Properties

Label 495.3.b.a.406.4
Level $495$
Weight $3$
Character 495.406
Analytic conductor $13.488$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [495,3,Mod(406,495)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("495.406"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(495, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 495.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,-28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4877730858\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 30x^{6} + 280x^{4} + 890x^{2} + 895 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 406.4
Root \(-1.46104i\) of defining polynomial
Character \(\chi\) \(=\) 495.406
Dual form 495.3.b.a.406.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.46104i q^{2} +1.86536 q^{4} -2.23607 q^{5} +4.56066i q^{7} -8.56953i q^{8} +3.26698i q^{10} +(-5.89241 + 9.28868i) q^{11} -16.5645i q^{13} +6.66330 q^{14} -5.05897 q^{16} -17.2939i q^{17} -35.8838i q^{19} -4.17108 q^{20} +(13.5711 + 8.60904i) q^{22} +29.3902 q^{23} +5.00000 q^{25} -24.2014 q^{26} +8.50728i q^{28} -8.51985i q^{29} -26.3476 q^{31} -26.8868i q^{32} -25.2670 q^{34} -10.1979i q^{35} +44.4227 q^{37} -52.4276 q^{38} +19.1620i q^{40} -52.2243i q^{41} +6.77375i q^{43} +(-10.9915 + 17.3268i) q^{44} -42.9402i q^{46} -15.0434 q^{47} +28.2004 q^{49} -7.30520i q^{50} -30.8989i q^{52} +33.1498 q^{53} +(13.1758 - 20.7701i) q^{55} +39.0827 q^{56} -12.4478 q^{58} -51.5447 q^{59} +23.1889i q^{61} +38.4948i q^{62} -59.5185 q^{64} +37.0394i q^{65} -113.668 q^{67} -32.2593i q^{68} -14.8996 q^{70} -8.00364 q^{71} +32.5342i q^{73} -64.9034i q^{74} -66.9363i q^{76} +(-42.3625 - 26.8732i) q^{77} +52.0160i q^{79} +11.3122 q^{80} -76.3018 q^{82} +43.3699i q^{83} +38.6702i q^{85} +9.89672 q^{86} +(79.5996 + 50.4951i) q^{88} -73.8028 q^{89} +75.5451 q^{91} +54.8233 q^{92} +21.9790i q^{94} +80.2386i q^{95} +22.0298 q^{97} -41.2019i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 28 q^{4} - 8 q^{11} + 88 q^{16} + 20 q^{20} + 80 q^{22} - 8 q^{23} + 40 q^{25} + 100 q^{26} + 36 q^{31} + 80 q^{34} - 88 q^{37} + 160 q^{38} - 12 q^{44} + 8 q^{47} + 172 q^{49} + 152 q^{53} - 20 q^{55}+ \cdots + 312 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(397\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.46104i 0.730520i −0.930906 0.365260i \(-0.880980\pi\)
0.930906 0.365260i \(-0.119020\pi\)
\(3\) 0 0
\(4\) 1.86536 0.466341
\(5\) −2.23607 −0.447214
\(6\) 0 0
\(7\) 4.56066i 0.651522i 0.945452 + 0.325761i \(0.105621\pi\)
−0.945452 + 0.325761i \(0.894379\pi\)
\(8\) 8.56953i 1.07119i
\(9\) 0 0
\(10\) 3.26698i 0.326698i
\(11\) −5.89241 + 9.28868i −0.535673 + 0.844425i
\(12\) 0 0
\(13\) 16.5645i 1.27420i −0.770783 0.637098i \(-0.780135\pi\)
0.770783 0.637098i \(-0.219865\pi\)
\(14\) 6.66330 0.475950
\(15\) 0 0
\(16\) −5.05897 −0.316185
\(17\) 17.2939i 1.01729i −0.860978 0.508643i \(-0.830147\pi\)
0.860978 0.508643i \(-0.169853\pi\)
\(18\) 0 0
\(19\) 35.8838i 1.88862i −0.329057 0.944310i \(-0.606731\pi\)
0.329057 0.944310i \(-0.393269\pi\)
\(20\) −4.17108 −0.208554
\(21\) 0 0
\(22\) 13.5711 + 8.60904i 0.616869 + 0.391320i
\(23\) 29.3902 1.27783 0.638917 0.769276i \(-0.279383\pi\)
0.638917 + 0.769276i \(0.279383\pi\)
\(24\) 0 0
\(25\) 5.00000 0.200000
\(26\) −24.2014 −0.930825
\(27\) 0 0
\(28\) 8.50728i 0.303831i
\(29\) 8.51985i 0.293788i −0.989152 0.146894i \(-0.953072\pi\)
0.989152 0.146894i \(-0.0469276\pi\)
\(30\) 0 0
\(31\) −26.3476 −0.849921 −0.424961 0.905212i \(-0.639712\pi\)
−0.424961 + 0.905212i \(0.639712\pi\)
\(32\) 26.8868i 0.840211i
\(33\) 0 0
\(34\) −25.2670 −0.743147
\(35\) 10.1979i 0.291370i
\(36\) 0 0
\(37\) 44.4227 1.20061 0.600307 0.799769i \(-0.295045\pi\)
0.600307 + 0.799769i \(0.295045\pi\)
\(38\) −52.4276 −1.37967
\(39\) 0 0
\(40\) 19.1620i 0.479051i
\(41\) 52.2243i 1.27376i −0.770961 0.636882i \(-0.780224\pi\)
0.770961 0.636882i \(-0.219776\pi\)
\(42\) 0 0
\(43\) 6.77375i 0.157529i 0.996893 + 0.0787646i \(0.0250975\pi\)
−0.996893 + 0.0787646i \(0.974902\pi\)
\(44\) −10.9915 + 17.3268i −0.249806 + 0.393790i
\(45\) 0 0
\(46\) 42.9402i 0.933482i
\(47\) −15.0434 −0.320072 −0.160036 0.987111i \(-0.551161\pi\)
−0.160036 + 0.987111i \(0.551161\pi\)
\(48\) 0 0
\(49\) 28.2004 0.575519
\(50\) 7.30520i 0.146104i
\(51\) 0 0
\(52\) 30.8989i 0.594209i
\(53\) 33.1498 0.625468 0.312734 0.949841i \(-0.398755\pi\)
0.312734 + 0.949841i \(0.398755\pi\)
\(54\) 0 0
\(55\) 13.1758 20.7701i 0.239560 0.377638i
\(56\) 39.0827 0.697905
\(57\) 0 0
\(58\) −12.4478 −0.214618
\(59\) −51.5447 −0.873639 −0.436819 0.899549i \(-0.643895\pi\)
−0.436819 + 0.899549i \(0.643895\pi\)
\(60\) 0 0
\(61\) 23.1889i 0.380146i 0.981770 + 0.190073i \(0.0608725\pi\)
−0.981770 + 0.190073i \(0.939127\pi\)
\(62\) 38.4948i 0.620884i
\(63\) 0 0
