\)
−0.0614120 + 0.998113i \(0.519560\pi\)
\(3\) 0 0
\(4\) −31.5173 −0.984914
\(5\) −25.0000 −0.447214
\(6\) 0 0
\(7\) 83.1683 0.641523 0.320762 0.947160i \(-0.396061\pi\)
0.320762 + 0.947160i \(0.396061\pi\)
\(8\) 44.1316 0.243795
\(9\) 0 0
\(10\) 17.3699 0.0549285
\(11\) −121.000 −0.301511
\(12\) 0 0
\(13\) −674.655 −1.10719 −0.553597 0.832785i \(-0.686745\pi\)
−0.553597 + 0.832785i \(0.686745\pi\)
\(14\) −57.7851 −0.0787944
\(15\) 0 0
\(16\) 977.890 0.954970
\(17\) −1927.66 −1.61774 −0.808868 0.587991i \(-0.799919\pi\)
−0.808868 + 0.587991i \(0.799919\pi\)
\(18\) 0 0
\(19\) −149.751 −0.0951666 −0.0475833 0.998867i \(-0.515152\pi\)
−0.0475833 + 0.998867i \(0.515152\pi\)
\(20\) 787.931 0.440467
\(21\) 0 0
\(22\) 84.0704 0.0370328
\(23\) 1355.59 0.534330 0.267165 0.963651i \(-0.413913\pi\)
0.267165 + 0.963651i \(0.413913\pi\)
\(24\) 0 0
\(25\) 625.000 0.200000
\(26\) 468.748 0.135990
\(27\) 0 0
\(28\) −2621.24 −0.631846
\(29\) 7320.99 1.61650 0.808248 0.588842i \(-0.200416\pi\)
0.808248 + 0.588842i \(0.200416\pi\)
\(30\) 0 0
\(31\) −4215.76 −0.787901 −0.393951 0.919132i \(-0.628892\pi\)
−0.393951 + 0.919132i \(0.628892\pi\)
\(32\) −2091.65 −0.361088
\(33\) 0 0
\(34\) 1339.33 0.198697
\(35\) −2079.21 −0.286898
\(36\) 0 0
\(37\) −13420.1 −1.61158 −0.805792 0.592199i \(-0.798260\pi\)
−0.805792 + 0.592199i \(0.798260\pi\)
\(38\) 104.046 0.0116887
\(39\) 0 0
\(40\) −1103.29 −0.109028
\(41\) −2865.39 −0.266210 −0.133105 0.991102i \(-0.542495\pi\)
−0.133105 + 0.991102i \(0.542495\pi\)
\(42\) 0 0
\(43\) −22078.1 −1.82092 −0.910458 0.413601i \(-0.864271\pi\)
−0.910458 + 0.413601i \(0.864271\pi\)
\(44\) 3813.59 0.296963
\(45\) 0 0
\(46\) −941.861 −0.0656285
\(47\) 14556.4 0.961192 0.480596 0.876942i \(-0.340420\pi\)
0.480596 + 0.876942i \(0.340420\pi\)
\(48\) 0 0
\(49\) −9890.04 −0.588448
\(50\) −434.248 −0.0245648
\(51\) 0 0
\(52\) 21263.3 1.09049
\(53\) −13349.7 −0.652805 −0.326402 0.945231i \(-0.605836\pi\)
−0.326402 + 0.945231i \(0.605836\pi\)
\(54\) 0 0
\(55\) 3025.00 0.134840
\(56\) 3670.35 0.156400
\(57\) 0 0
\(58\) −5086.60 −0.198544
\(59\) −45803.3 −1.71304 −0.856518 0.516117i \(-0.827377\pi\)
−0.856518 + 0.516117i \(0.827377\pi\)
\(60\) 0 0
\(61\) 18996.5 0.653655 0.326827 0.945084i \(-0.394020\pi\)
0.326827 + 0.945084i \(0.394020\pi\)
\(62\) 2929.10 0.0967731
\(63\) 0 0
\(64\) −29839.2 −0.910620
\(65\) 16866.4 0.495152
\(66\) 0 0
\(67\) 6651.05 0.181010 0.0905052 0.995896i \(-0.471152\pi\)
0.0905052 + 0.995896i \(0.471152\pi\)
\(68\) 60754.5 1.59333
\(69\) 0 0
\(70\) 1444.63 0.0352379
\(71\) 61028.7 1.43677 0.718386 0.695644i \(-0.244881\pi\)
0.718386 + 0.695644i \(0.244881\pi\)
\(72\) 0 0
\(73\) −17353.4 −0.381134 −0.190567 0.981674i \(-0.561033\pi\)
−0.190567 + 0.981674i \(0.561033\pi\)
\(74\) 9324.27 0.197941
\(75\) 0 0
\(76\) 4719.73 0.0937309
\(77\) −10063.4 −0.193427
\(78\) 0 0
\(79\) 61676.5 1.11187 0.555933 0.831227i \(-0.312361\pi\)
0.555933 + 0.831227i \(0.312361\pi\)
\(80\) −24447.2 −0.427076
\(81\) 0 0
\(82\) 1990.87 0.0326969
\(83\) 65230.8 1.03934 0.519670 0.854367i \(-0.326055\pi\)
0.519670 + 0.854367i \(0.326055\pi\)
\(84\) 0 0
\(85\) 48191.4 0.723473
\(86\) 15339.8 0.223652
\(87\) 0 0
\(88\) −5339.92 −0.0735069
\(89\) 109563. 1.46618 0.733091 0.680131i \(-0.238077\pi\)
0.733091 + 0.680131i \(0.238077\pi\)
\(90\) 0 0
\(91\) −56109.9 −0.710291
\(92\) −42724.5 −0.526269
\(93\) 0 0
\(94\) −10113.8 −0.118057
\(95\) 3743.76 0.0425598
\(96\) 0 0
\(97\) 83736.1 0.903615 0.451808 0.892115i \(-0.350779\pi\)
0.451808 + 0.892115i \(0.350779\pi\)
\(98\) 6871.57 0.0722754
\(99\) 0 0
\(100\) −19698.3 −0.196983
\(101\) 129877. 1.26686 0.633428 0.773801i \(-0.281647\pi\)
0.633428 + 0.773801i \(0.281647\pi\)
\(102\) 0 0
\(103\) 201851. 1.87472 0.937362 0.348358i \(-0.113261\pi\)
0.937362 + 0.348358i \(0.113261\pi\)
\(104\) −29773.6 −0.269928
\(105\) 0 0
\(106\) 9275.36 0.0801800
\(107\) 132285. 1.11699 0.558496 0.829507i \(-0.311378\pi\)
0.558496 + 0.829507i \(0.311378\pi\)
\(108\) 0 0
\(109\) −144044. −1.16126 −0.580629 0.814168i \(-0.697193\pi\)
−0.580629 + 0.814168i \(0.697193\pi\)
\(110\) −2101.76 −0.0165616
\(111\) 0 0
\(112\) 81329.4 0.612636
\(113\) 1095.62 0.00807165 0.00403582 0.999992i \(-0.498715\pi\)
0.00403582 + 0.999992i \(0.498715\pi\)
\(114\) 0 0
\(115\) −33889.8 −0.238960
\(116\) −230737. −1.59211
