Properties

Label 495.3.b.a
Level $495$
Weight $3$
Character orbit 495.b
Analytic conductor $13.488$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [495,3,Mod(406,495)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(495, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("495.406"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 495.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,-28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4877730858\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 30x^{6} + 280x^{4} + 890x^{2} + 895 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{2} - 4) q^{4} - \beta_{4} q^{5} + \beta_{7} q^{7} + (\beta_{6} - \beta_{5} - 3 \beta_1) q^{8} - \beta_{5} q^{10} + (\beta_{7} - \beta_{5} - \beta_{4} + \cdots - 1) q^{11} + (\beta_{6} + \beta_{5} - 2 \beta_1) q^{13}+ \cdots + ( - \beta_{7} - \beta_{6} + \cdots + 25 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 28 q^{4} - 8 q^{11} + 88 q^{16} + 20 q^{20} + 80 q^{22} - 8 q^{23} + 40 q^{25} + 100 q^{26} + 36 q^{31} + 80 q^{34} - 88 q^{37} + 160 q^{38} - 12 q^{44} + 8 q^{47} + 172 q^{49} + 152 q^{53} - 20 q^{55}+ \cdots + 312 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 30x^{6} + 280x^{4} + 890x^{2} + 895 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 8 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{6} - 25\nu^{4} - 171\nu^{2} - 275 ) / 16 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{6} + 29\nu^{4} + 235\nu^{2} + 415 ) / 16 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{7} + 29\nu^{5} + 235\nu^{3} + 415\nu ) / 16 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{7} + 29\nu^{5} + 251\nu^{3} + 591\nu ) / 16 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -\nu^{7} - 27\nu^{5} - 203\nu^{3} - 345\nu ) / 8 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 8 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{6} - \beta_{5} - 11\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 4\beta_{4} + 4\beta_{3} - 16\beta_{2} + 93 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 4\beta_{7} - 16\beta_{6} + 24\beta_{5} + 141\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -100\beta_{4} - 116\beta_{3} + 229\beta_{2} - 1232 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -116\beta_{7} + 229\beta_{6} - 445\beta_{5} - 1919\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(397\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
406.1
3.88606i
3.15955i
1.66769i
1.46104i
1.46104i
1.66769i
3.15955i
3.88606i
3.88606i 0 −11.1014 −2.23607 0 3.44089i 27.5966i 0 8.68949i
406.2 3.15955i 0 −5.98274 2.23607 0 5.67155i 6.26455i 0 7.06496i
406.3 1.66769i 0 1.21881 2.23607 0 6.72266i 8.70336i 0 3.72907i
406.4 1.46104i 0 1.86536 −2.23607 0 4.56066i 8.56953i 0 3.26698i
406.5 1.46104i 0 1.86536 −2.23607 0 4.56066i 8.56953i 0 3.26698i
406.6 1.66769i 0 1.21881 2.23607 0 6.72266i 8.70336i 0 3.72907i
406.7 3.15955i 0 −5.98274 2.23607 0 5.67155i 6.26455i 0 7.06496i
406.8 3.88606i 0 −11.1014 −2.23607 0 3.44089i 27.5966i 0 8.68949i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 406.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 495.3.b.a 8
3.b odd 2 1 55.3.c.a 8
11.b odd 2 1 inner 495.3.b.a 8
12.b even 2 1 880.3.j.a 8
15.d odd 2 1 275.3.c.f 8
15.e even 4 2 275.3.d.c 16
33.d even 2 1 55.3.c.a 8
132.d odd 2 1 880.3.j.a 8
165.d even 2 1 275.3.c.f 8
165.l odd 4 2 275.3.d.c 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
55.3.c.a 8 3.b odd 2 1
55.3.c.a 8 33.d even 2 1
275.3.c.f 8 15.d odd 2 1
275.3.c.f 8 165.d even 2 1
275.3.d.c 16 15.e even 4 2
275.3.d.c 16 165.l odd 4 2
495.3.b.a 8 1.a even 1 1 trivial
495.3.b.a 8 11.b odd 2 1 inner
880.3.j.a 8 12.b even 2 1
880.3.j.a 8 132.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{8} + 30T_{2}^{6} + 280T_{2}^{4} + 890T_{2}^{2} + 895 \) acting on \(S_{3}^{\mathrm{new}}(495, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} + 30 T^{6} + \cdots + 895 \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( (T^{2} - 5)^{4} \) Copy content Toggle raw display
$7$ \( T^{8} + 110 T^{6} + \cdots + 358000 \) Copy content Toggle raw display
$11$ \( T^{8} + 8 T^{7} + \cdots + 214358881 \) Copy content Toggle raw display
$13$ \( T^{8} + 620 T^{6} + \cdots + 27723520 \) Copy content Toggle raw display
$17$ \( T^{8} + 1270 T^{6} + \cdots + 1732720 \) Copy content Toggle raw display
$19$ \( T^{8} + \cdots + 3931928320 \) Copy content Toggle raw display
$23$ \( (T^{4} + 4 T^{3} + \cdots - 27584)^{2} \) Copy content Toggle raw display
$29$ \( T^{8} + 4850 T^{6} + \cdots + 27723520 \) Copy content Toggle raw display
$31$ \( (T^{4} - 18 T^{3} + \cdots + 178076)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} + 44 T^{3} + \cdots - 1000204)^{2} \) Copy content Toggle raw display
$41$ \( T^{8} + \cdots + 5420634603520 \) Copy content Toggle raw display
$43$ \( T^{8} + 4180 T^{6} + \cdots + 91648000 \) Copy content Toggle raw display
$47$ \( (T^{4} - 4 T^{3} + \cdots + 22336)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} - 76 T^{3} + \cdots - 14101244)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} - 8 T^{3} + \cdots - 465344)^{2} \) Copy content Toggle raw display
$61$ \( T^{8} + \cdots + 44785710872320 \) Copy content Toggle raw display
$67$ \( (T^{4} + 44 T^{3} + \cdots + 3497456)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} + 138 T^{3} + \cdots - 22924)^{2} \) Copy content Toggle raw display
$73$ \( T^{8} + \cdots + 15327220913920 \) Copy content Toggle raw display
$79$ \( T^{8} + \cdots + 67909027102720 \) Copy content Toggle raw display
$83$ \( T^{8} + \cdots + 26187838846720 \) Copy content Toggle raw display
$89$ \( (T^{4} + 222 T^{3} + \cdots - 1268884)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} - 156 T^{3} + \cdots - 21090064)^{2} \) Copy content Toggle raw display
show more
show less