Properties

Label 495.2.n.h.361.3
Level $495$
Weight $2$
Character 495.361
Analytic conductor $3.953$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 495.n (of order \(5\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.95259490005\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \( x^{16} - 2 x^{15} + 5 x^{14} - 8 x^{13} + 47 x^{12} + 32 x^{11} + 171 x^{10} + 26 x^{9} + 360 x^{8} - 172 x^{7} + 471 x^{6} - 430 x^{5} + 383 x^{4} + 70 x^{3} + 17 x^{2} + 4 x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 361.3
Root \(0.735494 + 0.534368i\) of defining polynomial
Character \(\chi\) \(=\) 495.361
Dual form 495.2.n.h.181.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.0280832 + 0.0864312i) q^{2} +(1.61135 + 1.17072i) q^{4} +(-0.309017 - 0.951057i) q^{5} +(1.98801 + 1.44438i) q^{7} +(-0.293484 + 0.213228i) q^{8} +O(q^{10})\) \(q+(-0.0280832 + 0.0864312i) q^{2} +(1.61135 + 1.17072i) q^{4} +(-0.309017 - 0.951057i) q^{5} +(1.98801 + 1.44438i) q^{7} +(-0.293484 + 0.213228i) q^{8} +0.0908791 q^{10} +(0.242484 + 3.30775i) q^{11} +(0.0999755 - 0.307693i) q^{13} +(-0.180669 + 0.131264i) q^{14} +(1.22078 + 3.75716i) q^{16} +(-1.13260 - 3.48579i) q^{17} +(-0.437853 + 0.318119i) q^{19} +(0.615482 - 1.89426i) q^{20} +(-0.292702 - 0.0719339i) q^{22} +4.62543 q^{23} +(-0.809017 + 0.587785i) q^{25} +(0.0237866 + 0.0172820i) q^{26} +(1.51244 + 4.65480i) q^{28} +(1.19403 + 0.867515i) q^{29} +(0.275312 - 0.847323i) q^{31} -1.08455 q^{32} +0.333088 q^{34} +(0.759354 - 2.33705i) q^{35} +(1.84899 + 1.34337i) q^{37} +(-0.0151991 - 0.0467779i) q^{38} +(0.293484 + 0.213228i) q^{40} +(-7.26541 + 5.27863i) q^{41} +6.31964 q^{43} +(-3.48171 + 5.61383i) q^{44} +(-0.129897 + 0.399782i) q^{46} +(-1.18347 + 0.859844i) q^{47} +(-0.297142 - 0.914509i) q^{49} +(-0.0280832 - 0.0864312i) q^{50} +(0.521317 - 0.378759i) q^{52} +(3.19196 - 9.82385i) q^{53} +(3.07092 - 1.25277i) q^{55} -0.891432 q^{56} +(-0.108513 + 0.0788390i) q^{58} +(5.09137 + 3.69910i) q^{59} +(-2.00101 - 6.15847i) q^{61} +(0.0655035 + 0.0475911i) q^{62} +(-2.41109 + 7.42059i) q^{64} -0.323527 q^{65} -7.05634 q^{67} +(2.25585 - 6.94279i) q^{68} +(0.180669 + 0.131264i) q^{70} +(2.87940 + 8.86188i) q^{71} +(-5.01044 - 3.64030i) q^{73} +(-0.168034 + 0.122084i) q^{74} -1.07796 q^{76} +(-4.29557 + 6.92609i) q^{77} +(3.58612 - 11.0369i) q^{79} +(3.19603 - 2.32205i) q^{80} +(-0.252202 - 0.776199i) q^{82} +(-5.36887 - 16.5237i) q^{83} +(-2.96519 + 2.15434i) q^{85} +(-0.177476 + 0.546214i) q^{86} +(-0.776471 - 0.919066i) q^{88} -4.70270 q^{89} +(0.643177 - 0.467296i) q^{91} +(7.45320 + 5.41507i) q^{92} +(-0.0410816 - 0.126436i) q^{94} +(0.437853 + 0.318119i) q^{95} +(3.40155 - 10.4689i) q^{97} +0.0873867 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2 q^{2} - 8 q^{4} + 4 q^{5} - 4 q^{7} + 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 16 q + 2 q^{2} - 8 q^{4} + 4 q^{5} - 4 q^{7} + 6 q^{8} + 8 q^{10} - 4 q^{11} + 2 q^{13} + 22 q^{14} + 8 q^{16} + 4 q^{17} - 4 q^{19} - 2 q^{20} - 28 q^{22} - 8 q^{23} - 4 q^{25} - 6 q^{26} - 2 q^{28} + 26 q^{29} - 10 q^{31} - 56 q^{32} - 4 q^{34} + 4 q^{35} + 22 q^{37} + 30 q^{38} - 6 q^{40} + 6 q^{41} + 28 q^{43} - 68 q^{44} + 16 q^{46} + 20 q^{47} + 10 q^{49} + 2 q^{50} + 30 q^{52} - 14 q^{53} - 6 q^{55} - 68 q^{56} - 6 q^{58} + 16 q^{59} - 38 q^{61} + 20 q^{62} + 10 q^{64} - 12 q^{65} + 20 q^{67} + 48 q^{68} - 22 q^{70} + 54 q^{71} + 2 q^{73} - 28 q^{74} - 44 q^{76} - 34 q^{77} - 12 q^{79} + 22 q^{80} + 30 q^{82} + 28 q^{83} - 4 q^{85} - 74 q^{86} + 46 q^{88} - 76 q^{89} - 34 q^{91} + 8 q^{92} - 10 q^{94} + 4 q^{95} - 18 q^{97} - 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(397\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0280832 + 0.0864312i −0.0198578 + 0.0611161i −0.960494 0.278299i \(-0.910229\pi\)
0.940637 + 0.339415i \(0.110229\pi\)
\(3\) 0 0
\(4\) 1.61135 + 1.17072i 0.805676 + 0.585358i
\(5\) −0.309017 0.951057i −0.138197 0.425325i
\(6\) 0 0
\(7\) 1.98801 + 1.44438i 0.751399 + 0.545923i 0.896260 0.443529i \(-0.146274\pi\)
−0.144861 + 0.989452i \(0.546274\pi\)
\(8\) −0.293484 + 0.213228i −0.103762 + 0.0753876i
\(9\) 0 0
\(10\) 0.0908791 0.0287385
\(11\) 0.242484 + 3.30775i 0.0731117 + 0.997324i
\(12\) 0 0
\(13\) 0.0999755 0.307693i 0.0277282 0.0853386i −0.936235 0.351375i \(-0.885714\pi\)
0.963963 + 0.266037i \(0.0857142\pi\)
\(14\) −0.180669 + 0.131264i −0.0482858 + 0.0350817i
\(15\) 0 0
\(16\) 1.22078 + 3.75716i 0.305194 + 0.939291i
\(17\) −1.13260 3.48579i −0.274696 0.845428i −0.989300 0.145898i \(-0.953393\pi\)
0.714604 0.699530i \(-0.246607\pi\)
\(18\) 0 0
\(19\) −0.437853 + 0.318119i −0.100450 + 0.0729815i −0.636877 0.770966i \(-0.719774\pi\)
0.536426 + 0.843947i \(0.319774\pi\)
\(20\) 0.615482 1.89426i 0.137626 0.423569i
\(21\) 0 0
\(22\) −0.292702 0.0719339i −0.0624043 0.0153364i
\(23\) 4.62543 0.964470 0.482235 0.876042i \(-0.339825\pi\)
0.482235 + 0.876042i \(0.339825\pi\)
\(24\) 0 0
\(25\) −0.809017 + 0.587785i −0.161803 + 0.117557i
\(26\) 0.0237866 + 0.0172820i 0.00466494 + 0.00338928i
\(27\) 0 0