\(117\) 0 0
\(118\) 31824.0 0.210402
\(119\) −160320. −1.03782
\(120\) 0 0
\(121\) 14641.0 0.0909091
\(122\) −13198.7 −0.0802844
\(123\) 0 0
\(124\) 132869. 0.776015
\(125\) −15625.0 −0.0894427
\(126\) 0 0
\(127\) 315758. 1.73718 0.868591 0.495529i \(-0.165026\pi\)
0.868591 + 0.495529i \(0.165026\pi\)
\(128\) 87664.9 0.472934
\(129\) 0 0
\(130\) −11718.7 −0.0608165
\(131\) 187001. 0.952064 0.476032 0.879428i \(-0.342075\pi\)
0.476032 + 0.879428i \(0.342075\pi\)
\(132\) 0 0
\(133\) −12454.5 −0.0610516
\(134\) −4621.13 −0.0222324
\(135\) 0 0
\(136\) −85070.6 −0.394396
\(137\) −232301. −1.05743 −0.528713 0.848801i \(-0.677325\pi\)
−0.528713 + 0.848801i \(0.677325\pi\)
\(138\) 0 0
\(139\) −311665. −1.36820 −0.684102 0.729386i \(-0.739806\pi\)
−0.684102 + 0.729386i \(0.739806\pi\)
\(140\) 65530.9 0.282570
\(141\) 0 0
\(142\) −42402.5 −0.176470
\(143\) 81633.3 0.333831
\(144\) 0 0
\(145\) −183025. −0.722919
\(146\) 12057.1 0.0468124
\(147\) 0 0
\(148\) 422966. 1.58727
\(149\) −30354.5 −0.112010 −0.0560050 0.998430i \(-0.517836\pi\)
−0.0560050 + 0.998430i \(0.517836\pi\)
\(150\) 0 0
\(151\) 131015. 0.467604 0.233802 0.972284i \(-0.424883\pi\)
0.233802 + 0.972284i \(0.424883\pi\)
\(152\) −6608.73 −0.0232011
\(153\) 0 0
\(154\) 6991.99 0.0237574
\(155\) 105394. 0.352360
\(156\) 0 0
\(157\) 326922. 1.05851 0.529255 0.848463i \(-0.322472\pi\)
0.529255 + 0.848463i \(0.322472\pi\)
\(158\) −42852.7 −0.136564
\(159\) 0 0
\(160\) 52291.1 0.161484
\(161\) 112742. 0.342785
\(162\) 0 0
\(163\) −501854. −1.47948 −0.739739 0.672894i \(-0.765051\pi\)
−0.739739 + 0.672894i \(0.765051\pi\)
\(164\) 90309.3 0.262194
\(165\) 0 0
\(166\) −45322.2 −0.127656
\(167\) 590462. 1.63833 0.819164 0.573559i \(-0.194438\pi\)
0.819164 + 0.573559i \(0.194438\pi\)
\(168\) 0 0
\(169\) 83866.7 0.225877
\(170\) −33483.3 −0.0888598
\(171\) 0 0
\(172\) 695840. 1.79345
\(173\) −570934. −1.45034 −0.725172 0.688568i \(-0.758240\pi\)
−0.725172 + 0.688568i \(0.758240\pi\)
\(174\) 0 0
\(175\) 51980.2 0.128305
\(176\) −118325. −0.287934
\(177\) 0 0
\(178\) −76123.9 −0.180082
\(179\) 464402. 1.08333 0.541666 0.840594i \(-0.317794\pi\)
0.541666 + 0.840594i \(0.317794\pi\)
\(180\) 0 0
\(181\) −409792. −0.929751 −0.464876 0.885376i \(-0.653901\pi\)
−0.464876 + 0.885376i \(0.653901\pi\)
\(182\) 38985.0 0.0872407
\(183\) 0 0
\(184\) 59824.4 0.130267
\(185\) 335504. 0.720722
\(186\) 0 0
\(187\) 233247. 0.487766
\(188\) −458778. −0.946691
\(189\) 0 0
\(190\) −2601.16 −0.00522736
\(191\) 591029. 1.17226 0.586132 0.810216i \(-0.300650\pi\)
0.586132 + 0.810216i \(0.300650\pi\)
\(192\) 0 0
\(193\) −310907. −0.600811 −0.300405 0.953812i \(-0.597122\pi\)
−0.300405 + 0.953812i \(0.597122\pi\)
\(194\) −58179.6 −0.110986
\(195\) 0 0
\(196\) 311707. 0.579571
\(197\) −161613. −0.296695 −0.148348 0.988935i \(-0.547395\pi\)
−0.148348 + 0.988935i \(0.547395\pi\)
\(198\) 0 0
\(199\) 435622. 0.779790 0.389895 0.920859i \(-0.372511\pi\)
0.389895 + 0.920859i \(0.372511\pi\)
\(200\) 27582.2 0.0487590
\(201\) 0 0
\(202\) −90237.8 −0.155600
\(203\) 608874. 1.03702
\(204\) 0 0
\(205\) 71634.8 0.119053
\(206\) −140245. −0.230261
\(207\) 0 0
\(208\) −659738. −1.05734
\(209\) 18119.8 0.0286938
\(210\) 0 0
\(211\) −539434. −0.834127 −0.417063 0.908877i \(-0.636941\pi\)
−0.417063 + 0.908877i \(0.636941\pi\)
\(212\) 420747. 0.642957
\(213\) 0 0
\(214\) −91911.1 −0.137193
\(215\) 551952. 0.814339
\(216\) 0 0
\(217\) −350618. −0.505457
\(218\) 100081. 0.142630
\(219\) 0 0
\(220\) −95339.7 −0.132806
\(221\) 1.30050e6 1.79115
\(222\) 0 0
\(223\) 452834. 0.609786 0.304893 0.952387i \(-0.401379\pi\)
0.304893 + 0.952387i \(0.401379\pi\)
\(224\) −173959. −0.231646
\(225\) 0 0
\(226\) −761.230 −0.000991391 0
\(227\) 40608.6 0.0523062 0.0261531 0.999658i \(-0.491674\pi\)
0.0261531 + 0.999658i \(0.491674\pi\)
\(228\) 0 0
\(229\) 988410. 1.24551 0.622757 0.782415i \(-0.286013\pi\)
0.622757 + 0.782415i \(0.286013\pi\)
\(230\) 23546.5 0.0293499
\(231\) 0 0
\(232\) 323087. 0.394093
\(233\) 47673.4 0.0575289 0.0287645 0.999586i \(-0.490843\pi\)
0.0287645 + 0.999586i \(0.490843\pi\)
\(234\) 0 0
\(235\) −363911. −0.429858
\(236\) 1.44359e6 1.68719
\(237\) 0 0
\(238\) 111390. 0.127469
\(239\) 165174. 0.187045 0.0935224 0.995617i \(-0.470187\pi\)
0.0935224 + 0.995617i \(0.470187\pi\)
\(240\) 0 0
\(241\) −1.13302e6 −1.25659 −0.628294 0.777976i \(-0.716247\pi\)