\(64\) −59.5185 −0.929976
\(65\) 37.0394i 0.569837i
\(66\) 0 0
\(67\) −113.668 −1.69653 −0.848265 0.529572i \(-0.822353\pi\)
−0.848265 + 0.529572i \(0.822353\pi\)
\(68\) 32.2593i 0.474402i
\(69\) 0 0
\(70\) −14.8996 −0.212851
\(71\) −8.00364 −0.112727 −0.0563637 0.998410i \(-0.517951\pi\)
−0.0563637 + 0.998410i \(0.517951\pi\)
\(72\) 0 0
\(73\) 32.5342i 0.445674i 0.974856 + 0.222837i \(0.0715318\pi\)
−0.974856 + 0.222837i \(0.928468\pi\)
\(74\) 64.9034i 0.877073i
\(75\) 0 0
\(76\) 66.9363i 0.880741i
\(77\) −42.3625 26.8732i −0.550162 0.349003i
\(78\) 0 0
\(79\) 52.0160i 0.658431i 0.944255 + 0.329215i \(0.106784\pi\)
−0.944255 + 0.329215i \(0.893216\pi\)
\(80\) 11.3122 0.141402
\(81\) 0 0
\(82\) −76.3018 −0.930510
\(83\) 43.3699i 0.522529i 0.965267 + 0.261264i \(0.0841394\pi\)
−0.965267 + 0.261264i \(0.915861\pi\)
\(84\) 0 0
\(85\) 38.6702i 0.454944i
\(86\) 9.89672 0.115078
\(87\) 0 0
\(88\) 79.5996 + 50.4951i 0.904541 + 0.573808i
\(89\) −73.8028 −0.829245 −0.414623 0.909993i \(-0.636086\pi\)
−0.414623 + 0.909993i \(0.636086\pi\)
\(90\) 0 0
\(91\) 75.5451 0.830166
\(92\) 54.8233 0.595906
\(93\) 0 0
\(94\) 21.9790i 0.233819i
\(95\) 80.2386i 0.844617i
\(96\) 0 0
\(97\) 22.0298 0.227111 0.113556 0.993532i \(-0.463776\pi\)
0.113556 + 0.993532i \(0.463776\pi\)
\(98\) 41.2019i 0.420428i
\(99\) 0 0
\(100\) 9.32682 0.0932682
\(101\) 163.013i 1.61399i −0.590561 0.806993i \(-0.701094\pi\)
0.590561 0.806993i \(-0.298906\pi\)
\(102\) 0 0
\(103\) 42.6423 0.414003 0.207001 0.978341i \(-0.433630\pi\)
0.207001 + 0.978341i \(0.433630\pi\)
\(104\) −141.950 −1.36491
\(105\) 0 0
\(106\) 48.4332i 0.456917i
\(107\) 131.098i 1.22522i 0.790387 + 0.612608i \(0.209879\pi\)
−0.790387 + 0.612608i \(0.790121\pi\)
\(108\) 0 0
\(109\) 54.5201i 0.500184i 0.968222 + 0.250092i \(0.0804609\pi\)
−0.968222 + 0.250092i \(0.919539\pi\)
\(110\) −30.3460 19.2504i −0.275872 0.175004i
\(111\) 0 0
\(112\) 23.0722i 0.206002i
\(113\) 117.985 1.04412 0.522058 0.852910i \(-0.325164\pi\)
0.522058 + 0.852910i \(0.325164\pi\)
\(114\) 0 0
\(115\) −65.7184 −0.571464
\(116\) 15.8926i 0.137005i
\(117\) 0 0
\(118\) 75.3088i 0.638210i
\(119\) 78.8713 0.662784
\(120\) 0 0
\(121\) −51.5591 109.465i −0.426108 0.904672i
\(122\) 33.8799 0.277704
\(123\) 0 0
\(124\) −49.1478 −0.396353
\(125\) −11.1803 −0.0894427
\(126\) 0 0
\(127\) 113.764i 0.895782i −0.894088 0.447891i \(-0.852175\pi\)
0.894088 0.447891i \(-0.147825\pi\)
\(128\) 20.5882i 0.160845i
\(129\) 0 0
\(130\) 54.1161 0.416277
\(131\) 115.599i 0.882435i 0.897400 + 0.441218i \(0.145453\pi\)
−0.897400 + 0.441218i \(0.854547\pi\)
\(132\) 0 0
\(133\) 163.654 1.23048
\(134\) 166.073i 1.23935i
\(135\) 0 0
\(136\) −148.200 −1.08971
\(137\) 216.355 1.57924 0.789618 0.613598i \(-0.210279\pi\)
0.789618 + 0.613598i \(0.210279\pi\)
\(138\) 0 0
\(139\) 5.08013i 0.0365477i −0.999833 0.0182738i \(-0.994183\pi\)
0.999833 0.0182738i \(-0.00581707\pi\)
\(140\) 19.0229i 0.135878i
\(141\) 0 0
\(142\) 11.6936i 0.0823495i
\(143\) 153.863 + 97.6050i 1.07596 + 0.682552i
\(144\) 0 0
\(145\) 19.0510i 0.131386i
\(146\) 47.5338 0.325574
\(147\) 0 0
\(148\) 82.8646 0.559896
\(149\) 187.947i 1.26139i 0.776030 + 0.630696i \(0.217231\pi\)
−0.776030 + 0.630696i \(0.782769\pi\)
\(150\) 0 0
\(151\) 136.741i 0.905571i 0.891620 + 0.452785i \(0.149570\pi\)
−0.891620 + 0.452785i \(0.850430\pi\)
\(152\) −307.507 −2.02307
\(153\) 0 0
\(154\) −39.2629 + 61.8932i −0.254954 + 0.401904i
\(155\) 58.9149 0.380096
\(156\) 0 0
\(157\) 256.057 1.63094 0.815470 0.578800i \(-0.196479\pi\)
0.815470 + 0.578800i \(0.196479\pi\)
\(158\) 75.9975 0.480997
\(159\) 0 0
\(160\) 60.1206i 0.375754i
\(161\) 134.038i 0.832537i
\(162\) 0 0
\(163\) −25.1370 −0.154215 −0.0771075 0.997023i \(-0.524568\pi\)
−0.0771075 + 0.997023i \(0.524568\pi\)
\(164\) 97.4174i 0.594008i
\(165\) 0 0
\(166\) 63.3651 0.381718
\(167\) 4.21038i 0.0252119i 0.999921 + 0.0126059i \(0.00401270\pi\)
−0.999921 + 0.0126059i \(0.995987\pi\)
\(168\) 0 0
\(169\) −105.384 −0.623573
\(170\) 56.4987 0.332346
\(171\) 0 0
\(172\) 12.6355i 0.0734623i
\(173\) 168.015i 0.971185i 0.874185 + 0.485592i \(0.161396\pi\)
−0.874185 + 0.485592i \(0.838604\pi\)
\(174\) 0 0
\(175\) 22.8033i 0.130304i
\(176\) 29.8095 46.9911i 0.169372 0.266995i
\(177\) 0 0
\(178\) 107.829i 0.605780i
\(179\) 34.5542 0.193040 0.0965200 0.995331i \(-0.469229\pi\)
0.0965200 + 0.995331i \(0.469229\pi\)
\(180\) 0 0
\(181\) −107.349 −0.593091 −0.296545 0.955019i \(-0.595835\pi\)
−0.296545 + 0.955019i \(0.595835\pi\)
\(182\) 110.374i 0.606453i
\(183\) 0 0
\(184\) 251.860i 1.36880i
\(185\) −99.3323 −0.536931
\(186\) 0 0
\(187\) 160.637 + 101.902i 0.859022 + 0.544933i
\(188\) −28.0614 −0.149263
\(189\) 0 0
\(190\) 117.232 0.617009
\(191\) 75.4470 0.395011 0.197505 0.980302i \(-0.436716\pi\)
0.197505 + 0.980302i \(0.436716\pi\)