\(28\) 1.51244 + 4.65480i 0.285824 + 0.879675i
\(29\) 1.19403 + 0.867515i 0.221726 + 0.161094i 0.693103 0.720838i \(-0.256243\pi\)
−0.471377 + 0.881932i \(0.656243\pi\)
\(30\) 0 0
\(31\) 0.275312 0.847323i 0.0494475 0.152184i −0.923284 0.384118i \(-0.874506\pi\)
0.972731 + 0.231935i \(0.0745055\pi\)
\(32\) −1.08455 −0.191723
\(33\) 0 0
\(34\) 0.333088 0.0571241
\(35\) 0.759354 2.33705i 0.128354 0.395034i
\(36\) 0 0
\(37\) 1.84899 + 1.34337i 0.303971 + 0.220848i 0.729305 0.684188i \(-0.239843\pi\)
−0.425334 + 0.905036i \(0.639843\pi\)
\(38\) −0.0151991 0.0467779i −0.00246562 0.00758838i
\(39\) 0 0
\(40\) 0.293484 + 0.213228i 0.0464038 + 0.0337144i
\(41\) −7.26541 + 5.27863i −1.13467 + 0.824384i −0.986367 0.164559i \(-0.947380\pi\)
−0.148299 + 0.988943i \(0.547380\pi\)
\(42\) 0 0
\(43\) 6.31964 0.963736 0.481868 0.876244i \(-0.339959\pi\)
0.481868 + 0.876244i \(0.339959\pi\)
\(44\) −3.48171 + 5.61383i −0.524887 + 0.846317i
\(45\) 0 0
\(46\) −0.129897 + 0.399782i −0.0191523 + 0.0589446i
\(47\) −1.18347 + 0.859844i −0.172627 + 0.125421i −0.670744 0.741689i \(-0.734025\pi\)
0.498117 + 0.867110i \(0.334025\pi\)
\(48\) 0 0
\(49\) −0.297142 0.914509i −0.0424488 0.130644i
\(50\) −0.0280832 0.0864312i −0.00397156 0.0122232i
\(51\) 0 0
\(52\) 0.521317 0.378759i 0.0722936 0.0525244i
\(53\) 3.19196 9.82385i 0.438450 1.34941i −0.451060 0.892494i \(-0.648954\pi\)
0.889510 0.456916i \(-0.151046\pi\)
\(54\) 0 0
\(55\) 3.07092 1.25277i 0.414083 0.168923i
\(56\) −0.891432 −0.119123
\(57\) 0 0
\(58\) −0.108513 + 0.0788390i −0.0142484 + 0.0103521i
\(59\) 5.09137 + 3.69910i 0.662840 + 0.481581i 0.867621 0.497227i \(-0.165648\pi\)
−0.204781 + 0.978808i \(0.565648\pi\)
\(60\) 0 0
\(61\) −2.00101 6.15847i −0.256203 0.788511i −0.993590 0.113041i \(-0.963941\pi\)
0.737388 0.675470i \(-0.236059\pi\)
\(62\) 0.0655035 + 0.0475911i 0.00831895 + 0.00604407i
\(63\) 0 0
\(64\) −2.41109 + 7.42059i −0.301387 + 0.927573i
\(65\) −0.323527 −0.0401286
\(66\) 0 0
\(67\) −7.05634 −0.862069 −0.431035 0.902335i \(-0.641851\pi\)
−0.431035 + 0.902335i \(0.641851\pi\)
\(68\) 2.25585 6.94279i 0.273562 0.841936i
\(69\) 0 0
\(70\) 0.180669 + 0.131264i 0.0215941 + 0.0156890i
\(71\) 2.87940 + 8.86188i 0.341722 + 1.05171i 0.963315 + 0.268372i \(0.0864855\pi\)
−0.621594 + 0.783340i \(0.713515\pi\)
\(72\) 0 0
\(73\) −5.01044 3.64030i −0.586428 0.426065i 0.254608 0.967044i \(-0.418054\pi\)
−0.841036 + 0.540980i \(0.818054\pi\)
\(74\) −0.168034 + 0.122084i −0.0195336 + 0.0141920i
\(75\) 0 0
\(76\) −1.07796 −0.123651
\(77\) −4.29557 + 6.92609i −0.489526 + 0.789301i
\(78\) 0 0
\(79\) 3.58612 11.0369i 0.403470 1.24175i −0.518697 0.854958i \(-0.673583\pi\)
0.922166 0.386793i \(-0.126417\pi\)
\(80\) 3.19603 2.32205i 0.357327 0.259614i
\(81\) 0 0
\(82\) −0.252202 0.776199i −0.0278511 0.0857168i
\(83\) −5.36887 16.5237i −0.589311 1.81371i −0.581223 0.813744i \(-0.697426\pi\)
−0.00808702 0.999967i \(-0.502574\pi\)
\(84\) 0 0
\(85\) −2.96519 + 2.15434i −0.321620 + 0.233670i
\(86\) −0.177476 + 0.546214i −0.0191377 + 0.0588997i
\(87\) 0 0
\(88\) −0.776471 0.919066i −0.0827721 0.0979727i
\(89\) −4.70270 −0.498485 −0.249242 0.968441i \(-0.580182\pi\)
−0.249242 + 0.968441i \(0.580182\pi\)
\(90\) 0 0
\(91\) 0.643177 0.467296i 0.0674233 0.0489859i
\(92\) 7.45320 + 5.41507i 0.777050 + 0.564560i
\(93\) 0 0
\(94\) −0.0410816 0.126436i −0.00423724 0.0130409i
\(95\) 0.437853 + 0.318119i 0.0449228 + 0.0326383i
\(96\) 0 0
\(97\) 3.40155 10.4689i 0.345375 1.06296i −0.616007 0.787741i \(-0.711251\pi\)
0.961383 0.275216i \(-0.0887492\pi\)
\(98\) 0.0873867 0.00882739
\(99\) 0 0
\(100\) −1.99174 −0.199174
\(101\) −2.07395 + 6.38296i −0.206366 + 0.635129i 0.793289 + 0.608846i \(0.208367\pi\)
−0.999655 + 0.0262830i \(0.991633\pi\)
\(102\) 0 0
\(103\) −12.6233 9.17139i −1.24381 0.903684i −0.245968 0.969278i \(-0.579106\pi\)
−0.997846 + 0.0655935i \(0.979106\pi\)
\(104\) 0.0362677 + 0.111620i 0.00355634 + 0.0109453i
\(105\) 0 0
\(106\) 0.759446 + 0.551770i 0.0737640 + 0.0535926i
\(107\) −7.26833 + 5.28075i −0.702656 + 0.510509i −0.880796 0.473496i \(-0.842992\pi\)
0.178140 + 0.984005i \(0.442992\pi\)
\(108\) 0 0
\(109\) −10.7685 −1.03144 −0.515719 0.856758i \(-0.672475\pi\)
−0.515719 + 0.856758i \(0.672475\pi\)
\(110\) 0.0220367 + 0.300605i 0.00210112 + 0.0286616i
\(111\) 0 0
\(112\) −2.99984 + 9.23256i −0.283458 + 0.872394i
\(113\) 16.0953 11.6939i 1.51412 1.10007i 0.549812 0.835288i \(-0.314699\pi\)
0.964308 0.264784i \(-0.0853007\pi\)
\(114\) 0 0
\(115\) −1.42934 4.39905i −0.133286 0.410213i
\(116\) 0.908393 + 2.79575i 0.0843422 + 0.259578i
\(117\) 0 0
\(118\) −0.462699 + 0.336170i −0.0425949 + 0.0309470i
\(119\) 2.78316 8.56570i 0.255132 0.785216i
\(120\) 0 0
\(121\) −10.8824 + 1.60415i −0.989309 + 0.145832i
\(122\) 0.588478 0.0532783
\(123\) 0 0
\(124\) 1.43560 1.04302i 0.128921 0.0936663i
\(125\) 0.809017 + 0.587785i 0.0723607 + 0.0525731i
\(126\) 0 0
\(127\) −3.74224 11.5174i −0.332070 1.02201i −0.968147 0.250381i \(-0.919444\pi\)
0.636078 0.771625i \(-0.280556\pi\)
\(128\) −2.32850 1.69175i −0.205812 0.149531i