−0.628294 + 0.777976i \(0.716247\pi\)
\(242\) −10172.5 −0.0111658
\(243\) 0 0
\(244\) −598717. −0.643794
\(245\) 247251. 0.263162
\(246\) 0 0
\(247\) 101030. 0.105368
\(248\) −186048. −0.192086
\(249\) 0 0
\(250\) 10856.2 0.0109857
\(251\) 1.08030e6 1.08233 0.541165 0.840917i \(-0.317984\pi\)
0.541165 + 0.840917i \(0.317984\pi\)
\(252\) 0 0
\(253\) −164027. −0.161106
\(254\) −219388. −0.213368
\(255\) 0 0
\(256\) 893945. 0.852533
\(257\) −301460. −0.284707 −0.142353 0.989816i \(-0.545467\pi\)
−0.142353 + 0.989816i \(0.545467\pi\)
\(258\) 0 0
\(259\) −1.11613e6 −1.03387
\(260\) −531582. −0.487682
\(261\) 0 0
\(262\) −129928. −0.116936
\(263\) 347755. 0.310016 0.155008 0.987913i \(-0.450460\pi\)
0.155008 + 0.987913i \(0.450460\pi\)
\(264\) 0 0
\(265\) 333744. 0.291943
\(266\) 8653.34 0.00749860
\(267\) 0 0
\(268\) −209623. −0.178280
\(269\) −980953. −0.826547 −0.413274 0.910607i \(-0.635615\pi\)
−0.413274 + 0.910607i \(0.635615\pi\)
\(270\) 0 0
\(271\) 9630.73 0.00796592 0.00398296 0.999992i \(-0.498732\pi\)
0.00398296 + 0.999992i \(0.498732\pi\)
\(272\) −1.88504e6 −1.54489
\(273\) 0 0
\(274\) 161402. 0.129877
\(275\) −75625.0 −0.0603023
\(276\) 0 0
\(277\) 324368. 0.254003 0.127001 0.991903i \(-0.459465\pi\)
0.127001 + 0.991903i \(0.459465\pi\)
\(278\) 216544. 0.168048
\(279\) 0 0
\(280\) −91758.7 −0.0699443
\(281\) −866856. −0.654909 −0.327455 0.944867i \(-0.606191\pi\)
−0.327455 + 0.944867i \(0.606191\pi\)
\(282\) 0 0
\(283\) −575157. −0.426895 −0.213447 0.976955i \(-0.568469\pi\)
−0.213447 + 0.976955i \(0.568469\pi\)
\(284\) −1.92346e6 −1.41510
\(285\) 0 0
\(286\) −56718.6 −0.0410025
\(287\) −238310. −0.170780
\(288\) 0 0
\(289\) 2.29601e6 1.61707
\(290\) 127165. 0.0887917
\(291\) 0 0
\(292\) 546932. 0.375384
\(293\) −1.96073e6 −1.33429 −0.667144 0.744929i \(-0.732483\pi\)
−0.667144 + 0.744929i \(0.732483\pi\)
\(294\) 0 0
\(295\) 1.14508e6 0.766093
\(296\) −592252. −0.392896
\(297\) 0 0
\(298\) 21090.2 0.0137575
\(299\) −914557. −0.591606
\(300\) 0 0
\(301\) −1.83620e6 −1.16816
\(302\) −91028.8 −0.0574330
\(303\) 0 0
\(304\) −146440. −0.0908813
\(305\) −474912. −0.292323
\(306\) 0 0
\(307\) 1.60549e6 0.972215 0.486108 0.873899i \(-0.338416\pi\)
0.486108 + 0.873899i \(0.338416\pi\)
\(308\) 317170. 0.190509
\(309\) 0 0
\(310\) −73227.4 −0.0432782
\(311\) −6622.52 −0.00388260 −0.00194130 0.999998i \(-0.500618\pi\)
−0.00194130 + 0.999998i \(0.500618\pi\)
\(312\) 0 0
\(313\) −1.08764e6 −0.627516 −0.313758 0.949503i \(-0.601588\pi\)
−0.313758 + 0.949503i \(0.601588\pi\)
\(314\) −227144. −0.130010
\(315\) 0 0
\(316\) −1.94387e6 −1.09509
\(317\) 456183. 0.254971 0.127486 0.991840i \(-0.459309\pi\)
0.127486 + 0.991840i \(0.459309\pi\)
\(318\) 0 0
\(319\) −885839. −0.487392
\(320\) 745980. 0.407242
\(321\) 0 0
\(322\) −78332.9 −0.0421022
\(323\) 288668. 0.153954
\(324\) 0 0
\(325\) −421660. −0.221439
\(326\) 348687. 0.181715
\(327\) 0 0
\(328\) −126454. −0.0649006
\(329\) 1.21063e6 0.616627
\(330\) 0 0
\(331\) 1.73077e6 0.868297 0.434149 0.900841i \(-0.357049\pi\)
0.434149 + 0.900841i \(0.357049\pi\)
\(332\) −2.05590e6 −1.02366
\(333\) 0 0
\(334\) −410251. −0.201226
\(335\) −166276. −0.0809503
\(336\) 0 0
\(337\) 3.01707e6 1.44714 0.723571 0.690250i \(-0.242499\pi\)
0.723571 + 0.690250i \(0.242499\pi\)
\(338\) −58270.3 −0.0277431
\(339\) 0 0
\(340\) −1.51886e6 −0.712559
\(341\) 510107. 0.237561
\(342\) 0 0
\(343\) −2.22035e6 −1.01903
\(344\) −974341. −0.443930
\(345\) 0 0
\(346\) 396683. 0.178137
\(347\) −1.26947e6 −0.565978 −0.282989 0.959123i \(-0.591326\pi\)
−0.282989 + 0.959123i \(0.591326\pi\)
\(348\) 0 0
\(349\) 3.26420e6 1.43454 0.717270 0.696795i \(-0.245391\pi\)
0.717270 + 0.696795i \(0.245391\pi\)
\(350\) −36115.7 −0.0157589
\(351\) 0 0
\(352\) 253089. 0.108872
\(353\) −1.70741e6 −0.729290 −0.364645 0.931147i \(-0.618810\pi\)
−0.364645 + 0.931147i \(0.618810\pi\)
\(354\) 0 0
\(355\) −1.52572e6 −0.642544
\(356\) −3.45312e6 −1.44406
\(357\) 0 0
\(358\) −322665. −0.133059
\(359\) −257688. −0.105526 −0.0527628 0.998607i \(-0.516803\pi\)
−0.0527628 + 0.998607i \(0.516803\pi\)
\(360\) 0 0
\(361\) −2.45367e6 −0.990943
\(362\) 284722. 0.114196
\(363\) 0 0
\(364\) 1.76843e6 0.699575
\(365\) 433835. 0.170448
\(366\) 0 0
\(367\) −683489. −0.264891 −0.132445 0.991190i \(-0.542283\pi\)
