Properties

Label 495.4.a.d
Level $495$
Weight $4$
Character orbit 495.a
Self dual yes
Analytic conductor $29.206$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 495.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(29.2059454528\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
Defining polynomial: \(x^{2} - x - 4\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 165)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{17})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} + ( -4 + \beta ) q^{4} + 5 q^{5} + ( -4 + 4 \beta ) q^{7} + ( 4 - 11 \beta ) q^{8} +O(q^{10})\) \( q + \beta q^{2} + ( -4 + \beta ) q^{4} + 5 q^{5} + ( -4 + 4 \beta ) q^{7} + ( 4 - 11 \beta ) q^{8} + 5 \beta q^{10} + 11 q^{11} + ( -44 - 2 \beta ) q^{13} + 16 q^{14} + ( -12 - 15 \beta ) q^{16} + ( 30 - 44 \beta ) q^{17} + ( -74 - 22 \beta ) q^{19} + ( -20 + 5 \beta ) q^{20} + 11 \beta q^{22} + ( 32 + 60 \beta ) q^{23} + 25 q^{25} + ( -8 - 46 \beta ) q^{26} + ( 32 - 16 \beta ) q^{28} + ( 96 - 34 \beta ) q^{29} + ( 36 - 12 \beta ) q^{31} + ( -92 + 61 \beta ) q^{32} + ( -176 - 14 \beta ) q^{34} + ( -20 + 20 \beta ) q^{35} + ( -130 - 112 \beta ) q^{37} + ( -88 - 96 \beta ) q^{38} + ( 20 - 55 \beta ) q^{40} + ( -96 + 154 \beta ) q^{41} + ( -196 - 124 \beta ) q^{43} + ( -44 + 11 \beta ) q^{44} + ( 240 + 92 \beta ) q^{46} + ( -4 - 216 \beta ) q^{47} + ( -263 - 16 \beta ) q^{49} + 25 \beta q^{50} + ( 168 - 38 \beta ) q^{52} + ( -334 + 196 \beta ) q^{53} + 55 q^{55} + ( -192 + 16 \beta ) q^{56} + ( -136 + 62 \beta ) q^{58} + ( -4 - 240 \beta ) q^{59} + ( -146 + 364 \beta ) q^{61} + ( -48 + 24 \beta ) q^{62} + ( 340 + 89 \beta ) q^{64} + ( -220 - 10 \beta ) q^{65} + ( -380 + 16 \beta ) q^{67} + ( -296 + 162 \beta ) q^{68} + 80 q^{70} + ( -1008 - 44 \beta ) q^{71} + ( -272 + 58 \beta ) q^{73} + ( -448 - 242 \beta ) q^{74} + ( 208 - 8 \beta ) q^{76} + ( -44 + 44 \beta ) q^{77} + ( 474 - 306 \beta ) q^{79} + ( -60 - 75 \beta ) q^{80} + ( 616 + 58 \beta ) q^{82} + ( -70 + 426 \beta ) q^{83} + ( 150 - 220 \beta ) q^{85} + ( -496 - 320 \beta ) q^{86} + ( 44 - 121 \beta ) q^{88} + ( -186 + 128 \beta ) q^{89} + ( 144 - 176 \beta ) q^{91} + ( 112 - 148 \beta ) q^{92} + ( -864 - 220 \beta ) q^{94} + ( -370 - 110 \beta ) q^{95} + ( -298 + 428 \beta ) q^{97} + ( -64 - 279 \beta ) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + q^{2} - 7q^{4} + 10q^{5} - 4q^{7} - 3q^{8} + O(q^{10}) \) \( 2q + q^{2} - 7q^{4} + 10q^{5} - 4q^{7} - 3q^{8} + 5q^{10} + 22q^{11} - 90q^{13} + 32q^{14} - 39q^{16} + 16q^{17} - 170q^{19} - 35q^{20} + 11q^{22} + 124q^{23} + 50q^{25} - 62q^{26} + 48q^{28} + 158q^{29} + 60q^{31} - 123q^{32} - 366q^{34} - 20q^{35} - 372q^{37} - 272q^{38} - 15q^{40} - 38q^{41} - 516q^{43} - 77q^{44} + 572q^{46} - 224q^{47} - 542q^{49} + 25q^{50} + 298q^{52} - 472q^{53} + 110q^{55} - 368q^{56} - 210q^{58} - 248q^{59} + 72q^{61} - 72q^{62} + 769q^{64} - 450q^{65} - 744q^{67} - 430q^{68} + 160q^{70} - 2060q^{71} - 486q^{73} - 1138q^{74} + 408q^{76} - 44q^{77} + 642q^{79} - 195q^{80} + 1290q^{82} + 286q^{83} + 80q^{85} - 1312q^{86} - 33q^{88} - 244q^{89} + 112q^{91} + 76q^{92} - 1948q^{94} - 850q^{95} - 168q^{97} - 407q^{98} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.56155
2.56155
−1.56155 0 −5.56155 5.00000 0 −10.2462 21.1771 0 −7.80776
1.2 2.56155 0 −1.43845 5.00000 0 6.24621 −24.1771 0 12.8078
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(5\) \(-1\)
\(11\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 495.4.a.d 2
3.b odd 2 1 165.4.a.c 2
5.b even 2 1 2475.4.a.n 2
15.d odd 2 1 825.4.a.m 2
15.e even 4 2 825.4.c.j 4
33.d even 2 1 1815.4.a.n 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
165.4.a.c 2 3.b odd 2 1
495.4.a.d 2 1.a even 1 1 trivial
825.4.a.m 2 15.d odd 2 1
825.4.c.j 4 15.e even 4 2
1815.4.a.n 2 33.d even 2 1
2475.4.a.n 2 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(495))\):

\( T_{2}^{2} - T_{2} - 4 \)
\( T_{7}^{2} + 4 T_{7} - 64 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -4 - T + T^{2} \)
$3$ \( T^{2} \)
$5$ \( ( -5 + T )^{2} \)
$7$ \( -64 + 4 T + T^{2} \)
$11$ \( ( -11 + T )^{2} \)
$13$ \( 2008 + 90 T + T^{2} \)
$17$ \( -8164 - 16 T + T^{2} \)
$19$ \( 5168 + 170 T + T^{2} \)
$23$ \( -11456 - 124 T + T^{2} \)
$29$ \( 1328 - 158 T + T^{2} \)
$31$ \( 288 - 60 T + T^{2} \)
$37$ \( -18716 + 372 T + T^{2} \)
$41$ \( -100432 + 38 T + T^{2} \)
$43$ \( 1216 + 516 T + T^{2} \)
$47$ \( -185744 + 224 T + T^{2} \)
$53$ \( -107572 + 472 T + T^{2} \)
$59$ \( -229424 + 248 T + T^{2} \)
$61$ \( -561812 - 72 T + T^{2} \)
$67$ \( 137296 + 744 T + T^{2} \)
$71$ \( 1052672 + 2060 T + T^{2} \)
$73$ \( 44752 + 486 T + T^{2} \)
$79$ \( -294912 - 642 T + T^{2} \)
$83$ \( -750824 - 286 T + T^{2} \)
$89$ \( -54748 + 244 T + T^{2} \)
$97$ \( -771476 + 168 T + T^{2} \)
show more
show less