\(129\) 0 0
\(130\) 0.00908568 0.0279628i 0.000796867 0.00245250i
\(131\) −18.7043 −1.63420 −0.817099 0.576497i \(-0.804419\pi\)
−0.817099 + 0.576497i \(0.804419\pi\)
\(132\) 0 0
\(133\) −1.32994 −0.115321
\(134\) 0.198165 0.609888i 0.0171188 0.0526863i
\(135\) 0 0
\(136\) 1.07567 + 0.781519i 0.0922378 + 0.0670147i
\(137\) 4.87796 + 15.0128i 0.416752 + 1.28263i 0.910674 + 0.413125i \(0.135563\pi\)
−0.493922 + 0.869506i \(0.664437\pi\)
\(138\) 0 0
\(139\) −11.1932 8.13233i −0.949395 0.689776i 0.00126895 0.999999i \(-0.499596\pi\)
−0.950664 + 0.310224i \(0.899596\pi\)
\(140\) 3.95961 2.87683i 0.334648 0.243136i
\(141\) 0 0
\(142\) −0.846805 −0.0710623
\(143\) 1.04201 + 0.256083i 0.0871375 + 0.0214147i
\(144\) 0 0
\(145\) 0.456080 1.40367i 0.0378754 0.116568i
\(146\) 0.455344 0.330827i 0.0376846 0.0273794i
\(147\) 0 0
\(148\) 1.40667 + 4.32927i 0.115627 + 0.355864i
\(149\) −2.79288 8.59559i −0.228801 0.704178i −0.997883 0.0650280i \(-0.979286\pi\)
0.769082 0.639150i \(-0.220714\pi\)
\(150\) 0 0
\(151\) 7.16102 5.20278i 0.582755 0.423397i −0.256961 0.966422i \(-0.582721\pi\)
0.839716 + 0.543025i \(0.182721\pi\)
\(152\) 0.0606708 0.186725i 0.00492105 0.0151454i
\(153\) 0 0
\(154\) −0.477997 0.565778i −0.0385181 0.0455917i
\(155\) −0.890928 −0.0715611
\(156\) 0 0
\(157\) −9.49715 + 6.90008i −0.757955 + 0.550686i −0.898282 0.439419i \(-0.855184\pi\)
0.140328 + 0.990105i \(0.455184\pi\)
\(158\) 0.853225 + 0.619904i 0.0678789 + 0.0493169i
\(159\) 0 0
\(160\) 0.335145 + 1.03147i 0.0264955 + 0.0815448i
\(161\) 9.19543 + 6.68087i 0.724701 + 0.526526i
\(162\) 0 0
\(163\) 2.35476 7.24722i 0.184439 0.567646i −0.815499 0.578759i \(-0.803537\pi\)
0.999938 + 0.0111126i \(0.00353731\pi\)
\(164\) −17.8869 −1.39673
\(165\) 0 0
\(166\) 1.57894 0.122549
\(167\) −3.12640 + 9.62208i −0.241928 + 0.744579i 0.754198 + 0.656647i \(0.228026\pi\)
−0.996126 + 0.0879319i \(0.971974\pi\)
\(168\) 0 0
\(169\) 10.4325 + 7.57968i 0.802503 + 0.583053i
\(170\) −0.102930 0.316785i −0.00789435 0.0242963i
\(171\) 0 0
\(172\) 10.1832 + 7.39850i 0.776459 + 0.564130i
\(173\) 7.84357 5.69869i 0.596335 0.433263i −0.248241 0.968698i \(-0.579852\pi\)
0.844576 + 0.535435i \(0.179852\pi\)
\(174\) 0 0
\(175\) −2.45732 −0.185756
\(176\) −12.1317 + 4.94907i −0.914464 + 0.373050i
\(177\) 0 0
\(178\) 0.132067 0.406459i 0.00989882 0.0304654i
\(179\) 14.6904 10.6732i 1.09801 0.797751i 0.117276 0.993099i \(-0.462584\pi\)
0.980734 + 0.195348i \(0.0625837\pi\)
\(180\) 0 0
\(181\) −1.36254 4.19346i −0.101277 0.311697i 0.887562 0.460688i \(-0.152397\pi\)
−0.988839 + 0.148991i \(0.952397\pi\)
\(182\) 0.0223264 + 0.0687137i 0.00165495 + 0.00509340i
\(183\) 0 0
\(184\) −1.35749 + 0.986274i −0.100075 + 0.0727091i
\(185\) 0.706250 2.17361i 0.0519245 0.159807i
\(186\) 0 0
\(187\) 11.2555 4.59161i 0.823082 0.335772i
\(188\) −2.91363 −0.212498
\(189\) 0 0
\(190\) −0.0397917 + 0.0289104i −0.00288679 + 0.00209738i
\(191\) 9.93939 + 7.22139i 0.719189 + 0.522521i 0.886125 0.463446i \(-0.153387\pi\)
−0.166936 + 0.985968i \(0.553387\pi\)
\(192\) 0 0
\(193\) 7.19896 + 22.1561i 0.518193 + 1.59483i 0.777397 + 0.629010i \(0.216540\pi\)
−0.259204 + 0.965823i \(0.583460\pi\)
\(194\) 0.809313 + 0.588000i 0.0581053 + 0.0422160i
\(195\) 0 0
\(196\) 0.591830 1.82146i 0.0422736 0.130105i
\(197\) −19.6929 −1.40306 −0.701532 0.712638i \(-0.747500\pi\)
−0.701532 + 0.712638i \(0.747500\pi\)
\(198\) 0 0
\(199\) 22.2083 1.57431 0.787154 0.616757i \(-0.211554\pi\)
0.787154 + 0.616757i \(0.211554\pi\)
\(200\) 0.112101 0.345011i 0.00792672 0.0243959i
\(201\) 0 0
\(202\) −0.493444 0.358508i −0.0347186 0.0252245i
\(203\) 1.12073 + 3.44927i 0.0786601 + 0.242091i
\(204\) 0 0
\(205\) 7.26541 + 5.27863i 0.507438 + 0.368676i
\(206\) 1.14720 0.833488i 0.0799291 0.0580719i
\(207\) 0 0
\(208\) 1.27810 0.0886203
\(209\) −1.15843 1.37117i −0.0801303 0.0948458i
\(210\) 0 0
\(211\) −4.01468 + 12.3559i −0.276382 + 0.850616i 0.712469 + 0.701704i \(0.247577\pi\)
−0.988850 + 0.148912i \(0.952423\pi\)
\(212\) 16.6443 12.0928i 1.14314 0.830537i
\(213\) 0 0
\(214\) −0.252304 0.776510i −0.0172471 0.0530812i
\(215\) −1.95288 6.01033i −0.133185 0.409901i
\(216\) 0 0
\(217\) 1.77118 1.28684i 0.120235 0.0873561i
\(218\) 0.302415 0.930736i 0.0204821 0.0630374i
\(219\) 0 0
\(220\) 6.41497 + 1.57653i 0.432498 + 0.106290i
\(221\) −1.18578 −0.0797645
\(222\) 0 0
\(223\) 18.3008 13.2963i 1.22551 0.890387i 0.228968 0.973434i \(-0.426465\pi\)
0.996546 + 0.0830466i \(0.0264650\pi\)
\(224\) −2.15610 1.56650i −0.144061 0.104666i
\(225\) 0 0
\(226\) 0.558712 + 1.71954i 0.0371650 + 0.114382i
\(227\) 12.7278 + 9.24727i 0.844772 + 0.613763i 0.923700 0.383118i \(-0.125150\pi\)
−0.0789276 + 0.996880i \(0.525150\pi\)
\(228\) 0 0
\(229\) −7.50944 + 23.1117i −0.496238 + 1.52726i 0.318781 + 0.947828i \(0.396727\pi\)
−0.815019 + 0.579434i \(0.803273\pi\)
\(230\) 0.420355 0.0277174
\(231\) 0 0
\(232\) −0.535408 −0.0351513
\(233\) 1.65556 5.09529i 0.108459 0.333804i −0.882067 0.471123i \(-0.843849\pi\)
0.990527 + 0.137319i \(0.0438487\pi\)