−0.132445 + 0.991190i \(0.542283\pi\)
\(368\) 1.32562e6 0.510269
\(369\) 0 0
\(370\) −233107. −0.0885219
\(371\) −1.11027e6 −0.418790
\(372\) 0 0
\(373\) 3.58176e6 1.33298 0.666492 0.745512i \(-0.267795\pi\)
0.666492 + 0.745512i \(0.267795\pi\)
\(374\) −162059. −0.0599093
\(375\) 0 0
\(376\) 642398. 0.234334
\(377\) −4.93914e6 −1.78977
\(378\) 0 0
\(379\) −4.87955e6 −1.74494 −0.872472 0.488665i \(-0.837484\pi\)
−0.872472 + 0.488665i \(0.837484\pi\)
\(380\) −117993. −0.0419177
\(381\) 0 0
\(382\) −410645. −0.143982
\(383\) −4.97559e6 −1.73319 −0.866597 0.499008i \(-0.833698\pi\)
−0.866597 + 0.499008i \(0.833698\pi\)
\(384\) 0 0
\(385\) 251584. 0.0865030
\(386\) 216017. 0.0737939
\(387\) 0 0
\(388\) −2.63913e6 −0.889983
\(389\) 4.09866e6 1.37331 0.686654 0.726984i \(-0.259079\pi\)
0.686654 + 0.726984i \(0.259079\pi\)
\(390\) 0 0
\(391\) −2.61312e6 −0.864404
\(392\) −436463. −0.143461
\(393\) 0 0
\(394\) 112288. 0.0364413
\(395\) −1.54191e6 −0.497241
\(396\) 0 0
\(397\) 1.61215e6 0.513369 0.256684 0.966495i \(-0.417370\pi\)
0.256684 + 0.966495i \(0.417370\pi\)
\(398\) −302669. −0.0957768
\(399\) 0 0
\(400\) 611181. 0.190994
\(401\) 648362. 0.201352 0.100676 0.994919i \(-0.467899\pi\)
0.100676 + 0.994919i \(0.467899\pi\)
\(402\) 0 0
\(403\) 2.84419e6 0.872359
\(404\) −4.09335e6 −1.24775
\(405\) 0 0
\(406\) −423044. −0.127371
\(407\) 1.62384e6 0.485911
\(408\) 0 0
\(409\) 1.88327e6 0.556677 0.278338 0.960483i \(-0.410216\pi\)
0.278338 + 0.960483i \(0.410216\pi\)
\(410\) −49771.6 −0.0146225
\(411\) 0 0
\(412\) −6.36178e6 −1.84644
\(413\) −3.80938e6 −1.09895
\(414\) 0 0
\(415\) −1.63077e6 −0.464807
\(416\) 1.41114e6 0.399794
\(417\) 0 0
\(418\) −12589.6 −0.00352429
\(419\) 5.10510e6 1.42059 0.710296 0.703903i \(-0.248561\pi\)
0.710296 + 0.703903i \(0.248561\pi\)
\(420\) 0 0
\(421\) 5.48811e6 1.50910 0.754550 0.656243i \(-0.227855\pi\)
0.754550 + 0.656243i \(0.227855\pi\)
\(422\) 374797. 0.102451
\(423\) 0 0
\(424\) −589145. −0.159150
\(425\) −1.20479e6 −0.323547
\(426\) 0 0
\(427\) 1.57990e6 0.419335
\(428\) −4.16925e6 −1.10014
\(429\) 0 0
\(430\) −383494. −0.100020
\(431\) 3.59589e6 0.932424 0.466212 0.884673i \(-0.345618\pi\)
0.466212 + 0.884673i \(0.345618\pi\)
\(432\) 0 0
\(433\) −5.03603e6 −1.29083 −0.645414 0.763833i \(-0.723315\pi\)
−0.645414 + 0.763833i \(0.723315\pi\)
\(434\) 243608. 0.0620822
\(435\) 0 0
\(436\) 4.53987e6 1.14374
\(437\) −203001. −0.0508503
\(438\) 0 0
\(439\) −3.25961e6 −0.807244 −0.403622 0.914926i \(-0.632249\pi\)
−0.403622 + 0.914926i \(0.632249\pi\)
\(440\) 133498. 0.0328733
\(441\) 0 0
\(442\) −903586. −0.219996
\(443\) 1.35658e6 0.328424 0.164212 0.986425i \(-0.447492\pi\)
0.164212 + 0.986425i \(0.447492\pi\)
\(444\) 0 0
\(445\) −2.73907e6 −0.655696
\(446\) −314628. −0.0748962
\(447\) 0 0
\(448\) −2.48167e6 −0.584184
\(449\) 6.80906e6 1.59394 0.796969 0.604020i \(-0.206435\pi\)
0.796969 + 0.604020i \(0.206435\pi\)
\(450\) 0 0
\(451\) 346712. 0.0802653
\(452\) −34530.8 −0.00794988
\(453\) 0 0
\(454\) −28214.7 −0.00642445
\(455\) 1.40275e6 0.317652
\(456\) 0 0
\(457\) −3.03977e6 −0.680848 −0.340424 0.940272i \(-0.610571\pi\)
−0.340424 + 0.940272i \(0.610571\pi\)
\(458\) −686744. −0.152979
\(459\) 0 0
\(460\) 1.06811e6 0.235355
\(461\) −3.27858e6 −0.718511 −0.359256 0.933239i \(-0.616969\pi\)
−0.359256 + 0.933239i \(0.616969\pi\)
\(462\) 0 0
\(463\) 5.51970e6 1.19664 0.598319 0.801258i \(-0.295836\pi\)
0.598319 + 0.801258i \(0.295836\pi\)
\(464\) 7.15912e6 1.54371
\(465\) 0 0
\(466\) −33123.3 −0.00706593
\(467\) 4.07534e6 0.864711 0.432356 0.901703i \(-0.357683\pi\)
0.432356 + 0.901703i \(0.357683\pi\)
\(468\) 0 0
\(469\) 553157. 0.116122
\(470\) 252844. 0.0527968
\(471\) 0 0
\(472\) −2.02137e6 −0.417630
\(473\) 2.67145e6 0.549027
\(474\) 0 0
\(475\) −93594.1 −0.0190333
\(476\) 5.05284e6 1.02216
\(477\) 0 0
\(478\) −114762. −0.0229736
\(479\) −4.77799e6 −0.951495 −0.475748 0.879582i \(-0.657822\pi\)
−0.475748 + 0.879582i \(0.657822\pi\)
\(480\) 0 0
\(481\) 9.05397e6 1.78433
\(482\) 787216. 0.154339
\(483\) 0 0
\(484\) −461444. −0.0895377
\(485\) −2.09340e6 −0.404109
\(486\) 0 0
\(487\) 1.76923e6 0.338035 0.169017 0.985613i \(-0.445941\pi\)
0.169017 + 0.985613i \(0.445941\pi\)
\(488\) 838345. 0.159358
\(489\) 0 0
\(490\) −171789. −0.0323226
\(491\) 1.04139e6 0.194943 0.0974716 0.995238i \(-0.468924\pi\)