\(192\) 0 0
\(193\) 167.064i 0.865617i 0.901486 + 0.432809i \(0.142477\pi\)
−0.901486 + 0.432809i \(0.857523\pi\)
\(194\) 32.1864i 0.165909i
\(195\) 0 0
\(196\) 52.6040 0.268388
\(197\) 362.777i 1.84151i −0.390145 0.920754i \(-0.627575\pi\)
0.390145 0.920754i \(-0.372425\pi\)
\(198\) 0 0
\(199\) 337.735 1.69716 0.848580 0.529068i \(-0.177458\pi\)
0.848580 + 0.529068i \(0.177458\pi\)
\(200\) 42.8476i 0.214238i
\(201\) 0 0
\(202\) −238.168 −1.17905
\(203\) 38.8561 0.191409
\(204\) 0 0
\(205\) 116.777i 0.569645i
\(206\) 62.3021i 0.302437i
\(207\) 0 0
\(208\) 83.7994i 0.402882i
\(209\) 333.313 + 211.442i 1.59480 + 1.01168i
\(210\) 0 0
\(211\) 317.915i 1.50670i −0.657617 0.753352i \(-0.728436\pi\)
0.657617 0.753352i \(-0.271564\pi\)
\(212\) 61.8364 0.291681
\(213\) 0 0
\(214\) 191.539 0.895044
\(215\) 15.1466i 0.0704492i
\(216\) 0 0
\(217\) 120.162i 0.553743i
\(218\) 79.6560 0.365395
\(219\) 0 0
\(220\) 24.5777 38.7438i 0.111717 0.176108i
\(221\) −286.465 −1.29622
\(222\) 0 0
\(223\) 292.643 1.31230 0.656151 0.754630i \(-0.272183\pi\)
0.656151 + 0.754630i \(0.272183\pi\)
\(224\) 122.621 0.547416
\(225\) 0 0
\(226\) 172.381i 0.762747i
\(227\) 9.54908i 0.0420664i −0.999779 0.0210332i \(-0.993304\pi\)
0.999779 0.0210332i \(-0.00669557\pi\)
\(228\) 0 0
\(229\) −355.912 −1.55420 −0.777100 0.629377i \(-0.783310\pi\)
−0.777100 + 0.629377i \(0.783310\pi\)
\(230\) 96.0172i 0.417466i
\(231\) 0 0
\(232\) −73.0111 −0.314703
\(233\) 270.961i 1.16292i 0.813573 + 0.581462i \(0.197519\pi\)
−0.813573 + 0.581462i \(0.802481\pi\)
\(234\) 0 0
\(235\) 33.6381 0.143141
\(236\) −96.1496 −0.407413
\(237\) 0 0
\(238\) 115.234i 0.484177i
\(239\) 79.1374i 0.331119i −0.986200 0.165560i \(-0.947057\pi\)
0.986200 0.165560i \(-0.0529430\pi\)
\(240\) 0 0
\(241\) 146.567i 0.608164i −0.952646 0.304082i \(-0.901650\pi\)
0.952646 0.304082i \(-0.0983496\pi\)
\(242\) −159.933 + 75.3299i −0.660881 + 0.311281i
\(243\) 0 0
\(244\) 43.2558i 0.177278i
\(245\) −63.0581 −0.257380
\(246\) 0 0
\(247\) −594.398 −2.40647
\(248\) 225.786i 0.910428i
\(249\) 0 0
\(250\) 16.3349i 0.0653397i
\(251\) −52.7485 −0.210154 −0.105077 0.994464i \(-0.533509\pi\)
−0.105077 + 0.994464i \(0.533509\pi\)
\(252\) 0 0
\(253\) −173.179 + 272.996i −0.684501 + 1.07903i
\(254\) −166.214 −0.654386
\(255\) 0 0
\(256\) −268.154 −1.04748
\(257\) −41.8668 −0.162906 −0.0814529 0.996677i \(-0.525956\pi\)
−0.0814529 + 0.996677i \(0.525956\pi\)
\(258\) 0 0
\(259\) 202.597i 0.782227i
\(260\) 69.0920i 0.265738i
\(261\) 0 0
\(262\) 168.895 0.644636
\(263\) 289.448i 1.10056i −0.834979 0.550282i \(-0.814520\pi\)
0.834979 0.550282i \(-0.185480\pi\)
\(264\) 0 0
\(265\) −74.1252 −0.279718
\(266\) 239.104i 0.898888i
\(267\) 0 0
\(268\) −212.031 −0.791161
\(269\) −297.640 −1.10647 −0.553234 0.833026i \(-0.686607\pi\)
−0.553234 + 0.833026i \(0.686607\pi\)
\(270\) 0 0
\(271\) 277.488i 1.02394i 0.859003 + 0.511970i \(0.171084\pi\)
−0.859003 + 0.511970i \(0.828916\pi\)
\(272\) 87.4890i 0.321651i
\(273\) 0 0
\(274\) 316.104i 1.15366i
\(275\) −29.4620 + 46.4434i −0.107135 + 0.168885i
\(276\) 0 0
\(277\) 22.6740i 0.0818556i 0.999162 + 0.0409278i \(0.0130314\pi\)
−0.999162 + 0.0409278i \(0.986969\pi\)
\(278\) −7.42227 −0.0266988
\(279\) 0 0
\(280\) −87.3915 −0.312112
\(281\) 182.887i 0.650845i 0.945569 + 0.325422i \(0.105506\pi\)
−0.945569 + 0.325422i \(0.894494\pi\)
\(282\) 0 0
\(283\) 367.233i 1.29764i 0.760941 + 0.648821i \(0.224738\pi\)
−0.760941 + 0.648821i \(0.775262\pi\)
\(284\) −14.9297 −0.0525694
\(285\) 0 0
\(286\) 142.605 224.799i 0.498618 0.786012i
\(287\) 238.177 0.829886
\(288\) 0 0
\(289\) −10.0774 −0.0348699
\(290\) 27.8342 0.0959800
\(291\) 0 0
\(292\) 60.6881i 0.207836i
\(293\) 10.3180i 0.0352150i 0.999845 + 0.0176075i \(0.00560493\pi\)
−0.999845 + 0.0176075i \(0.994395\pi\)
\(294\) 0 0
\(295\) 115.257 0.390703
\(296\) 380.682i 1.28609i
\(297\) 0 0
\(298\) 274.599 0.921472
\(299\) 486.834i 1.62821i
\(300\) 0 0
\(301\) −30.8928 −0.102634
\(302\) 199.784 0.661537
\(303\) 0 0
\(304\) 181.535i 0.597154i
\(305\) 51.8520i 0.170007i
\(306\) 0 0
\(307\) 459.671i 1.49730i −0.662966 0.748649i \(-0.730703\pi\)
0.662966 0.748649i \(-0.269297\pi\)
\(308\) −79.0214 50.1283i −0.256563 0.162754i
\(309\) 0 0
\(310\) 86.0770i 0.277668i
\(311\) −101.131 −0.325181 −0.162590 0.986694i \(-0.551985\pi\)
−0.162590 + 0.986694i \(0.551985\pi\)
\(312\) 0 0
\(313\) 288.760 0.922556 0.461278 0.887256i \(-0.347391\pi\)
0.461278 + 0.887256i \(0.347391\pi\)
\(314\) 374.110i 1.19143i
\(315\) 0 0
\(316\) 97.0288i 0.307053i
\(317\) −242.929 −0.766338 −0.383169 0.923678i \(-0.625167\pi\)
−0.383169 + 0.923678i \(0.625167\pi\)
\(318\) 0 0
\(319\) 79.1381 + 50.2024i 0.248082 + 0.157374i
\(320\) 133.087 0.415898
\(321\) 0 0
\(322\) 195.835 0.608185
\(323\) −620.569 −1.92127
\(324\) 0 0
\(325\) 82.8227i 0.254839i