\(234\) 0 0
\(235\) 1.18347 + 0.859844i 0.0772013 + 0.0560901i
\(236\) 3.87340 + 11.9211i 0.252137 + 0.775997i
\(237\) 0 0
\(238\) 0.662183 + 0.481104i 0.0429230 + 0.0311854i
\(239\) 0.745637 0.541737i 0.0482312 0.0350420i −0.563408 0.826179i \(-0.690510\pi\)
0.611640 + 0.791136i \(0.290510\pi\)
\(240\) 0 0
\(241\) 11.4029 0.734523 0.367262 0.930118i \(-0.380295\pi\)
0.367262 + 0.930118i \(0.380295\pi\)
\(242\) 0.166964 0.985628i 0.0107328 0.0633586i
\(243\) 0 0
\(244\) 3.98549 12.2661i 0.255145 0.785255i
\(245\) −0.777928 + 0.565198i −0.0497000 + 0.0361091i
\(246\) 0 0
\(247\) 0.0541084 + 0.166528i 0.00344283 + 0.0105959i
\(248\) 0.0998738 + 0.307380i 0.00634199 + 0.0195186i
\(249\) 0 0
\(250\) −0.0735227 + 0.0534174i −0.00464999 + 0.00337841i
\(251\) 0.274926 0.846135i 0.0173532 0.0534076i −0.942005 0.335599i \(-0.891061\pi\)
0.959358 + 0.282191i \(0.0910613\pi\)
\(252\) 0 0
\(253\) 1.12159 + 15.2998i 0.0705140 + 0.961888i
\(254\) 1.10056 0.0690551
\(255\) 0 0
\(256\) −12.4130 + 9.01860i −0.775815 + 0.563663i
\(257\) −12.9545 9.41196i −0.808077 0.587102i 0.105196 0.994452i \(-0.466453\pi\)
−0.913272 + 0.407349i \(0.866453\pi\)
\(258\) 0 0
\(259\) 1.73548 + 5.34127i 0.107838 + 0.331890i
\(260\) −0.521317 0.378759i −0.0323307 0.0234896i
\(261\) 0 0
\(262\) 0.525275 1.61663i 0.0324516 0.0998757i
\(263\) −21.2954 −1.31313 −0.656565 0.754269i \(-0.727991\pi\)
−0.656565 + 0.754269i \(0.727991\pi\)
\(264\) 0 0
\(265\) −10.3294 −0.634531
\(266\) 0.0373490 0.114948i 0.00229001 0.00704794i
\(267\) 0 0
\(268\) −11.3703 8.26097i −0.694549 0.504619i
\(269\) 9.35808 + 28.8012i 0.570572 + 1.75604i 0.650783 + 0.759264i \(0.274441\pi\)
−0.0802108 + 0.996778i \(0.525559\pi\)
\(270\) 0 0
\(271\) −4.86915 3.53764i −0.295780 0.214897i 0.429991 0.902833i \(-0.358517\pi\)
−0.725771 + 0.687937i \(0.758517\pi\)
\(272\) 11.7140 8.51073i 0.710267 0.516039i
\(273\) 0 0
\(274\) −1.43456 −0.0866651
\(275\) −2.14042 2.53350i −0.129072 0.152776i
\(276\) 0 0
\(277\) −8.66386 + 26.6646i −0.520561 + 1.60212i 0.252369 + 0.967631i \(0.418790\pi\)
−0.772930 + 0.634491i \(0.781210\pi\)
\(278\) 1.01723 0.739059i 0.0610093 0.0443258i
\(279\) 0 0
\(280\) 0.275468 + 0.847802i 0.0164623 + 0.0506659i
\(281\) −8.10523 24.9453i −0.483517 1.48811i −0.834117 0.551588i \(-0.814022\pi\)
0.350599 0.936526i \(-0.385978\pi\)
\(282\) 0 0
\(283\) −10.0324 + 7.28897i −0.596365 + 0.433284i −0.844587 0.535419i \(-0.820154\pi\)
0.248222 + 0.968703i \(0.420154\pi\)
\(284\) −5.73502 + 17.6506i −0.340311 + 1.04737i
\(285\) 0 0
\(286\) −0.0513966 + 0.0828708i −0.00303915 + 0.00490025i
\(287\) −22.0681 −1.30264
\(288\) 0 0
\(289\) 2.88536 2.09634i 0.169727 0.123314i
\(290\) 0.108513 + 0.0788390i 0.00637208 + 0.00462959i
\(291\) 0 0
\(292\) −3.81183 11.7316i −0.223071 0.686540i
\(293\) 24.0919 + 17.5038i 1.40746 + 1.02258i 0.993685 + 0.112202i \(0.0357902\pi\)
0.413776 + 0.910379i \(0.364210\pi\)
\(294\) 0 0
\(295\) 1.94473 5.98526i 0.113227 0.348475i
\(296\) −0.829091 −0.0481899
\(297\) 0 0
\(298\) 0.821359 0.0475801
\(299\) 0.462430 1.42321i 0.0267430 0.0823065i
\(300\) 0 0
\(301\) 12.5635 + 9.12794i 0.724150 + 0.526126i
\(302\) 0.248578 + 0.765046i 0.0143041 + 0.0440234i
\(303\) 0 0
\(304\) −1.72974 1.25673i −0.0992077 0.0720786i
\(305\) −5.23871 + 3.80614i −0.299967 + 0.217939i
\(306\) 0 0
\(307\) 13.5474 0.773194 0.386597 0.922249i \(-0.373650\pi\)
0.386597 + 0.922249i \(0.373650\pi\)
\(308\) −15.0302 + 6.13148i −0.856423 + 0.349373i
\(309\) 0 0
\(310\) 0.0250201 0.0770039i 0.00142105 0.00437353i
\(311\) 7.08052 5.14430i 0.401499 0.291706i −0.368652 0.929567i \(-0.620181\pi\)
0.770151 + 0.637861i \(0.220181\pi\)
\(312\) 0 0
\(313\) 5.00966 + 15.4181i 0.283162 + 0.871484i 0.986943 + 0.161067i \(0.0514936\pi\)
−0.703781 + 0.710417i \(0.748506\pi\)
\(314\) −0.329672 1.01463i −0.0186045 0.0572586i
\(315\) 0 0
\(316\) 18.6996 13.5861i 1.05193 0.764275i
\(317\) 1.81782 5.59467i 0.102099 0.314228i −0.886940 0.461885i \(-0.847173\pi\)
0.989039 + 0.147657i \(0.0471732\pi\)
\(318\) 0 0
\(319\) −2.57999 + 4.15992i −0.144452 + 0.232911i
\(320\) 7.80247 0.436171
\(321\) 0 0
\(322\) −0.835672 + 0.607152i −0.0465702 + 0.0338352i
\(323\) 1.60481 + 1.16596i 0.0892939 + 0.0648758i
\(324\) 0 0
\(325\) 0.0999755 + 0.307693i 0.00554564 + 0.0170677i
\(326\) 0.560256 + 0.407050i 0.0310297 + 0.0225444i
\(327\) 0 0
\(328\) 1.00673 3.09838i 0.0555871 0.171080i
\(329\) −3.59470 −0.198182
\(330\) 0 0
\(331\) 13.4772 0.740775 0.370387 0.928877i \(-0.379225\pi\)
0.370387 + 0.928877i \(0.379225\pi\)
\(332\) 10.6934 32.9109i 0.586877 1.80622i
\(333\) 0 0
\(334\) −0.743848 0.540437i −0.0407016 0.0295714i
\(335\) 2.18053 + 6.71098i 0.119135 + 0.366660i
\(336\) 0 0
\(337\) 12.2650 + 8.91103i 0.668116 + 0.485415i 0.869394 0.494119i \(-0.164509\pi\)
−0.201278 + 0.979534i \(0.564509\pi\)
\(338\) −0.948100 + 0.688835i −0.0515698 + 0.0374677i
\(339\) 0 0
\(340\) −7.30008 −0.395902
\(341\) 2.86949 + 0.705200i 0.155392 + 0.0381887i
\(342\) 0 0
\(343\) 6.04565 18.6066i 0.326435 1.00466i
\(344\) −1.85471 + 1.34753i −0.0999993 + 0.0726537i