0.0974716 + 0.995238i \(0.468924\pi\)
\(492\) 0 0
\(493\) −1.41124e7 −2.61506
\(494\) −70195.3 −0.0129417
\(495\) 0 0
\(496\) −4.12255e6 −0.752422
\(497\) 5.07565e6 0.921723
\(498\) 0 0
\(499\) 2.03068e6 0.365082 0.182541 0.983198i \(-0.441568\pi\)
0.182541 + 0.983198i \(0.441568\pi\)
\(500\) 492457. 0.0880934
\(501\) 0 0
\(502\) −750588. −0.132936
\(503\) 5.06008e6 0.891739 0.445869 0.895098i \(-0.352895\pi\)
0.445869 + 0.895098i \(0.352895\pi\)
\(504\) 0 0
\(505\) −3.24691e6 −0.566555
\(506\) 113965. 0.0197877
\(507\) 0 0
\(508\) −9.95183e6 −1.71098
\(509\) −5.64302e6 −0.965421 −0.482711 0.875780i \(-0.660348\pi\)
−0.482711 + 0.875780i \(0.660348\pi\)
\(510\) 0 0
\(511\) −1.44325e6 −0.244506
\(512\) −3.42639e6 −0.577645
\(513\) 0 0
\(514\) 209454. 0.0349688
\(515\) −5.04627e6 −0.838402
\(516\) 0 0
\(517\) −1.76133e6 −0.289810
\(518\) 775484. 0.126984
\(519\) 0 0
\(520\) 744340. 0.120716
\(521\) −5.37673e6 −0.867809 −0.433905 0.900959i \(-0.642864\pi\)
−0.433905 + 0.900959i \(0.642864\pi\)
\(522\) 0 0
\(523\) 8.42403e6 1.34668 0.673342 0.739331i \(-0.264858\pi\)
0.673342 + 0.739331i \(0.264858\pi\)
\(524\) −5.89376e6 −0.937701
\(525\) 0 0
\(526\) −241619. −0.0380773
\(527\) 8.12654e6 1.27462
\(528\) 0 0
\(529\) −4.59871e6 −0.714492
\(530\) −231884. −0.0358576
\(531\) 0 0
\(532\) 392532. 0.0601306
\(533\) 1.93315e6 0.294746
\(534\) 0 0
\(535\) −3.30712e6 −0.499534
\(536\) 293522. 0.0441294
\(537\) 0 0
\(538\) 681563. 0.101520
\(539\) 1.19669e6 0.177424
\(540\) 0 0
\(541\) 8.85130e6 1.30021 0.650106 0.759844i \(-0.274725\pi\)
0.650106 + 0.759844i \(0.274725\pi\)
\(542\) −6691.40 −0.000978405 0
\(543\) 0 0
\(544\) 4.03198e6 0.584145
\(545\) 3.60110e6 0.519330
\(546\) 0 0
\(547\) 3.13327e6 0.447744 0.223872 0.974619i \(-0.428130\pi\)
0.223872 + 0.974619i \(0.428130\pi\)
\(548\) 7.32150e6 1.04147
\(549\) 0 0
\(550\) 52544.0 0.00740656
\(551\) −1.09632e6 −0.153836
\(552\) 0 0
\(553\) 5.12953e6 0.713288
\(554\) −225370. −0.0311976
\(555\) 0 0
\(556\) 9.82283e6 1.34756
\(557\) 5.46691e6 0.746627 0.373313 0.927705i \(-0.378222\pi\)
0.373313 + 0.927705i \(0.378222\pi\)
\(558\) 0 0
\(559\) 1.48951e7 2.01611
\(560\) −2.03323e6 −0.273979
\(561\) 0 0
\(562\) 602289. 0.0804385
\(563\) −5.19043e6 −0.690132 −0.345066 0.938578i \(-0.612143\pi\)
−0.345066 + 0.938578i \(0.612143\pi\)
\(564\) 0 0
\(565\) −27390.4 −0.00360975
\(566\) 399618. 0.0524329
\(567\) 0 0
\(568\) 2.69329e6 0.350278
\(569\) −1.24058e7 −1.60636 −0.803180 0.595737i \(-0.796860\pi\)
−0.803180 + 0.595737i \(0.796860\pi\)
\(570\) 0 0
\(571\) 8.79234e6 1.12853 0.564266 0.825593i \(-0.309159\pi\)
0.564266 + 0.825593i \(0.309159\pi\)
\(572\) −2.57286e6 −0.328795
\(573\) 0 0
\(574\) 165577. 0.0209759
\(575\) 847245. 0.106866
\(576\) 0 0
\(577\) −1.14336e7 −1.42969 −0.714845 0.699283i \(-0.753503\pi\)
−0.714845 + 0.699283i \(0.753503\pi\)
\(578\) −1.59526e6 −0.198615
\(579\) 0 0
\(580\) 5.76843e6 0.712013
\(581\) 5.42514e6 0.666761
\(582\) 0 0
\(583\) 1.61532e6 0.196828
\(584\) −765834. −0.0929185
\(585\) 0 0
\(586\) 1.36231e6 0.163882
\(587\) 2.32244e6 0.278195 0.139097 0.990279i \(-0.455580\pi\)
0.139097 + 0.990279i \(0.455580\pi\)
\(588\) 0 0
\(589\) 631313. 0.0749819
\(590\) −795599. −0.0940945
\(591\) 0 0
\(592\) −1.31234e7 −1.53901
\(593\) −7.98435e6 −0.932401 −0.466201 0.884679i \(-0.654377\pi\)
−0.466201 + 0.884679i \(0.654377\pi\)
\(594\) 0 0
\(595\) 4.00800e6 0.464125
\(596\) 956690. 0.110320
\(597\) 0 0
\(598\) 635431. 0.0726634
\(599\) 139225. 0.0158544 0.00792721 0.999969i \(-0.497477\pi\)
0.00792721 + 0.999969i \(0.497477\pi\)
\(600\) 0 0
\(601\) 1.55602e7 1.75723 0.878616 0.477529i \(-0.158467\pi\)
0.878616 + 0.477529i \(0.158467\pi\)
\(602\) 1.27578e6 0.143478
\(603\) 0 0
\(604\) −4.12923e6 −0.460550
\(605\) −366025. −0.0406558
\(606\) 0 0
\(607\) −6.00544e6 −0.661566 −0.330783 0.943707i \(-0.607313\pi\)
−0.330783 + 0.943707i \(0.607313\pi\)
\(608\) 313225. 0.0343635
\(609\) 0 0
\(610\) 329967. 0.0359043
\(611\) −9.82057e6 −1.06423
\(612\) 0 0
\(613\) −2.32775e6 −0.250199 −0.125099 0.992144i \(-0.539925\pi\)
−0.125099 + 0.992144i \(0.539925\pi\)
\(614\) −1.11549e6 −0.119411
\(615\) 0 0
\(616\) −444112. −0.0471564
\(617\) −1.30284e7 −1.37777 −0.688886 0.724870i \(-0.741900\pi\)
−0.688886 + 0.724870i \(0.741900\pi\)
\(618\) 0 0
\(619\) −2.53159e6 −0.265562 −0.132781 0.991145i \(-0.542391\pi\)