\(326\) 36.7262i 0.112657i
\(327\) 0 0
\(328\) −447.538 −1.36445
\(329\) 68.6078i 0.208534i
\(330\) 0 0
\(331\) −241.395 −0.729291 −0.364646 0.931146i \(-0.618810\pi\)
−0.364646 + 0.931146i \(0.618810\pi\)
\(332\) 80.9006i 0.243676i
\(333\) 0 0
\(334\) 6.15154 0.0184178
\(335\) 254.168 0.758711
\(336\) 0 0
\(337\) 527.662i 1.56576i −0.622171 0.782881i \(-0.713749\pi\)
0.622171 0.782881i \(-0.286251\pi\)
\(338\) 153.970i 0.455532i
\(339\) 0 0
\(340\) 72.1340i 0.212159i
\(341\) 155.251 244.734i 0.455280 0.717695i
\(342\) 0 0
\(343\) 352.085i 1.02649i
\(344\) 58.0479 0.168744
\(345\) 0 0
\(346\) 245.476 0.709470
\(347\) 214.531i 0.618244i 0.951022 + 0.309122i \(0.100035\pi\)
−0.951022 + 0.309122i \(0.899965\pi\)
\(348\) 0 0
\(349\) 76.4945i 0.219182i 0.993977 + 0.109591i \(0.0349541\pi\)
−0.993977 + 0.109591i \(0.965046\pi\)
\(350\) 33.3165 0.0951900
\(351\) 0 0
\(352\) 249.743 + 158.428i 0.709496 + 0.450079i
\(353\) 176.689 0.500535 0.250268 0.968177i \(-0.419481\pi\)
0.250268 + 0.968177i \(0.419481\pi\)
\(354\) 0 0
\(355\) 17.8967 0.0504132
\(356\) −137.669 −0.386711
\(357\) 0 0
\(358\) 50.4850i 0.141020i
\(359\) 357.810i 0.996686i 0.866980 + 0.498343i \(0.166058\pi\)
−0.866980 + 0.498343i \(0.833942\pi\)
\(360\) 0 0
\(361\) −926.646 −2.56689
\(362\) 156.842i 0.433265i
\(363\) 0 0
\(364\) 140.919 0.387140
\(365\) 72.7487i 0.199312i
\(366\) 0 0
\(367\) −314.687 −0.857458 −0.428729 0.903433i \(-0.641038\pi\)
−0.428729 + 0.903433i \(0.641038\pi\)
\(368\) −148.684 −0.404032
\(369\) 0 0
\(370\) 145.128i 0.392239i
\(371\) 151.185i 0.407506i
\(372\) 0 0
\(373\) 420.645i 1.12773i −0.825865 0.563867i \(-0.809313\pi\)
0.825865 0.563867i \(-0.190687\pi\)
\(374\) 148.883 234.697i 0.398084 0.627532i
\(375\) 0 0
\(376\) 128.915i 0.342859i
\(377\) −141.127 −0.374343
\(378\) 0 0
\(379\) 401.667 1.05981 0.529904 0.848058i \(-0.322228\pi\)
0.529904 + 0.848058i \(0.322228\pi\)
\(380\) 149.674i 0.393879i
\(381\) 0 0
\(382\) 110.231i 0.288563i
\(383\) −60.0864 −0.156884 −0.0784418 0.996919i \(-0.524994\pi\)
−0.0784418 + 0.996919i \(0.524994\pi\)
\(384\) 0 0
\(385\) 94.7253 + 60.0904i 0.246040 + 0.156079i
\(386\) 244.087 0.632350
\(387\) 0 0
\(388\) 41.0936 0.105911
\(389\) −411.464 −1.05775 −0.528874 0.848700i \(-0.677386\pi\)
−0.528874 + 0.848700i \(0.677386\pi\)
\(390\) 0 0
\(391\) 508.269i 1.29992i
\(392\) 241.664i 0.616491i
\(393\) 0 0
\(394\) −530.031 −1.34526
\(395\) 116.311i 0.294459i
\(396\) 0 0
\(397\) −237.517 −0.598279 −0.299140 0.954209i \(-0.596700\pi\)
−0.299140 + 0.954209i \(0.596700\pi\)
\(398\) 493.444i 1.23981i
\(399\) 0 0
\(400\) −25.2948 −0.0632371
\(401\) −101.501 −0.253120 −0.126560 0.991959i \(-0.540394\pi\)
−0.126560 + 0.991959i \(0.540394\pi\)
\(402\) 0 0
\(403\) 436.435i 1.08297i
\(404\) 304.078i 0.752667i
\(405\) 0 0
\(406\) 56.7703i 0.139828i
\(407\) −261.757 + 412.629i −0.643137 + 1.01383i
\(408\) 0 0
\(409\) 694.176i 1.69725i −0.528993 0.848626i \(-0.677430\pi\)
0.528993 0.848626i \(-0.322570\pi\)
\(410\) 170.616 0.416137
\(411\) 0 0
\(412\) 79.5433 0.193066
\(413\) 235.078i 0.569195i
\(414\) 0 0
\(415\) 96.9780i 0.233682i
\(416\) −445.367 −1.07059
\(417\) 0 0
\(418\) 308.925 486.983i 0.739055 1.16503i
\(419\) 416.354 0.993686 0.496843 0.867841i \(-0.334493\pi\)
0.496843 + 0.867841i \(0.334493\pi\)
\(420\) 0 0
\(421\) 539.341 1.28110 0.640548 0.767918i \(-0.278707\pi\)
0.640548 + 0.767918i \(0.278707\pi\)
\(422\) −464.486 −1.10068
\(423\) 0 0
\(424\) 284.078i 0.669995i
\(425\) 86.4693i 0.203457i
\(426\) 0 0
\(427\) −105.757 −0.247674
\(428\) 244.546i 0.571368i
\(429\) 0 0
\(430\) −22.1297 −0.0514645
\(431\) 343.493i 0.796967i 0.917176 + 0.398483i \(0.130463\pi\)
−0.917176 + 0.398483i \(0.869537\pi\)
\(432\) 0 0
\(433\) 18.0353 0.0416520 0.0208260 0.999783i \(-0.493370\pi\)
0.0208260 + 0.999783i \(0.493370\pi\)
\(434\) −175.562 −0.404520
\(435\) 0 0
\(436\) 101.700i 0.233256i
\(437\) 1054.63i 2.41334i
\(438\) 0 0
\(439\) 693.839i 1.58050i 0.612786 + 0.790249i \(0.290049\pi\)
−0.612786 + 0.790249i \(0.709951\pi\)
\(440\) −177.990 112.911i −0.404523 0.256615i
\(441\) 0 0
\(442\) 418.536i 0.946914i
\(443\) 359.314 0.811092 0.405546 0.914075i \(-0.367081\pi\)
0.405546 + 0.914075i \(0.367081\pi\)
\(444\) 0 0
\(445\) 165.028 0.370850
\(446\) 427.564i 0.958663i
\(447\) 0 0
\(448\) 271.443i 0.605900i
\(449\) 567.882 1.26477 0.632385 0.774654i \(-0.282076\pi\)
0.632385 + 0.774654i \(0.282076\pi\)
\(450\) 0 0
\(451\) 485.095 + 307.727i 1.07560 + 0.682322i
\(452\) 220.085 0.486914
\(453\) 0 0
\(454\) −13.9516 −0.0307303
\(455\) −168.924 −0.371262
\(456\) 0 0
\(457\) 797.218i 1.74446i 0.489096 + 0.872230i \(0.337327\pi\)
−0.489096 + 0.872230i \(0.662673\pi\)
\(458\) 520.001i 1.13537i
\(459\) 0 0
\(460\) −122.589 −0.266497
\(461\) 87.9144i 0.190704i −0.995444 0.0953518i \(-0.969602\pi\)