\(345\) 0 0
\(346\) 0.272272 + 0.837966i 0.0146374 + 0.0450493i
\(347\) −5.36400 16.5087i −0.287955 0.886233i −0.985497 0.169690i \(-0.945723\pi\)
0.697543 0.716543i \(-0.254277\pi\)
\(348\) 0 0
\(349\) 3.95801 2.87566i 0.211867 0.153931i −0.476791 0.879017i \(-0.658200\pi\)
0.688658 + 0.725086i \(0.258200\pi\)
\(350\) 0.0690094 0.212389i 0.00368871 0.0113527i
\(351\) 0 0
\(352\) −0.262986 3.58742i −0.0140172 0.191210i
\(353\) −9.32665 −0.496408 −0.248204 0.968708i \(-0.579840\pi\)
−0.248204 + 0.968708i \(0.579840\pi\)
\(354\) 0 0
\(355\) 7.53836 5.47694i 0.400095 0.290686i
\(356\) −7.57770 5.50552i −0.401617 0.291792i
\(357\) 0 0
\(358\) 0.509943 + 1.56944i 0.0269513 + 0.0829477i
\(359\) 23.4423 + 17.0318i 1.23724 + 0.898904i 0.997411 0.0719119i \(-0.0229101\pi\)
0.239825 + 0.970816i \(0.422910\pi\)
\(360\) 0 0
\(361\) −5.78081 + 17.7915i −0.304253 + 0.936394i
\(362\) 0.400710 0.0210608
\(363\) 0 0
\(364\) 1.58346 0.0829956
\(365\) −1.91382 + 5.89013i −0.100174 + 0.308303i
\(366\) 0 0
\(367\) 11.2839 + 8.19820i 0.589013 + 0.427943i 0.841962 0.539537i \(-0.181401\pi\)
−0.252949 + 0.967480i \(0.581401\pi\)
\(368\) 5.64662 + 17.3785i 0.294350 + 0.905917i
\(369\) 0 0
\(370\) 0.168034 + 0.122084i 0.00873568 + 0.00634684i
\(371\) 20.5350 14.9196i 1.06612 0.774585i
\(372\) 0 0
\(373\) −22.0121 −1.13974 −0.569871 0.821734i \(-0.693007\pi\)
−0.569871 + 0.821734i \(0.693007\pi\)
\(374\) 0.0807685 + 1.10177i 0.00417644 + 0.0569712i
\(375\) 0 0
\(376\) 0.163987 0.504701i 0.00845699 0.0260279i
\(377\) 0.386302 0.280665i 0.0198956 0.0144550i
\(378\) 0 0
\(379\) −0.585450 1.80183i −0.0300726 0.0925538i 0.934894 0.354928i \(-0.115495\pi\)
−0.964966 + 0.262374i \(0.915495\pi\)
\(380\) 0.333109 + 1.02520i 0.0170881 + 0.0525918i
\(381\) 0 0
\(382\) −0.903283 + 0.656273i −0.0462160 + 0.0335779i
\(383\) −0.296274 + 0.911838i −0.0151389 + 0.0465928i −0.958341 0.285628i \(-0.907798\pi\)
0.943202 + 0.332221i \(0.107798\pi\)
\(384\) 0 0
\(385\) 7.91451 + 1.94505i 0.403361 + 0.0991292i
\(386\) −2.11715 −0.107760
\(387\) 0 0
\(388\) 17.7372 12.8868i 0.900471 0.654230i
\(389\) −5.28186 3.83750i −0.267801 0.194569i 0.445778 0.895143i \(-0.352927\pi\)
−0.713579 + 0.700575i \(0.752927\pi\)
\(390\) 0 0
\(391\) −5.23877 16.1233i −0.264936 0.815389i
\(392\) 0.282206 + 0.205034i 0.0142535 + 0.0103558i
\(393\) 0 0
\(394\) 0.553040 1.70208i 0.0278618 0.0857497i
\(395\) −11.6049 −0.583907
\(396\) 0 0
\(397\) −21.3621 −1.07213 −0.536066 0.844176i \(-0.680090\pi\)
−0.536066 + 0.844176i \(0.680090\pi\)
\(398\) −0.623681 + 1.91949i −0.0312623 + 0.0962155i
\(399\) 0 0
\(400\) −3.19603 2.32205i −0.159802 0.116103i
\(401\) −3.90987 12.0334i −0.195250 0.600917i −0.999974 0.00726766i \(-0.997687\pi\)
0.804724 0.593649i \(-0.202313\pi\)
\(402\) 0 0
\(403\) −0.233191 0.169423i −0.0116161 0.00843956i
\(404\) −10.8145 + 7.85719i −0.538042 + 0.390910i
\(405\) 0 0
\(406\) −0.329598 −0.0163577
\(407\) −3.99517 + 6.44173i −0.198033 + 0.319305i
\(408\) 0 0
\(409\) 1.54745 4.76256i 0.0765164 0.235493i −0.905481 0.424386i \(-0.860490\pi\)
0.981998 + 0.188893i \(0.0604899\pi\)
\(410\) −0.660274 + 0.479717i −0.0326086 + 0.0236915i
\(411\) 0 0
\(412\) −9.60355 29.5567i −0.473133 1.45615i
\(413\) 4.77883 + 14.7077i 0.235151 + 0.723719i
\(414\) 0 0
\(415\) −14.0559 + 10.2122i −0.689977 + 0.501297i
\(416\) −0.108428 + 0.333709i −0.00531614 + 0.0163614i
\(417\) 0 0
\(418\) 0.151044 0.0616176i 0.00738781 0.00301382i
\(419\) 9.31728 0.455179 0.227589 0.973757i \(-0.426916\pi\)
0.227589 + 0.973757i \(0.426916\pi\)
\(420\) 0 0
\(421\) −19.1562 + 13.9178i −0.933617 + 0.678313i −0.946876 0.321600i \(-0.895780\pi\)
0.0132587 + 0.999912i \(0.495780\pi\)
\(422\) −0.955191 0.693987i −0.0464980 0.0337827i
\(423\) 0 0
\(424\) 1.15794 + 3.56376i 0.0562343 + 0.173071i
\(425\) 2.96519 + 2.15434i 0.143833 + 0.104501i
\(426\) 0 0
\(427\) 4.91712 15.1333i 0.237956 0.732353i
\(428\) −17.8941 −0.864944
\(429\) 0 0
\(430\) 0.574323 0.0276963
\(431\) 7.94388 24.4488i 0.382643 1.17765i −0.555532 0.831495i \(-0.687485\pi\)
0.938176 0.346160i \(-0.112515\pi\)
\(432\) 0 0
\(433\) −16.0949 11.6937i −0.773474 0.561962i 0.129539 0.991574i \(-0.458650\pi\)
−0.903013 + 0.429613i \(0.858650\pi\)
\(434\) 0.0614824 + 0.189223i 0.00295125 + 0.00908302i
\(435\) 0 0
\(436\) −17.3519 12.6069i −0.831005 0.603761i
\(437\) −2.02526 + 1.47144i −0.0968814 + 0.0703884i
\(438\) 0 0
\(439\) −2.83831 −0.135465 −0.0677327 0.997704i \(-0.521577\pi\)
−0.0677327 + 0.997704i \(0.521577\pi\)
\(440\) −0.634141 + 1.02247i −0.0302315 + 0.0487446i
\(441\) 0 0
\(442\) 0.0333006 0.102489i 0.00158395 0.00487489i
\(443\) −21.9190 + 15.9251i −1.04141 + 0.756625i −0.970559 0.240862i \(-0.922570\pi\)
−0.0708460 + 0.997487i \(0.522570\pi\)
\(444\) 0 0
\(445\) 1.45321 + 4.47253i 0.0688889 + 0.212018i
\(446\) 0.635271 + 1.95516i 0.0300810 + 0.0925797i
\(447\) 0 0
\(448\) −15.5114 + 11.2697i −0.732846 + 0.532443i
\(449\) 8.08057 24.8694i 0.381346 1.17366i −0.557751 0.830009i \(-0.688335\pi\)
0.939097 0.343653i \(-0.111665\pi\)