−0.132781 + 0.991145i \(0.542391\pi\)
\(620\) −3.32173e6 −0.347045
\(621\) 0 0
\(622\) 4601.30 0.000476876 0
\(623\) 9.11214e6 0.940590
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) 755689. 0.0770739
\(627\) 0 0
\(628\) −1.03037e7 −1.04254
\(629\) 2.58694e7 2.60712
\(630\) 0 0
\(631\) −2.17733e6 −0.217696 −0.108848 0.994058i \(-0.534716\pi\)
−0.108848 + 0.994058i \(0.534716\pi\)
\(632\) 2.72188e6 0.271067
\(633\) 0 0
\(634\) −316955. −0.0313166
\(635\) −7.89396e6 −0.776892
\(636\) 0 0
\(637\) 6.67237e6 0.651525
\(638\) 615478. 0.0598634
\(639\) 0 0
\(640\) −2.19162e6 −0.211503
\(641\) 2.58180e6 0.248187 0.124093 0.992271i \(-0.460398\pi\)
0.124093 + 0.992271i \(0.460398\pi\)
\(642\) 0 0
\(643\) −1.67813e7 −1.60066 −0.800329 0.599561i \(-0.795342\pi\)
−0.800329 + 0.599561i \(0.795342\pi\)
\(644\) −3.55333e6 −0.337614
\(645\) 0 0
\(646\) −200566. −0.0189093
\(647\) 1.01691e7 0.955037 0.477518 0.878622i \(-0.341536\pi\)
0.477518 + 0.878622i \(0.341536\pi\)
\(648\) 0 0
\(649\) 5.54220e6 0.516500
\(650\) 292968. 0.0271980
\(651\) 0 0
\(652\) 1.58171e7 1.45716
\(653\) 8.99282e6 0.825302 0.412651 0.910889i \(-0.364603\pi\)
0.412651 + 0.910889i \(0.364603\pi\)
\(654\) 0 0
\(655\) −4.67503e6 −0.425776
\(656\) −2.80204e6 −0.254223
\(657\) 0 0
\(658\) −841144. −0.0757365
\(659\) 1.03480e7 0.928203 0.464102 0.885782i \(-0.346377\pi\)
0.464102 + 0.885782i \(0.346377\pi\)
\(660\) 0 0
\(661\) 1.48595e7 1.32282 0.661409 0.750025i \(-0.269959\pi\)
0.661409 + 0.750025i \(0.269959\pi\)
\(662\) −1.20253e6 −0.106648
\(663\) 0 0
\(664\) 2.87874e6 0.253386
\(665\) 311362. 0.0273031
\(666\) 0 0
\(667\) 9.92427e6 0.863742
\(668\) −1.86098e7 −1.61361
\(669\) 0 0
\(670\) 115528. 0.00994263
\(671\) −2.29857e6 −0.197084
\(672\) 0 0
\(673\) 217545. 0.0185145 0.00925725 0.999957i \(-0.497053\pi\)
0.00925725 + 0.999957i \(0.497053\pi\)
\(674\) −2.09625e6 −0.177744
\(675\) 0 0
\(676\) −2.64325e6 −0.222470
\(677\) 2.64314e6 0.221640 0.110820 0.993840i \(-0.464652\pi\)
0.110820 + 0.993840i \(0.464652\pi\)
\(678\) 0 0
\(679\) 6.96419e6 0.579690
\(680\) 2.12676e6 0.176379
\(681\) 0 0
\(682\) −354421. −0.0291782
\(683\) −4.66785e6 −0.382882 −0.191441 0.981504i \(-0.561316\pi\)
−0.191441 + 0.981504i \(0.561316\pi\)
\(684\) 0 0
\(685\) 5.80753e6 0.472895
\(686\) 1.54269e6 0.125161
\(687\) 0 0
\(688\) −2.15899e7 −1.73892
\(689\) 9.00647e6 0.722781
\(690\) 0 0
\(691\) 3.11273e6 0.247997 0.123998 0.992282i \(-0.460428\pi\)
0.123998 + 0.992282i \(0.460428\pi\)
\(692\) 1.79943e7 1.42846
\(693\) 0 0
\(694\) 882026. 0.0695156
\(695\) 7.79163e6 0.611880
\(696\) 0 0
\(697\) 5.52349e6 0.430657
\(698\) −2.26795e6 −0.176196
\(699\) 0 0
\(700\) −1.63827e6 −0.126369
\(701\) −1.16786e7 −0.897629 −0.448815 0.893625i \(-0.648154\pi\)
−0.448815 + 0.893625i \(0.648154\pi\)
\(702\) 0 0
\(703\) 2.00967e6 0.153369
\(704\) 3.61054e6 0.274562
\(705\) 0 0
\(706\) 1.18630e6 0.0895743
\(707\) 1.08016e7 0.812718
\(708\) 0 0
\(709\) −1.96571e7 −1.46860 −0.734302 0.678823i \(-0.762490\pi\)
−0.734302 + 0.678823i \(0.762490\pi\)
\(710\) 1.06006e6 0.0789198
\(711\) 0 0
\(712\) 4.83518e6 0.357448
\(713\) −5.71485e6 −0.420999
\(714\) 0 0
\(715\) −2.04083e6 −0.149294
\(716\) −1.46367e7 −1.06699
\(717\) 0 0
\(718\) 179041. 0.0129611
\(719\) 1.89013e7 1.36354 0.681772 0.731565i \(-0.261210\pi\)
0.681772 + 0.731565i \(0.261210\pi\)
\(720\) 0 0
\(721\) 1.67876e7 1.20268
\(722\) 1.70480e6 0.121712
\(723\) 0 0
\(724\) 1.29155e7 0.915725
\(725\) 4.57562e6 0.323299
\(726\) 0 0
\(727\) 6.78994e6 0.476463 0.238232 0.971208i \(-0.423432\pi\)
0.238232 + 0.971208i \(0.423432\pi\)
\(728\) −2.47622e6 −0.173165
\(729\) 0 0
\(730\) −301427. −0.0209351
\(731\) 4.25590e7 2.94576
\(732\) 0 0
\(733\) −3.60300e6 −0.247688 −0.123844 0.992302i \(-0.539522\pi\)
−0.123844 + 0.992302i \(0.539522\pi\)
\(734\) 474886. 0.0325349
\(735\) 0 0
\(736\) −2.83542e6 −0.192940
\(737\) −804778. −0.0545767
\(738\) 0 0
\(739\) −7.58466e6 −0.510887 −0.255443 0.966824i \(-0.582221\pi\)
−0.255443 + 0.966824i \(0.582221\pi\)
\(740\) −1.05742e7 −0.709849
\(741\) 0 0
\(742\) 771416. 0.0514374
\(743\) −1.17473e7 −0.780669 −0.390335 0.920673i \(-0.627641\pi\)
−0.390335 + 0.920673i \(0.627641\pi\)
\(744\) 0 0
\(745\) 758862. 0.0500924
\(746\) −2.48860e6 −0.163722
\(747\) 0 0
\(748\) −7.35129e6 −0.480407