0.995444 0.0953518i \(-0.0303976\pi\)
\(462\) 0 0
\(463\) −50.9282 −0.109996 −0.0549981 0.998486i \(-0.517515\pi\)
−0.0549981 + 0.998486i \(0.517515\pi\)
\(464\) 43.1016i 0.0928914i
\(465\) 0 0
\(466\) 395.885 0.849539
\(467\) 463.064 0.991572 0.495786 0.868445i \(-0.334880\pi\)
0.495786 + 0.868445i \(0.334880\pi\)
\(468\) 0 0
\(469\) 518.398i 1.10533i
\(470\) 49.1466i 0.104567i
\(471\) 0 0
\(472\) 441.714i 0.935834i
\(473\) −62.9192 39.9137i −0.133022 0.0843841i
\(474\) 0 0
\(475\) 179.419i 0.377724i
\(476\) 147.124 0.309083
\(477\) 0 0
\(478\) −115.623 −0.241889
\(479\) 182.184i 0.380343i −0.981751 0.190171i \(-0.939096\pi\)
0.981751 0.190171i \(-0.0609044\pi\)
\(480\) 0 0
\(481\) 735.842i 1.52982i
\(482\) −214.141 −0.444276
\(483\) 0 0
\(484\) −96.1765 204.193i −0.198712 0.421886i
\(485\) −49.2602 −0.101567
\(486\) 0 0
\(487\) 366.810 0.753203 0.376602 0.926375i \(-0.377093\pi\)
0.376602 + 0.926375i \(0.377093\pi\)
\(488\) 198.718 0.407209
\(489\) 0 0
\(490\) 92.1303i 0.188021i
\(491\) 42.0181i 0.0855766i −0.999084 0.0427883i \(-0.986376\pi\)
0.999084 0.0427883i \(-0.0136241\pi\)
\(492\) 0 0
\(493\) −147.341 −0.298866
\(494\) 868.439i 1.75797i
\(495\) 0 0
\(496\) 133.291 0.268733
\(497\) 36.5018i 0.0734444i
\(498\) 0 0
\(499\) −229.963 −0.460848 −0.230424 0.973090i \(-0.574011\pi\)
−0.230424 + 0.973090i \(0.574011\pi\)
\(500\) −20.8554 −0.0417108
\(501\) 0 0
\(502\) 77.0677i 0.153521i
\(503\) 9.38400i 0.0186561i −0.999956 0.00932803i \(-0.997031\pi\)
0.999956 0.00932803i \(-0.00296925\pi\)
\(504\) 0 0
\(505\) 364.507i 0.721796i
\(506\) 398.858 + 253.021i 0.788256 + 0.500042i
\(507\) 0 0
\(508\) 212.212i 0.417740i
\(509\) 584.355 1.14804 0.574022 0.818840i \(-0.305382\pi\)
0.574022 + 0.818840i \(0.305382\pi\)
\(510\) 0 0
\(511\) −148.377 −0.290367
\(512\) 309.431i 0.604357i
\(513\) 0 0
\(514\) 61.1691i 0.119006i
\(515\) −95.3510 −0.185148
\(516\) 0 0
\(517\) 88.6418 139.733i 0.171454 0.270277i
\(518\) 296.002 0.571432
\(519\) 0 0
\(520\) 317.410 0.610405
\(521\) −121.060 −0.232361 −0.116180 0.993228i \(-0.537065\pi\)
−0.116180 + 0.993228i \(0.537065\pi\)
\(522\) 0 0
\(523\) 446.636i 0.853988i −0.904254 0.426994i \(-0.859572\pi\)
0.904254 0.426994i \(-0.140428\pi\)
\(524\) 215.634i 0.411516i
\(525\) 0 0
\(526\) −422.896 −0.803984
\(527\) 455.651i 0.864613i
\(528\) 0 0
\(529\) 334.782 0.632858
\(530\) 108.300i 0.204339i
\(531\) 0 0
\(532\) 305.273 0.573822
\(533\) −865.072 −1.62302
\(534\) 0 0
\(535\) 293.144i 0.547933i
\(536\) 974.077i 1.81731i
\(537\) 0 0
\(538\) 434.864i 0.808297i
\(539\) −166.168 + 261.945i −0.308290 + 0.485983i
\(540\) 0 0
\(541\) 472.750i 0.873846i 0.899499 + 0.436923i \(0.143932\pi\)
−0.899499 + 0.436923i \(0.856068\pi\)
\(542\) 405.421 0.748009
\(543\) 0 0
\(544\) −464.976 −0.854735
\(545\) 121.911i 0.223689i
\(546\) 0 0
\(547\) 24.2342i 0.0443039i 0.999755 + 0.0221520i \(0.00705176\pi\)
−0.999755 + 0.0221520i \(0.992948\pi\)
\(548\) 403.582 0.736463
\(549\) 0 0
\(550\) 67.8556 + 43.0452i 0.123374 + 0.0782640i
\(551\) −305.724 −0.554854
\(552\) 0 0
\(553\) −237.227 −0.428982
\(554\) 33.1276 0.0597972
\(555\) 0 0
\(556\) 9.47629i 0.0170437i
\(557\) 597.483i 1.07268i −0.844002 0.536340i \(-0.819807\pi\)
0.844002 0.536340i \(-0.180193\pi\)
\(558\) 0 0
\(559\) 112.204 0.200723
\(560\) 51.5910i 0.0921268i
\(561\) 0 0
\(562\) 267.206 0.475455
\(563\) 963.269i 1.71096i 0.517838 + 0.855479i \(0.326737\pi\)
−0.517838 + 0.855479i \(0.673263\pi\)
\(564\) 0 0
\(565\) −263.823 −0.466943
\(566\) 536.541 0.947953
\(567\) 0 0
\(568\) 68.5874i 0.120753i
\(569\) 136.737i 0.240310i −0.992755 0.120155i \(-0.961661\pi\)
0.992755 0.120155i \(-0.0383392\pi\)
\(570\) 0 0
\(571\) 829.845i 1.45332i 0.686998 + 0.726659i \(0.258928\pi\)
−0.686998 + 0.726659i \(0.741072\pi\)
\(572\) 287.010 + 182.069i 0.501765 + 0.318302i
\(573\) 0 0
\(574\) 347.986i 0.606248i
\(575\) 146.951 0.255567
\(576\) 0 0
\(577\) 636.305 1.10278 0.551391 0.834247i \(-0.314097\pi\)
0.551391 + 0.834247i \(0.314097\pi\)
\(578\) 14.7235i 0.0254732i
\(579\) 0 0
\(580\) 35.5370i 0.0612706i
\(581\) −197.795 −0.340439
\(582\) 0 0
\(583\) −195.332 + 307.918i −0.335046 + 0.528161i
\(584\) 278.803 0.477402
\(585\) 0 0
\(586\) 15.0750 0.0257253
\(587\) 455.242 0.775540 0.387770 0.921756i \(-0.373246\pi\)
0.387770 + 0.921756i \(0.373246\pi\)
\(588\) 0 0
\(589\) 945.450i 1.60518i
\(590\) 168.396i 0.285416i
\(591\) 0 0
\(592\) −224.733 −0.379617
\(593\) 219.359i 0.369914i −0.982747 0.184957i \(-0.940785\pi\)
0.982747 0.184957i \(-0.0592146\pi\)
\(594\) 0 0
\(595\) −176.362 −0.296406
\(596\) 350.590i 0.588239i
\(597\) 0 0
\(598\) −711.284 −1.18944
\(599\) 260.846 0.435470 0.217735 0.976008i \(-0.430133\pi\)
0.217735 + 0.976008i \(0.430133\pi\)
\(600\) 0 0
\(601\) 314.178i 0.522759i 0.965236 + 0.261379i \(0.0841773\pi\)
