Properties

Label 495.2.n.h.181.2
Level $495$
Weight $2$
Character 495.181
Analytic conductor $3.953$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 495.n (of order \(5\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.95259490005\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \( x^{16} - 2 x^{15} + 5 x^{14} - 8 x^{13} + 47 x^{12} + 32 x^{11} + 171 x^{10} + 26 x^{9} + 360 x^{8} - 172 x^{7} + 471 x^{6} - 430 x^{5} + 383 x^{4} + 70 x^{3} + 17 x^{2} + 4 x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 181.2
Root \(-0.166559 + 0.121012i\) of defining polynomial
Character \(\chi\) \(=\) 495.181
Dual form 495.2.n.h.361.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.372637 - 1.14686i) q^{2} +(0.441609 - 0.320848i) q^{4} +(-0.309017 + 0.951057i) q^{5} +(-3.49122 + 2.53652i) q^{7} +(-2.48368 - 1.80450i) q^{8} +O(q^{10})\) \(q+(-0.372637 - 1.14686i) q^{2} +(0.441609 - 0.320848i) q^{4} +(-0.309017 + 0.951057i) q^{5} +(-3.49122 + 2.53652i) q^{7} +(-2.48368 - 1.80450i) q^{8} +1.20588 q^{10} +(-2.96210 + 1.49196i) q^{11} +(1.91048 + 5.87986i) q^{13} +(4.20999 + 3.05873i) q^{14} +(-0.806633 + 2.48256i) q^{16} +(0.248446 - 0.764638i) q^{17} +(1.51601 + 1.10144i) q^{19} +(0.168680 + 0.519143i) q^{20} +(2.81486 + 2.84115i) q^{22} -8.08431 q^{23} +(-0.809017 - 0.587785i) q^{25} +(6.03145 - 4.38210i) q^{26} +(-0.727918 + 2.24030i) q^{28} +(-0.857138 + 0.622747i) q^{29} +(-0.499089 - 1.53604i) q^{31} -2.99226 q^{32} -0.969511 q^{34} +(-1.33353 - 4.10418i) q^{35} +(4.48304 - 3.25712i) q^{37} +(0.698278 - 2.14908i) q^{38} +(2.48368 - 1.80450i) q^{40} +(4.08714 + 2.96948i) q^{41} -9.87101 q^{43} +(-0.829398 + 1.60925i) q^{44} +(3.01251 + 9.27156i) q^{46} +(10.5056 + 7.63280i) q^{47} +(3.59157 - 11.0537i) q^{49} +(-0.372637 + 1.14686i) q^{50} +(2.73023 + 1.98363i) q^{52} +(0.823336 + 2.53397i) q^{53} +(-0.503601 - 3.27817i) q^{55} +13.2482 q^{56} +(1.03360 + 0.750957i) q^{58} +(5.34734 - 3.88507i) q^{59} +(-1.65250 + 5.08587i) q^{61} +(-1.57564 + 1.14477i) q^{62} +(2.72829 + 8.39682i) q^{64} -6.18245 q^{65} -7.49018 q^{67} +(-0.135616 - 0.417384i) q^{68} +(-4.20999 + 3.05873i) q^{70} +(1.80140 - 5.54415i) q^{71} +(-3.88448 + 2.82224i) q^{73} +(-5.40600 - 3.92769i) q^{74} +1.02288 q^{76} +(6.55696 - 12.7222i) q^{77} +(-4.31076 - 13.2672i) q^{79} +(-2.11179 - 1.53431i) q^{80} +(1.88255 - 5.79391i) q^{82} +(-3.72575 + 11.4667i) q^{83} +(0.650440 + 0.472572i) q^{85} +(3.67830 + 11.3206i) q^{86} +(10.0491 + 1.63955i) q^{88} -12.7727 q^{89} +(-21.5843 - 15.6819i) q^{91} +(-3.57011 + 2.59383i) q^{92} +(4.83894 - 14.8927i) q^{94} +(-1.51601 + 1.10144i) q^{95} +(0.416434 + 1.28165i) q^{97} -14.0154 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2 q^{2} - 8 q^{4} + 4 q^{5} - 4 q^{7} + 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 16 q + 2 q^{2} - 8 q^{4} + 4 q^{5} - 4 q^{7} + 6 q^{8} + 8 q^{10} - 4 q^{11} + 2 q^{13} + 22 q^{14} + 8 q^{16} + 4 q^{17} - 4 q^{19} - 2 q^{20} - 28 q^{22} - 8 q^{23} - 4 q^{25} - 6 q^{26} - 2 q^{28} + 26 q^{29} - 10 q^{31} - 56 q^{32} - 4 q^{34} + 4 q^{35} + 22 q^{37} + 30 q^{38} - 6 q^{40} + 6 q^{41} + 28 q^{43} - 68 q^{44} + 