\(749\) 1.10019e7 0.716577
\(750\) 0 0
\(751\) 4.05057e6 0.262070 0.131035 0.991378i \(-0.458170\pi\)
0.131035 + 0.991378i \(0.458170\pi\)
\(752\) 1.42346e7 0.917910
\(753\) 0 0
\(754\) 3.43170e6 0.219827
\(755\) −3.27537e6 −0.209119
\(756\) 0 0
\(757\) 2.12290e7 1.34645 0.673225 0.739438i \(-0.264909\pi\)
0.673225 + 0.739438i \(0.264909\pi\)
\(758\) 3.39029e6 0.214321
\(759\) 0 0
\(760\) 165218. 0.0103759
\(761\) 1.06438e7 0.666247 0.333123 0.942883i \(-0.391897\pi\)
0.333123 + 0.942883i \(0.391897\pi\)
\(762\) 0 0
\(763\) −1.19799e7 −0.744974
\(764\) −1.86276e7 −1.15458
\(765\) 0 0
\(766\) 3.45702e6 0.212878
\(767\) 3.09014e7 1.89666
\(768\) 0 0
\(769\) 3.17109e6 0.193372 0.0966859 0.995315i \(-0.469176\pi\)
0.0966859 + 0.995315i \(0.469176\pi\)
\(770\) −174800. −0.0106246
\(771\) 0 0
\(772\) 9.79894e6 0.591747
\(773\) −1.80501e7 −1.08650 −0.543252 0.839570i \(-0.682807\pi\)
−0.543252 + 0.839570i \(0.682807\pi\)
\(774\) 0 0
\(775\) −2.63485e6 −0.157580
\(776\) 3.69541e6 0.220297
\(777\) 0 0
\(778\) −2.84774e6 −0.168675
\(779\) 429094. 0.0253343
\(780\) 0 0
\(781\) −7.38447e6 −0.433203
\(782\) 1.81559e6 0.106169
\(783\) 0 0
\(784\) −9.67137e6 −0.561950
\(785\) −8.17304e6 −0.473380
\(786\) 0 0
\(787\) −2.58223e7 −1.48614 −0.743068 0.669216i \(-0.766630\pi\)
−0.743068 + 0.669216i \(0.766630\pi\)
\(788\) 5.09360e6 0.292219
\(789\) 0 0
\(790\) 1.07132e6 0.0610731
\(791\) 91120.5 0.00517815
\(792\) 0 0
\(793\) −1.28161e7 −0.723722
\(794\) −1.12012e6 −0.0630540
\(795\) 0 0
\(796\) −1.37296e7 −0.768026
\(797\) −1.50658e7 −0.840129 −0.420065 0.907494i \(-0.637993\pi\)
−0.420065 + 0.907494i \(0.637993\pi\)
\(798\) 0 0
\(799\) −2.80598e7 −1.55495
\(800\) −1.30728e6 −0.0722176
\(801\) 0 0
\(802\) −450480. −0.0247309
\(803\) 2.09976e6 0.114916
\(804\) 0 0
\(805\) −2.81856e6 −0.153298
\(806\) −1.97613e6 −0.107147
\(807\) 0 0
\(808\) 5.73166e6 0.308853
\(809\) 2.08560e7 1.12037 0.560183 0.828369i \(-0.310731\pi\)
0.560183 + 0.828369i \(0.310731\pi\)
\(810\) 0 0
\(811\) 8.46233e6 0.451791 0.225896 0.974152i \(-0.427469\pi\)
0.225896 + 0.974152i \(0.427469\pi\)
\(812\) −1.91900e7 −1.02138
\(813\) 0 0
\(814\) −1.12824e6 −0.0596814
\(815\) 1.25464e7 0.661643
\(816\) 0 0
\(817\) 3.30620e6 0.173290
\(818\) −1.30849e6 −0.0683732
\(819\) 0 0
\(820\) −2.25773e6 −0.117257
\(821\) −8.67359e6 −0.449098 −0.224549 0.974463i \(-0.572091\pi\)
−0.224549 + 0.974463i \(0.572091\pi\)
\(822\) 0 0
\(823\) −1.24194e7 −0.639148 −0.319574 0.947561i \(-0.603540\pi\)
−0.319574 + 0.947561i \(0.603540\pi\)
\(824\) 8.90799e6 0.457048
\(825\) 0 0
\(826\) 2.64675e6 0.134978
\(827\) 2.38473e7 1.21248 0.606242 0.795280i \(-0.292676\pi\)
0.606242 + 0.795280i \(0.292676\pi\)
\(828\) 0 0
\(829\) −3.26873e7 −1.65193 −0.825967 0.563719i \(-0.809370\pi\)
−0.825967 + 0.563719i \(0.809370\pi\)
\(830\) 1.13305e6 0.0570894
\(831\) 0 0
\(832\) 2.01312e7 1.00823
\(833\) 1.90646e7 0.951953
\(834\) 0 0
\(835\) −1.47616e7 −0.732683
\(836\) −571087. −0.0282609
\(837\) 0 0
\(838\) −3.54701e6 −0.174483
\(839\) −8.09423e6 −0.396982 −0.198491 0.980103i \(-0.563604\pi\)
−0.198491 + 0.980103i \(0.563604\pi\)
\(840\) 0 0
\(841\) 3.30857e7 1.61306
\(842\) −3.81313e6 −0.185354
\(843\) 0 0
\(844\) 1.70015e7 0.821544
\(845\) −2.09667e6 −0.101015
\(846\) 0 0
\(847\) 1.21767e6 0.0583203
\(848\) −1.30546e7 −0.623409
\(849\) 0 0
\(850\) 837082. 0.0397393
\(851\) −1.81922e7 −0.861117
\(852\) 0 0
\(853\) 3.67970e6 0.173157 0.0865785 0.996245i \(-0.472407\pi\)
0.0865785 + 0.996245i \(0.472407\pi\)
\(854\) −1.09771e6 −0.0515043
\(855\) 0 0
\(856\) 5.83794e6 0.272317
\(857\) −2.17589e7 −1.01201 −0.506004 0.862531i \(-0.668878\pi\)
−0.506004 + 0.862531i \(0.668878\pi\)
\(858\) 0 0
\(859\) −3.76305e7 −1.74003 −0.870015 0.493025i \(-0.835891\pi\)
−0.870015 + 0.493025i \(0.835891\pi\)
\(860\) −1.73960e7 −0.802054
\(861\) 0 0
\(862\) −2.49841e6 −0.114524
\(863\) 2.50264e7 1.14386 0.571928 0.820304i \(-0.306196\pi\)
0.571928 + 0.820304i \(0.306196\pi\)
\(864\) 0 0
\(865\) 1.42734e7 0.648613
\(866\) 3.49902e6 0.158545
\(867\) 0 0
\(868\) 1.10505e7 0.497832
\(869\) −7.46286e6 −0.335240
\(870\) 0 0
\(871\) −4.48717e6 −0.200414
\(872\) −6.35689e6 −0.283109
\(873\) 0 0
\(874\) 141044. 0.00624564
\(875\) −1.29950e6 −0.0573796
\(876\) 0 0
\(877\) 1.12677e7 0.494692 0.247346 0.968927i \(-0.420442\pi\)