−0.965236 + 0.261379i \(0.915823\pi\)
\(602\) 45.1355i 0.0749760i
\(603\) 0 0
\(604\) 255.072i 0.422305i
\(605\) 115.290 + 244.772i 0.190561 + 0.404582i
\(606\) 0 0
\(607\) 423.627i 0.697903i −0.937141 0.348951i \(-0.886538\pi\)
0.937141 0.348951i \(-0.113462\pi\)
\(608\) −964.799 −1.58684
\(609\) 0 0
\(610\) −75.7578 −0.124193
\(611\) 249.187i 0.407835i
\(612\) 0 0
\(613\) 144.866i 0.236323i −0.992994 0.118162i \(-0.962300\pi\)
0.992994 0.118162i \(-0.0377001\pi\)
\(614\) −671.597 −1.09381
\(615\) 0 0
\(616\) −230.291 + 363.026i −0.373849 + 0.589328i
\(617\) −988.195 −1.60161 −0.800806 0.598923i \(-0.795595\pi\)
−0.800806 + 0.598923i \(0.795595\pi\)
\(618\) 0 0
\(619\) 822.930 1.32945 0.664725 0.747088i \(-0.268549\pi\)
0.664725 + 0.747088i \(0.268549\pi\)
\(620\) 109.898 0.177254
\(621\) 0 0
\(622\) 147.757i 0.237551i
\(623\) 336.589i 0.540272i
\(624\) 0 0
\(625\) 25.0000 0.0400000
\(626\) 421.890i 0.673946i
\(627\) 0 0
\(628\) 477.640 0.760574
\(629\) 768.240i 1.22137i
\(630\) 0 0
\(631\) −854.486 −1.35418 −0.677089 0.735902i \(-0.736759\pi\)
−0.677089 + 0.735902i \(0.736759\pi\)
\(632\) 445.753 0.705305
\(633\) 0 0
\(634\) 354.929i 0.559825i
\(635\) 254.385i 0.400606i
\(636\) 0 0
\(637\) 467.127i 0.733323i
\(638\) 73.3477 115.624i 0.114965 0.181229i
\(639\) 0 0
\(640\) 46.0366i 0.0719322i
\(641\) 70.2095 0.109531 0.0547656 0.998499i \(-0.482559\pi\)
0.0547656 + 0.998499i \(0.482559\pi\)
\(642\) 0 0
\(643\) −560.759 −0.872097 −0.436049 0.899923i \(-0.643622\pi\)
−0.436049 + 0.899923i \(0.643622\pi\)
\(644\) 250.030i 0.388246i
\(645\) 0 0
\(646\) 906.676i 1.40352i
\(647\) −73.2119 −0.113156 −0.0565780 0.998398i \(-0.518019\pi\)
−0.0565780 + 0.998398i \(0.518019\pi\)
\(648\) 0 0
\(649\) 303.722 478.782i 0.467985 0.737723i
\(650\) −121.007 −0.186165
\(651\) 0 0
\(652\) −46.8897 −0.0719167
\(653\) 52.7951 0.0808500 0.0404250 0.999183i \(-0.487129\pi\)
0.0404250 + 0.999183i \(0.487129\pi\)
\(654\) 0 0
\(655\) 258.487i 0.394637i
\(656\) 264.201i 0.402746i
\(657\) 0 0
\(658\) −100.239 −0.152338
\(659\) 466.110i 0.707299i 0.935378 + 0.353649i \(0.115059\pi\)
−0.935378 + 0.353649i \(0.884941\pi\)
\(660\) 0 0
\(661\) 759.575 1.14913 0.574565 0.818459i \(-0.305171\pi\)
0.574565 + 0.818459i \(0.305171\pi\)
\(662\) 352.688i 0.532762i
\(663\) 0 0
\(664\) 371.659 0.559728
\(665\) −365.940 −0.550286
\(666\) 0 0
\(667\) 250.400i 0.375412i
\(668\) 7.85389i 0.0117573i
\(669\) 0 0
\(670\) 371.350i 0.554254i
\(671\) −215.394 136.639i −0.321005 0.203634i
\(672\) 0 0
\(673\) 608.412i 0.904030i 0.892010 + 0.452015i \(0.149295\pi\)
−0.892010 + 0.452015i \(0.850705\pi\)
\(674\) −770.935 −1.14382
\(675\) 0 0
\(676\) −196.579 −0.290798
\(677\) 557.900i 0.824077i 0.911166 + 0.412038i \(0.135183\pi\)
−0.911166 + 0.412038i \(0.864817\pi\)
\(678\) 0 0
\(679\) 100.470i 0.147968i
\(680\) 331.386 0.487332
\(681\) 0 0
\(682\) −357.566 226.827i −0.524290 0.332591i
\(683\) 785.901 1.15066 0.575330 0.817921i \(-0.304874\pi\)
0.575330 + 0.817921i \(0.304874\pi\)
\(684\) 0 0
\(685\) −483.785 −0.706256
\(686\) 514.409 0.749868
\(687\) 0 0
\(688\) 34.2682i 0.0498084i
\(689\) 549.111i 0.796968i
\(690\) 0 0
\(691\) 480.448 0.695293 0.347647 0.937626i \(-0.386981\pi\)
0.347647 + 0.937626i \(0.386981\pi\)
\(692\) 313.409i 0.452903i
\(693\) 0 0
\(694\) 313.438 0.451640
\(695\) 11.3595i 0.0163446i
\(696\) 0 0
\(697\) −903.160 −1.29578
\(698\) 111.762 0.160117
\(699\) 0 0
\(700\) 42.5364i 0.0607663i
\(701\) 284.947i 0.406486i −0.979128 0.203243i \(-0.934852\pi\)
0.979128 0.203243i \(-0.0651481\pi\)
\(702\) 0 0
\(703\) 1594.06i 2.26750i
\(704\) 350.707 552.848i 0.498163 0.785296i
\(705\) 0 0
\(706\) 258.150i 0.365651i
\(707\) 743.444 1.05155
\(708\) 0 0
\(709\) −313.418 −0.442057 −0.221028 0.975267i \(-0.570941\pi\)
−0.221028 + 0.975267i \(0.570941\pi\)
\(710\) 26.1478i 0.0368278i
\(711\) 0 0
\(712\) 632.455i 0.888280i
\(713\) −774.359 −1.08606
\(714\) 0 0
\(715\) −344.047 218.251i −0.481185 0.305247i
\(716\) 64.4561 0.0900224
\(717\) 0 0
\(718\) 522.775 0.728099
\(719\) 1198.70 1.66718 0.833590 0.552384i \(-0.186282\pi\)
0.833590 + 0.552384i \(0.186282\pi\)
\(720\) 0 0
\(721\) 194.477i 0.269732i
\(722\) 1353.87i 1.87516i
\(723\) 0 0
\(724\) −200.246 −0.276583
\(725\) 42.5992i 0.0587576i
\(726\) 0 0
\(727\) 152.540 0.209821 0.104910 0.994482i \(-0.466544\pi\)
0.104910 + 0.994482i \(0.466544\pi\)
\(728\) 647.386i 0.889267i
\(729\) 0 0
\(730\) −106.289 −0.145601
\(731\) 117.144 0.160252
\(732\) 0 0
\(733\) 1107.11i 1.51039i −0.655501 0.755194i \(-0.727543\pi\)
0.655501 0.755194i \(-0.272457\pi\)
\(734\) 459.770i 0.626390i
\(735\) 0 0
\(736\) 790.206i 1.07365i
\(737\) 669.775 1055.82i 0.908786 1.43259i
\(738\) 0 0
\(739\) 438.677i 0.593609i 0.954938 + 0.296805i \(0.0959210\pi\)