\(450\) 0 0
\(451\) −19.2221 22.7522i −0.905135 1.07136i
\(452\) 39.6255 1.86383
\(453\) 0 0
\(454\) −1.15669 + 0.840383i −0.0542861 + 0.0394412i
\(455\) −0.643177 0.467296i −0.0301526 0.0219072i
\(456\) 0 0
\(457\) −4.35548 13.4048i −0.203741 0.627050i −0.999763 0.0217820i \(-0.993066\pi\)
0.796022 0.605268i \(-0.206934\pi\)
\(458\) −1.78668 1.29810i −0.0834861 0.0606562i
\(459\) 0 0
\(460\) 2.84687 8.76177i 0.132736 0.408519i
\(461\) 0.212479 0.00989612 0.00494806 0.999988i \(-0.498425\pi\)
0.00494806 + 0.999988i \(0.498425\pi\)
\(462\) 0 0
\(463\) −9.01059 −0.418758 −0.209379 0.977835i \(-0.567144\pi\)
−0.209379 + 0.977835i \(0.567144\pi\)
\(464\) −1.80175 + 5.54522i −0.0836441 + 0.257430i
\(465\) 0 0
\(466\) 0.393899 + 0.286184i 0.0182470 + 0.0132572i
\(467\) −1.83401 5.64451i −0.0848679 0.261197i 0.899613 0.436688i \(-0.143849\pi\)
−0.984481 + 0.175491i \(0.943849\pi\)
\(468\) 0 0
\(469\) −14.0281 10.1920i −0.647758 0.470624i
\(470\) −0.107553 + 0.0781419i −0.00496105 + 0.00360442i
\(471\) 0 0
\(472\) −2.28299 −0.105083
\(473\) 1.53241 + 20.9038i 0.0704604 + 0.961156i
\(474\) 0 0
\(475\) 0.167245 0.514727i 0.00767373 0.0236173i
\(476\) 14.5127 10.5441i 0.665187 0.483286i
\(477\) 0 0
\(478\) 0.0258831 + 0.0796599i 0.00118386 + 0.00364356i
\(479\) −9.48284 29.1852i −0.433282 1.33351i −0.894837 0.446394i \(-0.852708\pi\)
0.461555 0.887112i \(-0.347292\pi\)
\(480\) 0 0
\(481\) 0.598198 0.434616i 0.0272755 0.0198168i
\(482\) −0.320229 + 0.985563i −0.0145860 + 0.0448912i
\(483\) 0 0
\(484\) −19.4134 10.1553i −0.882427 0.461607i
\(485\) −11.0077 −0.499832
\(486\) 0 0
\(487\) −32.3998 + 23.5398i −1.46818 + 1.06669i −0.487038 + 0.873381i \(0.661923\pi\)
−0.981138 + 0.193311i \(0.938077\pi\)
\(488\) 1.90042 + 1.38074i 0.0860281 + 0.0625031i
\(489\) 0 0
\(490\) −0.0270040 0.0831097i −0.00121992 0.00375452i
\(491\) 15.7927 + 11.4740i 0.712713 + 0.517816i 0.884048 0.467397i \(-0.154808\pi\)
−0.171335 + 0.985213i \(0.554808\pi\)
\(492\) 0 0
\(493\) 1.67161 5.14469i 0.0752856 0.231705i
\(494\) −0.0159128 −0.000715950
\(495\) 0 0
\(496\) 3.51962 0.158036
\(497\) −7.07561 + 21.7765i −0.317384 + 0.976809i
\(498\) 0 0
\(499\) −7.50690 5.45408i −0.336055 0.244158i 0.406941 0.913455i \(-0.366596\pi\)
−0.742995 + 0.669296i \(0.766596\pi\)
\(500\) 0.615482 + 1.89426i 0.0275252 + 0.0847138i
\(501\) 0 0
\(502\) 0.0654117 + 0.0475243i 0.00291946 + 0.00212112i
\(503\) −15.7812 + 11.4657i −0.703651 + 0.511232i −0.881119 0.472894i \(-0.843209\pi\)
0.177468 + 0.984126i \(0.443209\pi\)
\(504\) 0 0
\(505\) 6.71144 0.298655
\(506\) −1.35387 0.332726i −0.0601871 0.0147915i
\(507\) 0 0
\(508\) 7.45356 22.9397i 0.330698 1.01779i
\(509\) 8.55440 6.21513i 0.379167 0.275481i −0.381835 0.924231i \(-0.624708\pi\)
0.761002 + 0.648750i \(0.224708\pi\)
\(510\) 0 0
\(511\) −4.70287 14.4739i −0.208043 0.640289i
\(512\) −2.20971 6.80077i −0.0976561 0.300555i
\(513\) 0 0
\(514\) 1.17729 0.855351i 0.0519280 0.0377279i
\(515\) −4.82169 + 14.8396i −0.212469 + 0.653912i
\(516\) 0 0
\(517\) −3.13112 3.70614i −0.137707 0.162996i
\(518\) −0.510390 −0.0224252
\(519\) 0 0
\(520\) 0.0949500 0.0689852i 0.00416383 0.00302520i
\(521\) −6.77644 4.92337i −0.296881 0.215697i 0.429366 0.903131i \(-0.358737\pi\)
−0.726247 + 0.687434i \(0.758737\pi\)
\(522\) 0 0
\(523\) 10.6523 + 32.7846i 0.465795 + 1.43357i 0.857980 + 0.513683i \(0.171719\pi\)
−0.392186 + 0.919886i \(0.628281\pi\)
\(524\) −30.1391 21.8974i −1.31663 0.956591i
\(525\) 0 0
\(526\) 0.598043 1.84059i 0.0260759 0.0802534i
\(527\) −3.26541 −0.142243
\(528\) 0 0
\(529\) −1.60536 −0.0697983
\(530\) 0.290083 0.892783i 0.0126004 0.0387800i
\(531\) 0 0
\(532\) −2.14301 1.55698i −0.0929111 0.0675038i
\(533\) 0.897834 + 2.76325i 0.0388895 + 0.119690i
\(534\) 0 0
\(535\) 7.26833 + 5.28075i 0.314237 + 0.228307i
\(536\) 2.07092 1.50461i 0.0894502 0.0649894i
\(537\) 0 0
\(538\) −2.75213 −0.118653
\(539\) 2.95291 1.20462i 0.127191 0.0518869i
\(540\) 0 0
\(541\) −7.43553 + 22.8842i −0.319678 + 0.983868i 0.654108 + 0.756402i \(0.273044\pi\)
−0.973786 + 0.227467i \(0.926956\pi\)
\(542\) 0.442504 0.321498i 0.0190072 0.0138095i
\(543\) 0 0
\(544\) 1.22836 + 3.78051i 0.0526656 + 0.162088i
\(545\) 3.32766 + 10.2415i 0.142541 + 0.438697i
\(546\) 0 0
\(547\) 17.9233 13.0220i 0.766343 0.556781i −0.134506 0.990913i \(-0.542945\pi\)
0.900849 + 0.434132i \(0.142945\pi\)
\(548\) −9.71563 + 29.9016i −0.415031 + 1.27733i
\(549\) 0 0
\(550\) 0.279083 0.113850i 0.0119001 0.00485459i
\(551\) −0.798784 −0.0340293
\(552\) 0 0
\(553\) 23.0707 16.7619i 0.981068 0.712787i
\(554\) −2.06135 1.49766i −0.0875782 0.0636293i
\(555\) 0 0
\(556\) −8.51553 26.2081i −0.361139 1.11147i
\(557\) −6.22550 4.52309i −0.263783 0.191649i 0.448030 0.894018i \(-0.352126\pi\)
−0.711813 + 0.702369i \(0.752126\pi\)
\(558\) 0 0
\(559\) 0.631809 1.94451i 0.0267227 0.0822439i
\(560\) 9.70768 0.410224
\(561\) 0 0
\(562\) 2.38367 0.100549
\(563\) −10.0877 + 31.0469i −0.425148 + 1.30847i 0.477705 + 0.878520i \(0.341469\pi\)
−0.902853 + 0.429950i \(0.858531\pi\)
\(564\) 0 0