0.247346 + 0.968927i \(0.420442\pi\)
\(878\) 2.26477e6 0.0991488
\(879\) 0 0
\(880\) 2.95812e6 0.128768
\(881\) 4.36223e7 1.89352 0.946758 0.321947i \(-0.104337\pi\)
0.946758 + 0.321947i \(0.104337\pi\)
\(882\) 0 0
\(883\) −3.14744e7 −1.35849 −0.679244 0.733912i \(-0.737692\pi\)
−0.679244 + 0.733912i \(0.737692\pi\)
\(884\) −4.09883e7 −1.76413
\(885\) 0 0
\(886\) −942545. −0.0403383
\(887\) −2.33777e7 −0.997684 −0.498842 0.866693i \(-0.666241\pi\)
−0.498842 + 0.866693i \(0.666241\pi\)
\(888\) 0 0
\(889\) 2.62611e7 1.11444
\(890\) 1.90310e6 0.0805352
\(891\) 0 0
\(892\) −1.42721e7 −0.600587
\(893\) −2.17983e6 −0.0914733
\(894\) 0 0
\(895\) −1.16101e7 −0.484481
\(896\) 7.29093e6 0.303398
\(897\) 0 0
\(898\) −4.73091e6 −0.195774
\(899\) −3.08635e7 −1.27364
\(900\) 0 0
\(901\) 2.57337e7 1.05607
\(902\) −240895. −0.00985850
\(903\) 0 0
\(904\) 48351.3 0.00196783
\(905\) 1.02448e7 0.415797
\(906\) 0 0
\(907\) 2.58345e7 1.04275 0.521377 0.853326i \(-0.325418\pi\)
0.521377 + 0.853326i \(0.325418\pi\)
\(908\) −1.27987e6 −0.0515171
\(909\) 0 0
\(910\) −974625. −0.0390152
\(911\) −1.24995e7 −0.498996 −0.249498 0.968375i \(-0.580266\pi\)
−0.249498 + 0.968375i \(0.580266\pi\)
\(912\) 0 0
\(913\) −7.89293e6 −0.313373
\(914\) 2.11202e6 0.0836244
\(915\) 0 0
\(916\) −3.11520e7 −1.22672
\(917\) 1.55526e7 0.610771
\(918\) 0 0
\(919\) 1.24766e7 0.487313 0.243657 0.969862i \(-0.421653\pi\)
0.243657 + 0.969862i \(0.421653\pi\)
\(920\) −1.49561e6 −0.0582571
\(921\) 0 0
\(922\) 2.27795e6 0.0882503
\(923\) −4.11733e7 −1.59079
\(924\) 0 0
\(925\) −8.38759e6 −0.322317
\(926\) −3.83507e6 −0.146976
\(927\) 0 0
\(928\) −1.53129e7 −0.583697
\(929\) 1.63852e6 0.0622891 0.0311445 0.999515i \(-0.490085\pi\)
0.0311445 + 0.999515i \(0.490085\pi\)
\(930\) 0 0
\(931\) 1.48104e6 0.0560006
\(932\) −1.50253e6 −0.0566611
\(933\) 0 0
\(934\) −2.83153e6 −0.106207
\(935\) −5.83116e6 −0.218135
\(936\) 0 0
\(937\) 1.03137e7 0.383766 0.191883 0.981418i \(-0.438541\pi\)
0.191883 + 0.981418i \(0.438541\pi\)
\(938\) −384331. −0.0142626
\(939\) 0 0
\(940\) 1.14695e7 0.423373
\(941\) 1.30200e7 0.479332 0.239666 0.970855i \(-0.422962\pi\)
0.239666 + 0.970855i \(0.422962\pi\)
\(942\) 0 0
\(943\) −3.88430e6 −0.142244
\(944\) −4.47906e7 −1.63590
\(945\) 0 0
\(946\) −1.85611e6 −0.0674336
\(947\) −4.07950e7 −1.47820 −0.739098 0.673598i \(-0.764748\pi\)
−0.739098 + 0.673598i \(0.764748\pi\)
\(948\) 0 0
\(949\) 1.17076e7 0.421989
\(950\) 65028.9 0.00233775
\(951\) 0 0
\(952\) −7.07517e6 −0.253014
\(953\) −4.68439e7 −1.67078 −0.835392 0.549654i \(-0.814760\pi\)
−0.835392 + 0.549654i \(0.814760\pi\)
\(954\) 0 0
\(955\) −1.47757e7 −0.524252
\(956\) −5.20582e6 −0.184223
\(957\) 0 0
\(958\) 3.31973e6 0.116866
\(959\) −1.93201e7 −0.678364
\(960\) 0 0
\(961\) −1.08565e7 −0.379212
\(962\) −6.29067e6 −0.219159
\(963\) 0 0
\(964\) 3.57095e7 1.23763
\(965\) 7.77268e6 0.268691
\(966\) 0 0
\(967\) 1.63484e7 0.562223 0.281111 0.959675i \(-0.409297\pi\)
0.281111 + 0.959675i \(0.409297\pi\)
\(968\) 646131. 0.0221632
\(969\) 0 0
\(970\) 1.45449e6 0.0496342
\(971\) 1.62139e6 0.0551875 0.0275937 0.999619i \(-0.491216\pi\)
0.0275937 + 0.999619i \(0.491216\pi\)
\(972\) 0 0
\(973\) −2.59206e7 −0.877735
\(974\) −1.22925e6 −0.0415187
\(975\) 0 0
\(976\) 1.85765e7 0.624221
\(977\) 2.33840e7 0.783759 0.391880 0.920017i \(-0.371825\pi\)
0.391880 + 0.920017i \(0.371825\pi\)
\(978\) 0 0
\(979\) −1.32571e7 −0.442070
\(980\) −7.79267e6 −0.259192
\(981\) 0 0
\(982\) −723552. −0.0239437
\(983\) −1.96781e7 −0.649529 −0.324764 0.945795i \(-0.605285\pi\)
−0.324764 + 0.945795i \(0.605285\pi\)
\(984\) 0 0
\(985\) 4.04033e6 0.132686
\(986\) 9.80522e6 0.321192
\(987\) 0 0
\(988\) −3.18419e6 −0.103778
\(989\) −2.99289e7 −0.972970
\(990\) 0 0
\(991\) 1.56015e7 0.504642 0.252321 0.967644i \(-0.418806\pi\)
0.252321 + 0.967644i \(0.418806\pi\)
\(992\) 8.81788e6 0.284502
\(993\) 0 0
\(994\) −3.52654e6 −0.113210
\(995\) −1.08906e7 −0.348733
\(996\) 0 0
\(997\) −5.71913e6 −0.182218 −0.0911091 0.995841i \(-0.529041\pi\)
−0.0911091 + 0.995841i \(0.529041\pi\)
\(998\) −1.41091e6 −0.0448408
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 495.6.a.b.1.2 3
3.2 odd 2 165.6.a.c.1.2 3
15.14 odd 2 825.6.a.g.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
165.6.a.c.1.2 3 3.2 odd 2
495.6.a.b.1.2 3 1.1 even 1 trivial
825.6.a.g.1.2 3 15.14 odd 2