−0.954938 + 0.296805i \(0.904079\pi\)
\(740\) −185.291 −0.250393
\(741\) 0 0
\(742\) 220.887 0.297691
\(743\) 764.284i 1.02865i −0.857597 0.514323i \(-0.828043\pi\)
0.857597 0.514323i \(-0.171957\pi\)
\(744\) 0 0
\(745\) 420.263i 0.564112i
\(746\) −614.579 −0.823832
\(747\) 0 0
\(748\) 299.646 + 190.085i 0.400597 + 0.254124i
\(749\) −597.893 −0.798255
\(750\) 0 0
\(751\) 1224.32 1.63025 0.815126 0.579283i \(-0.196668\pi\)
0.815126 + 0.579283i \(0.196668\pi\)
\(752\) 76.1041 0.101202
\(753\) 0 0
\(754\) 206.193i 0.273465i
\(755\) 305.763i 0.404984i
\(756\) 0 0
\(757\) −1346.79 −1.77911 −0.889555 0.456828i \(-0.848986\pi\)
−0.889555 + 0.456828i \(0.848986\pi\)
\(758\) 586.852i 0.774211i
\(759\) 0 0
\(760\) 687.607 0.904746
\(761\) 642.215i 0.843909i 0.906617 + 0.421954i \(0.138656\pi\)
−0.906617 + 0.421954i \(0.861344\pi\)
\(762\) 0 0
\(763\) −248.647 −0.325881
\(764\) 140.736 0.184210
\(765\) 0 0
\(766\) 87.7886i 0.114607i
\(767\) 853.814i 1.11319i
\(768\) 0 0
\(769\) 786.000i 1.02211i 0.859549 + 0.511053i \(0.170744\pi\)
−0.859549 + 0.511053i \(0.829256\pi\)
\(770\) 87.7944 138.397i 0.114019 0.179737i
\(771\) 0 0
\(772\) 311.635i 0.403673i
\(773\) 1311.57 1.69672 0.848360 0.529419i \(-0.177590\pi\)
0.848360 + 0.529419i \(0.177590\pi\)
\(774\) 0 0
\(775\) −131.738 −0.169984
\(776\) 188.785i 0.243280i
\(777\) 0 0
\(778\) 601.166i 0.772706i
\(779\) −1874.01 −2.40566
\(780\) 0 0
\(781\) 47.1607 74.3432i 0.0603850 0.0951898i
\(782\) −742.601 −0.949618
\(783\) 0 0
\(784\) −142.665 −0.181971
\(785\) −572.562 −0.729378
\(786\) 0 0
\(787\) 658.660i 0.836925i −0.908234 0.418462i \(-0.862569\pi\)
0.908234 0.418462i \(-0.137431\pi\)
\(788\) 676.711i 0.858770i
\(789\) 0 0
\(790\) −169.936 −0.215108
\(791\) 538.089i 0.680265i
\(792\) 0 0
\(793\) 384.114 0.484381
\(794\) 347.022i 0.437055i
\(795\) 0 0
\(796\) 629.998 0.791455
\(797\) −1499.40 −1.88130 −0.940651 0.339376i \(-0.889784\pi\)
−0.940651 + 0.339376i \(0.889784\pi\)
\(798\) 0 0
\(799\) 260.158i 0.325605i
\(800\) 134.434i 0.168042i
\(801\) 0 0
\(802\) 148.297i 0.184909i
\(803\) −302.200 191.705i −0.376339 0.238736i
\(804\) 0 0
\(805\) 299.719i 0.372322i
\(806\) 637.649 0.791128
\(807\) 0 0
\(808\) −1396.94 −1.72889
\(809\) 1400.12i 1.73068i 0.501186 + 0.865340i \(0.332897\pi\)
−0.501186 + 0.865340i \(0.667103\pi\)
\(810\) 0 0
\(811\) 611.795i 0.754371i 0.926138 + 0.377186i \(0.123108\pi\)
−0.926138 + 0.377186i \(0.876892\pi\)
\(812\) 72.4807 0.0892620
\(813\) 0 0
\(814\) 602.867 + 382.437i 0.740622 + 0.469824i
\(815\) 56.2081 0.0689670
\(816\) 0 0
\(817\) 243.068 0.297513
\(818\) −1014.22 −1.23988
\(819\) 0 0
\(820\) 217.832i 0.265649i
\(821\) 1249.80i 1.52230i −0.648579 0.761148i \(-0.724636\pi\)
0.648579 0.761148i \(-0.275364\pi\)
\(822\) 0 0
\(823\) 899.845 1.09337 0.546686 0.837338i \(-0.315889\pi\)
0.546686 + 0.837338i \(0.315889\pi\)
\(824\) 365.424i 0.443476i
\(825\) 0 0
\(826\) −343.458 −0.415808
\(827\) 1331.57i 1.61012i −0.593193 0.805060i \(-0.702133\pi\)
0.593193 0.805060i \(-0.297867\pi\)
\(828\) 0 0
\(829\) −578.195 −0.697461 −0.348730 0.937223i \(-0.613387\pi\)
−0.348730 + 0.937223i \(0.613387\pi\)
\(830\) −141.689 −0.170709
\(831\) 0 0
\(832\) 985.896i 1.18497i
\(833\) 487.694i 0.585467i
\(834\) 0 0
\(835\) 9.41470i 0.0112751i
\(836\) 621.750 + 394.416i 0.743720 + 0.471789i
\(837\) 0 0
\(838\) 608.310i 0.725907i
\(839\) −779.704 −0.929325 −0.464663 0.885488i \(-0.653824\pi\)
−0.464663 + 0.885488i \(0.653824\pi\)
\(840\) 0 0
\(841\) 768.412 0.913689
\(842\) 787.999i 0.935866i
\(843\) 0 0
\(844\) 593.026i 0.702638i
\(845\) 235.645 0.278870
\(846\) 0 0
\(847\) 499.234 235.143i 0.589414 0.277619i
\(848\) −167.704 −0.197764
\(849\) 0 0
\(850\) −126.335 −0.148629
\(851\) 1305.59 1.53419
\(852\) 0 0
\(853\) 1330.04i 1.55925i −0.626250 0.779623i \(-0.715411\pi\)
0.626250 0.779623i \(-0.284589\pi\)
\(854\) 154.515i 0.180931i
\(855\) 0 0
\(856\) 1123.45 1.31244
\(857\) 223.662i 0.260983i −0.991449 0.130491i \(-0.958345\pi\)
0.991449 0.130491i \(-0.0416555\pi\)
\(858\) 0 0
\(859\) −1512.14 −1.76035 −0.880174 0.474651i \(-0.842574\pi\)
−0.880174 + 0.474651i \(0.842574\pi\)
\(860\) 28.2539i 0.0328533i
\(861\) 0 0
\(862\) 501.857 0.582200
\(863\) 815.242 0.944661 0.472330 0.881422i \(-0.343413\pi\)
0.472330 + 0.881422i \(0.343413\pi\)
\(864\) 0 0
\(865\) 375.693i 0.434327i
\(866\) 26.3503i 0.0304276i
\(867\) 0 0
\(868\) 224.146i 0.258233i
\(869\) −483.160 306.500i −0.555996 0.352704i
\(870\) 0 0
\(871\) 1882.85i 2.16171i
\(872\) 467.211 0.535793
\(873\) 0 0
\(874\) −1540.86 −1.76299
\(875\) 50.9897i 0.0582739i
\(876\) 0 0
\(877\) 138.555i 0.157987i −0.996875 0.0789935i \(-0.974829\pi\)
0.996875 0.0789935i \(-0.0251706\pi\)
\(878\) 1013.73 1.15459
\(879\) 0 0
\(880\) −66.6560 + 105.075i −0.0757455 + 0.119404i
\(881\) −415.019 −0.471077 −0.235538 0.971865i \(-0.575685\pi\)