\(565\) −16.0953 11.6939i −0.677135 0.491967i
\(566\) −0.348252 1.07181i −0.0146381 0.0450515i
\(567\) 0 0
\(568\) −2.73466 1.98685i −0.114744 0.0833662i
\(569\) 13.2440 9.62230i 0.555215 0.403388i −0.274489 0.961590i \(-0.588509\pi\)
0.829705 + 0.558203i \(0.188509\pi\)
\(570\) 0 0
\(571\) 14.2204 0.595107 0.297554 0.954705i \(-0.403829\pi\)
0.297554 + 0.954705i \(0.403829\pi\)
\(572\) 1.37925 + 1.63254i 0.0576693 + 0.0682600i
\(573\) 0 0
\(574\) 0.619742 1.90737i 0.0258675 0.0796121i
\(575\) −3.74205 + 2.71876i −0.156054 + 0.113380i
\(576\) 0 0
\(577\) 6.75349 + 20.7851i 0.281151 + 0.865295i 0.987526 + 0.157457i \(0.0503295\pi\)
−0.706374 + 0.707838i \(0.749671\pi\)
\(578\) 0.100159 + 0.308257i 0.00416605 + 0.0128218i
\(579\) 0 0
\(580\) 2.37820 1.72787i 0.0987495 0.0717457i
\(581\) 13.1930 40.6040i 0.547340 1.68454i
\(582\) 0 0
\(583\) 33.2688 + 8.17608i 1.37785 + 0.338619i
\(584\) 2.24670 0.0929690
\(585\) 0 0
\(586\) −2.18945 + 1.59073i −0.0904452 + 0.0657123i
\(587\) 31.1788 + 22.6527i 1.28689 + 0.934977i 0.999738 0.0229093i \(-0.00729289\pi\)
0.287148 + 0.957886i \(0.407293\pi\)
\(588\) 0 0
\(589\) 0.149003 + 0.458585i 0.00613957 + 0.0188957i
\(590\) 0.462699 + 0.336170i 0.0190490 + 0.0138399i
\(591\) 0 0
\(592\) −2.79005 + 8.58689i −0.114670 + 0.352919i
\(593\) 30.7989 1.26476 0.632379 0.774659i \(-0.282079\pi\)
0.632379 + 0.774659i \(0.282079\pi\)
\(594\) 0 0
\(595\) −9.00651 −0.369231
\(596\) 5.56268 17.1202i 0.227856 0.701270i
\(597\) 0 0
\(598\) 0.110023 + 0.0799367i 0.00449919 + 0.00326886i
\(599\) −11.6618 35.8914i −0.476489 1.46648i −0.843939 0.536439i \(-0.819769\pi\)
0.367451 0.930043i \(-0.380231\pi\)
\(600\) 0 0
\(601\) 18.5724 + 13.4937i 0.757585 + 0.550417i 0.898169 0.439651i \(-0.144898\pi\)
−0.140584 + 0.990069i \(0.544898\pi\)
\(602\) −1.14176 + 0.829539i −0.0465348 + 0.0338095i
\(603\) 0 0
\(604\) 17.6299 0.717351
\(605\) 4.88849 + 9.85407i 0.198745 + 0.400625i
\(606\) 0 0
\(607\) 3.47703 10.7012i 0.141128 0.434348i −0.855365 0.518027i \(-0.826667\pi\)
0.996493 + 0.0836784i \(0.0266668\pi\)
\(608\) 0.474874 0.345016i 0.0192587 0.0139923i
\(609\) 0 0
\(610\) −0.181850 0.559676i −0.00736288 0.0226606i
\(611\) 0.146250 + 0.450110i 0.00591662 + 0.0182095i
\(612\) 0 0
\(613\) −36.2214 + 26.3164i −1.46297 + 1.06291i −0.480390 + 0.877055i \(0.659505\pi\)
−0.982578 + 0.185853i \(0.940495\pi\)
\(614\) −0.380455 + 1.17092i −0.0153539 + 0.0472545i
\(615\) 0 0
\(616\) −0.216158 2.94863i −0.00870926 0.118804i
\(617\) −16.4108 −0.660673 −0.330337 0.943863i \(-0.607162\pi\)
−0.330337 + 0.943863i \(0.607162\pi\)
\(618\) 0 0
\(619\) −1.21920 + 0.885800i −0.0490037 + 0.0356033i −0.612017 0.790844i \(-0.709642\pi\)
0.563014 + 0.826448i \(0.309642\pi\)
\(620\) −1.43560 1.04302i −0.0576550 0.0418888i
\(621\) 0 0
\(622\) 0.245784 + 0.756446i 0.00985505 + 0.0303307i
\(623\) −9.34903 6.79247i −0.374561 0.272134i
\(624\) 0 0
\(625\) 0.309017 0.951057i 0.0123607 0.0380423i
\(626\) −1.47329 −0.0588847
\(627\) 0 0
\(628\) −23.3813 −0.933015
\(629\) 2.58853 7.96667i 0.103211 0.317652i
\(630\) 0 0
\(631\) 26.9869 + 19.6071i 1.07433 + 0.780548i 0.976686 0.214674i \(-0.0688688\pi\)
0.0976458 + 0.995221i \(0.468869\pi\)
\(632\) 1.30092 + 4.00382i 0.0517478 + 0.159263i
\(633\) 0 0
\(634\) 0.432504 + 0.314232i 0.0171769 + 0.0124798i
\(635\) −9.79730 + 7.11816i −0.388794 + 0.282475i
\(636\) 0 0
\(637\) −0.311095 −0.0123260
\(638\) −0.287092 0.339815i −0.0113661 0.0134534i
\(639\) 0 0
\(640\) −0.889407 + 2.73731i −0.0351569 + 0.108202i
\(641\) 6.96411 5.05972i 0.275066 0.199847i −0.441697 0.897164i \(-0.645623\pi\)
0.716762 + 0.697318i \(0.245623\pi\)
\(642\) 0 0
\(643\) −3.66045 11.2657i −0.144354 0.444276i 0.852573 0.522608i \(-0.175041\pi\)
−0.996927 + 0.0783317i \(0.975041\pi\)
\(644\) 6.99568 + 21.5305i 0.275668 + 0.848420i
\(645\) 0 0
\(646\) −0.145843 + 0.105961i −0.00573813 + 0.00416900i
\(647\) 6.86541 21.1295i 0.269907 0.830688i −0.720615 0.693335i \(-0.756141\pi\)
0.990522 0.137353i \(-0.0438595\pi\)
\(648\) 0 0
\(649\) −11.0011 + 17.7379i −0.431831 + 0.696275i
\(650\) −0.0294019 −0.00115324
\(651\) 0 0
\(652\) 12.2788 8.92107i 0.480875 0.349376i
\(653\) 5.54195 + 4.02646i 0.216873 + 0.157568i 0.690918 0.722933i \(-0.257207\pi\)
−0.474045 + 0.880501i \(0.657207\pi\)
\(654\) 0 0
\(655\) 5.77993 + 17.7888i 0.225841 + 0.695066i
\(656\) −28.7021 20.8533i −1.12063 0.814185i
\(657\) 0 0
\(658\) 0.100951 0.310694i 0.00393547 0.0121121i
\(659\) 10.7882 0.420248 0.210124 0.977675i \(-0.432613\pi\)
0.210124 + 0.977675i \(0.432613\pi\)
\(660\) 0 0
\(661\) 24.3271 0.946214 0.473107 0.881005i \(-0.343132\pi\)
0.473107 + 0.881005i \(0.343132\pi\)
\(662\) −0.378483 + 1.16485i −0.0147102 + 0.0452732i
\(663\) 0 0
\(664\) 5.09900 + 3.70464i 0.197880 + 0.143768i
\(665\) 0.410975 + 1.26485i 0.0159369 + 0.0490488i
\(666\) 0 0
\(667\) 5.52292 + 4.01263i 0.213848 + 0.155370i
\(668\) −16.3025 + 11.8444i −0.630761 + 0.458275i
\(669\) 0 0
\(670\) −0.641274 −0.0247746
\(671\) 19.8855 8.11216i 0.767669 0.313167i
\(672\) 0 0
\(673\) 10.5821 32.5684i 0.407910 1.25542i −0.510530 0.859860i \(-0.670551\pi\)
0.918441 0.395559i \(-0.129449\pi\)
\(674\) −1.11463 + 0.809826i −0.0429340 + 0.0311933i
\(675\) 0 0
\(676\) 7.93684 + 24.4271i 0.305263 + 0.939503i
\(677\) 5.47487 + 16.8499i 0.210416 + 0.647595i 0.999447 + 0.0332415i \(0.0105831\pi\)
−0.789031 + 0.614353i \(0.789417\pi\)
\(678\) 0 0
\(679\) 21.8834 15.8992i 0.839807 0.610156i
\(680\) 0.410869 1.26452i 0.0157561 0.0484923i
\(681\) 0 0
\(682\) −0.141536 + 0.228209i −0.00541968 + 0.00873858i
\(683\) −19.2788 −0.737683 −0.368842 0.929492i \(-0.620246\pi\)
−0.368842 + 0.929492i \(0.620246\pi\)
\(684\) 0 0
\(685\) 12.7707 9.27843i 0.487942 0.354511i
\(686\) 1.43841 + 1.04507i 0.0549187 + 0.0399008i
\(687\) 0 0
\(688\) 7.71486 + 23.7439i 0.294126 + 0.905228i
\(689\) −2.70361 1.96429i −0.102999 0.0748334i
\(690\) 0 0
\(691\) −8.42752 + 25.9372i −0.320598 + 0.986699i 0.652791 + 0.757538i \(0.273598\pi\)
−0.973389 + 0.229161i \(0.926402\pi\)
\(692\) 19.3103 0.734067
\(693\) 0 0
\(694\) 1.57750 0.0598812
\(695\) −4.27542 + 13.1584i −0.162176 + 0.499126i
\(696\) 0 0
\(697\) 26.6290 + 19.3471i 1.00865 + 0.732824i
\(698\) 0.137393 + 0.422853i 0.00520041 + 0.0160052i
\(699\) 0 0
\(700\) −3.95961 2.87683i −0.149659 0.108734i
\(701\) −31.7252 + 23.0497i −1.19824 + 0.870574i −0.994111 0.108369i \(-0.965437\pi\)
−0.204132 + 0.978943i \(0.565437\pi\)
\(702\) 0 0
\(703\) −1.23693 −0.0466519
\(704\) −25.1301 6.17592i −0.947126 0.232764i
\(705\) 0 0
\(706\) 0.261922 0.806113i 0.00985757 0.0303385i
\(707\) −13.3425 + 9.69386i −0.501794 + 0.364575i
\(708\) 0 0
\(709\) 8.72458 + 26.8515i 0.327658 + 1.00843i 0.970226 + 0.242200i \(0.0778691\pi\)
−0.642568 + 0.766229i \(0.722131\pi\)
\(710\) 0.261677 + 0.805359i 0.00982057 + 0.0302246i
\(711\) 0 0
\(712\) 1.38016 1.00275i 0.0517239 0.0375796i
\(713\) 1.27344 3.91924i 0.0476906 0.146777i
\(714\) 0 0
\(715\) −0.0784503 1.07015i −0.00293387 0.0400212i
\(716\) 36.1666 1.35161
\(717\) 0 0
\(718\) −2.13041 + 1.54784i −0.0795063 + 0.0577647i
\(719\) 34.1565 + 24.8162i 1.27382 + 0.925486i 0.999348 0.0361078i \(-0.0114960\pi\)
0.274475 + 0.961594i \(0.411496\pi\)
\(720\) 0 0
\(721\) −11.8484 36.4657i −0.441259 1.35806i
\(722\) −1.37540 0.999284i −0.0511869 0.0371895i
\(723\) 0 0
\(724\) 2.71382 8.35228i 0.100858 0.310410i
\(725\) −1.47591 −0.0548137
\(726\) 0 0
\(727\) 5.10543 0.189350 0.0946750 0.995508i \(-0.469819\pi\)
0.0946750 + 0.995508i \(0.469819\pi\)
\(728\) −0.0891214 + 0.274287i −0.00330306 + 0.0101658i
\(729\) 0 0
\(730\) −0.455344 0.330827i −0.0168531 0.0122445i
\(731\) −7.15763 22.0289i −0.264734 0.814769i
\(732\) 0 0
\(733\) 15.5996 + 11.3338i 0.576185 + 0.418623i 0.837347 0.546672i \(-0.184106\pi\)
−0.261162 + 0.965295i \(0.584106\pi\)
\(734\) −1.02547 + 0.745045i −0.0378507 + 0.0275001i
\(735\) 0 0
\(736\) −5.01652 −0.184911
\(737\) −1.71105 23.3406i −0.0630274 0.859762i
\(738\) 0 0
\(739\) −11.0939 + 34.1435i −0.408096 + 1.25599i 0.510187 + 0.860064i \(0.329576\pi\)
−0.918282 + 0.395926i \(0.870424\pi\)
\(740\) 3.68270 2.67564i 0.135379 0.0983584i
\(741\) 0 0
\(742\) 0.712826 + 2.19385i 0.0261687 + 0.0805389i
\(743\) −3.81228 11.7330i −0.139859 0.430442i 0.856455 0.516221i \(-0.172662\pi\)
−0.996314 + 0.0857798i \(0.972662\pi\)
\(744\) 0 0
\(745\) −7.31184 + 5.31236i −0.267885 + 0.194630i
\(746\) 0.618169 1.90253i 0.0226328 0.0696565i
\(747\) 0 0
\(748\) 23.5120 + 5.77826i 0.859684 + 0.211274i
\(749\) −22.0769 −0.806674
\(750\) 0 0
\(751\) −5.50024 + 3.99616i −0.200707 + 0.145822i −0.683599 0.729858i \(-0.739586\pi\)
0.482892 + 0.875680i \(0.339586\pi\)
\(752\) −4.67533 3.39683i −0.170492 0.123870i
\(753\) 0 0
\(754\) 0.0134096 + 0.0412705i 0.000488349 + 0.00150298i
\(755\) −7.16102 5.20278i −0.260616 0.189349i
\(756\) 0 0
\(757\) −3.16082 + 9.72801i −0.114882 + 0.353571i −0.991922 0.126846i \(-0.959515\pi\)
0.877040 + 0.480417i \(0.159515\pi\)
\(758\) 0.172176 0.00625370
\(759\) 0 0
\(760\) −0.196335 −0.00712181
\(761\) −7.57503 + 23.3136i −0.274595 + 0.845116i 0.714732 + 0.699399i \(0.246549\pi\)
−0.989326 + 0.145717i \(0.953451\pi\)
\(762\) 0 0
\(763\) −21.4080 15.5538i −0.775022 0.563086i
\(764\) 7.56166 + 23.2724i 0.273571 + 0.841966i
\(765\) 0 0
\(766\) −0.0704909 0.0512147i −0.00254694 0.00185046i
\(767\) 1.64720 1.19676i 0.0594768 0.0432125i
\(768\) 0 0
\(769\) 27.2852 0.983930 0.491965 0.870615i \(-0.336279\pi\)
0.491965 + 0.870615i \(0.336279\pi\)
\(770\) −0.390378 + 0.629437i −0.0140682 + 0.0226833i
\(771\) 0 0
\(772\) −14.3385 + 44.1293i −0.516053 + 1.58825i
\(773\) −7.01865 + 5.09935i −0.252443 + 0.183411i −0.706809 0.707404i \(-0.749866\pi\)
0.454366 + 0.890815i \(0.349866\pi\)
\(774\) 0 0
\(775\) 0.275312 + 0.847323i 0.00988950 + 0.0304367i
\(776\) 1.23397 + 3.79776i 0.0442968 + 0.136332i
\(777\) 0 0
\(778\) 0.480011 0.348748i 0.0172092 0.0125032i
\(779\) 1.50195 4.62253i 0.0538130 0.165619i
\(780\) 0 0
\(781\) −28.6147 + 11.6732i −1.02391 + 0.417700i
\(782\) 1.54067 0.0550944
\(783\) 0 0
\(784\) 3.07321 2.23282i 0.109758 0.0797436i
\(785\) 9.49715 + 6.90008i 0.338968