−0.235538 + 0.971865i \(0.575685\pi\)
\(882\) 0 0
\(883\) −285.257 −0.323055 −0.161527 0.986868i \(-0.551642\pi\)
−0.161527 + 0.986868i \(0.551642\pi\)
\(884\) −534.361 −0.604480
\(885\) 0 0
\(886\) 524.972i 0.592519i
\(887\) 405.942i 0.457657i −0.973467 0.228829i \(-0.926510\pi\)
0.973467 0.228829i \(-0.0734895\pi\)
\(888\) 0 0
\(889\) 518.840 0.583622
\(890\) 241.113i 0.270913i
\(891\) 0 0
\(892\) 545.886 0.611980
\(893\) 539.814i 0.604495i
\(894\) 0 0
\(895\) −77.2654 −0.0863301
\(896\) 93.8956 0.104794
\(897\) 0 0
\(898\) 829.697i 0.923939i
\(899\) 224.477i 0.249697i
\(900\) 0 0
\(901\) 573.288i 0.636279i
\(902\) 449.601 708.743i 0.498449 0.785746i
\(903\) 0 0
\(904\) 1011.08i 1.11845i
\(905\) 240.041 0.265238
\(906\) 0 0
\(907\) 1577.64 1.73940 0.869700 0.493581i \(-0.164312\pi\)
0.869700 + 0.493581i \(0.164312\pi\)
\(908\) 17.8125i 0.0196173i
\(909\) 0 0
\(910\) 246.805i 0.271214i
\(911\) 574.512 0.630639 0.315319 0.948986i \(-0.397888\pi\)
0.315319 + 0.948986i \(0.397888\pi\)
\(912\) 0 0
\(913\) −402.849 255.553i −0.441236 0.279905i
\(914\) 1164.77 1.27436
\(915\) 0 0
\(916\) −663.905 −0.724787
\(917\) −527.207 −0.574926
\(918\) 0 0
\(919\) 354.240i 0.385462i 0.981252 + 0.192731i \(0.0617345\pi\)
−0.981252 + 0.192731i \(0.938266\pi\)
\(920\) 563.176i 0.612147i
\(921\) 0 0
\(922\) −128.446 −0.139313
\(923\) 132.577i 0.143637i
\(924\) 0 0
\(925\) 222.114 0.240123
\(926\) 74.4082i 0.0803544i
\(927\) 0 0
\(928\) −229.071 −0.246844
\(929\) 230.873 0.248518 0.124259 0.992250i \(-0.460345\pi\)
0.124259 + 0.992250i \(0.460345\pi\)
\(930\) 0 0
\(931\) 1011.94i 1.08694i
\(932\) 505.442i 0.542319i
\(933\) 0 0
\(934\) 676.555i 0.724363i
\(935\) −359.195 227.861i −0.384166 0.243701i
\(936\) 0 0
\(937\) 414.814i 0.442704i −0.975194 0.221352i \(-0.928953\pi\)
0.975194 0.221352i \(-0.0710470\pi\)
\(938\) −757.400 −0.807463
\(939\) 0 0
\(940\) 62.7472 0.0667524
\(941\) 1428.08i 1.51762i −0.651315 0.758808i \(-0.725782\pi\)
0.651315 0.758808i \(-0.274218\pi\)
\(942\) 0 0
\(943\) 1534.88i 1.62766i
\(944\) 260.763 0.276232
\(945\) 0 0
\(946\) −58.3155 + 91.9275i −0.0616443 + 0.0971749i
\(947\) −976.020 −1.03064 −0.515322 0.856997i \(-0.672328\pi\)
−0.515322 + 0.856997i \(0.672328\pi\)
\(948\) 0 0
\(949\) 538.914 0.567876
\(950\) −262.138 −0.275935
\(951\) 0 0
\(952\) 675.890i 0.709968i
\(953\) 1273.90i 1.33673i −0.743834 0.668364i \(-0.766995\pi\)
0.743834 0.668364i \(-0.233005\pi\)
\(954\) 0 0
\(955\) −168.705 −0.176654
\(956\) 147.620i 0.154414i
\(957\) 0 0
\(958\) −266.178 −0.277848
\(959\) 986.723i 1.02891i
\(960\) 0 0
\(961\) −266.806 −0.277634
\(962\) −1075.09 −1.11756
\(963\) 0 0
\(964\) 273.402i 0.283612i
\(965\) 373.567i 0.387116i
\(966\) 0 0
\(967\) 1586.32i 1.64045i 0.572038 + 0.820227i \(0.306153\pi\)
−0.572038 + 0.820227i \(0.693847\pi\)
\(968\) −938.066 + 441.837i −0.969077 + 0.456443i
\(969\) 0 0
\(970\) 71.9710i 0.0741969i
\(971\) −662.523 −0.682310 −0.341155 0.940007i \(-0.610818\pi\)
−0.341155 + 0.940007i \(0.610818\pi\)
\(972\) 0 0
\(973\) 23.1687 0.0238116
\(974\) 535.924i 0.550230i
\(975\) 0 0
\(976\) 117.312i 0.120197i
\(977\) 1552.47 1.58902 0.794508 0.607254i \(-0.207729\pi\)
0.794508 + 0.607254i \(0.207729\pi\)
\(978\) 0 0
\(979\) 434.876 685.531i 0.444204 0.700236i
\(980\) −117.626 −0.120027
\(981\) 0 0
\(982\) −61.3901 −0.0625154
\(983\) −862.208 −0.877119 −0.438560 0.898702i \(-0.644511\pi\)
−0.438560 + 0.898702i \(0.644511\pi\)
\(984\) 0 0
\(985\) 811.194i 0.823547i
\(986\) 215.271i 0.218328i
\(987\) 0 0
\(988\) −1108.77 −1.12224
\(989\) 199.082i 0.201296i
\(990\) 0 0
\(991\) −1075.74 −1.08551 −0.542755 0.839891i \(-0.682619\pi\)
−0.542755 + 0.839891i \(0.682619\pi\)
\(992\) 708.401i 0.714113i
\(993\) 0 0
\(994\) −53.3306 −0.0536526
\(995\) −755.198 −0.758993
\(996\) 0 0
\(997\) 872.880i 0.875507i 0.899095 + 0.437753i \(0.144226\pi\)
−0.899095 + 0.437753i \(0.855774\pi\)
\(998\) 335.985i 0.336658i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 495.3.b.a.406.4 8
3.2 odd 2 55.3.c.a.21.5 yes 8
11.10 odd 2 inner 495.3.b.a.406.5 8
12.11 even 2 880.3.j.a.241.5 8
15.2 even 4 275.3.d.c.274.7 16
15.8 even 4 275.3.d.c.274.10 16
15.14 odd 2 275.3.c.f.76.4 8
33.32 even 2 55.3.c.a.21.4 8
132.131 odd 2 880.3.j.a.241.6 8
165.32 odd 4 275.3.d.c.274.9 16
165.98 odd 4 275.3.d.c.274.8 16
165.164 even 2 275.3.c.f.76.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.3.c.a.21.4 8 33.32 even 2
55.3.c.a.21.5 yes 8 3.2 odd 2
275.3.c.f.76.4 8 15.14 odd 2
275.3.c.f.76.5 8 165.164 even 2
275.3.d.c.274.7 16 15.2 even 4
275.3.d.c.274.8 16 165.98 odd 4
275.3.d.c.274.9 16 165.32 odd 4
275.3.d.c.274.10 16 15.8 even 4
495.3.b.a.406.4 8 1.1 even 1 trivial
495.3.b.a.406.5 8 11.10 odd 2 inner
880.3.j.a.241.5 8 12.11 even 2
880.3.j.a.241.6 8 132.131 odd 2