16 q^{46} + 20 q^{47} + 10 q^{49} + 2 q^{50} + 30 q^{52} - 14 q^{53} - 6 q^{55} - 68 q^{56} - 6 q^{58} + 16 q^{59} - 38 q^{61} + 20 q^{62} + 10 q^{64} - 12 q^{65} + 20 q^{67} + 48 q^{68} - 22 q^{70} + 54 q^{71} + 2 q^{73} - 28 q^{74} - 44 q^{76} - 34 q^{77} - 12 q^{79} + 22 q^{80} + 30 q^{82} + 28 q^{83} - 4 q^{85} - 74 q^{86} + 46 q^{88} - 76 q^{89} - 34 q^{91} + 8 q^{92} - 10 q^{94} + 4 q^{95} - 18 q^{97} - 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(397\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.372637 1.14686i −0.263494 0.810951i −0.992037 0.125950i \(-0.959802\pi\)
0.728543 0.685001i \(-0.240198\pi\)
\(3\) 0 0
\(4\) 0.441609 0.320848i 0.220805 0.160424i
\(5\) −0.309017 + 0.951057i −0.138197 + 0.425325i
\(6\) 0 0
\(7\) −3.49122 + 2.53652i −1.31956 + 0.958715i −0.319620 + 0.947546i \(0.603555\pi\)
−0.999938 + 0.0111694i \(0.996445\pi\)
\(8\) −2.48368 1.80450i −0.878113 0.637986i
\(9\) 0 0
\(10\) 1.20588 0.381332
\(11\) −2.96210 + 1.49196i −0.893107 + 0.449844i
\(12\) 0 0
\(13\) 1.91048 + 5.87986i 0.529873 + 1.63078i 0.754474 + 0.656329i \(0.227892\pi\)
−0.224602 + 0.974451i \(0.572108\pi\)
\(14\) 4.20999 + 3.05873i 1.12517 + 0.817481i
\(15\) 0 0
\(16\) −0.806633 + 2.48256i −0.201658 + 0.620640i
\(17\) 0.248446 0.764638i 0.0602570 0.185452i −0.916397 0.400271i \(-0.868916\pi\)
0.976654 + 0.214819i \(0.0689161\pi\)
\(18\) 0 0
\(19\) 1.51601 + 1.10144i 0.347795 + 0.252688i 0.747944 0.663762i \(-0.231041\pi\)
−0.400148 + 0.916450i \(0.631041\pi\)
\(20\) 0.168680 + 0.519143i 0.0377179 + 0.116084i
\(21\) 0 0
\(22\) 2.81486 + 2.84115i 0.600129 + 0.605735i
\(23\) −8.08431 −1.68570 −0.842848 0.538152i \(-0.819123\pi\)
−0.842848 + 0.538152i \(0.819123\pi\)
\(24\) 0 0
\(25\) −0.809017 0.587785i −0.161803 0.117557i
\(26\) 6.03145 4.38210i 1.18286 0.859401i
\(27\) 0 0
\(28\) −0.727918 + 2.24030i −0.137564 + 0.423377i
\(29\) −0.857138 + 0.622747i −0.159166 + 0.115641i −0.664518 0.747273i \(-0.731363\pi\)
0.505351 + 0.862914i \(0.331363\pi\)
\(30\) 0 0
\(31\) −0.499089 1.53604i −0.0896391 0.275881i 0.896180 0.443690i \(-0.146331\pi\)
−0.985820 + 0.167809i \(0.946331\pi\)
\(32\) −2.99226 −0.528962
\(33\) 0 0
\(34\) −0.969511 −0.166270
\(35\) −1.33353 4.10418i −0.225407 0.693733i
\(36\) 0 0
\(37\) 4.48304 3.25712i 0.737007 0.535467i −0.154765 0.987951i \(-0.549462\pi\)
0.891772 + 0.452484i \(0.149462\pi\)
\(38\) 0.698278 2.14908i 0.113276 0.348627i
\(39\) 0 0
\(40\) 2.48368 1.80450i 0.392704 0.285316i
\(41\) 4.08714 + 2.96948i 0.638304 + 0.463755i 0.859267 0.511527i \(-0.170920\pi\)
−0.220963 + 0.975282i \(0.570920\pi\)
\(42\) 0 0
\(43\) −9.87101 −1.50531 −0.752657 0.658412i \(-0.771228\pi\)
−0.752657 + 0.658412i \(0.771228\pi\)
\(44\) −0.829398 + 1.60925i −0.125037 + 0.242603i
\(45\) 0 0
\(46\) 3.01251 + 9.27156i 0.444171 + 1.36702i
\(47\) 10.5056 + 7.63280i 1.53241 + 1.11336i 0.954883 + 0.296983i \(0.0959805\pi\)
0.577523 + 0.816375i \(0.304020\pi\)
\(48\) 0 0
\(49\) 3.59157 11.0537i 0.513082 1.57910i
\(50\) −0.372637 + 1.14686i −0.0526988 + 0.162190i
\(51\) 0 0
\(52\) 2.73023 + 1.98363i 0.378614 + 0.275079i
\(53\) 0.823336 + 2.53397i 0.113094 + 0.348067i 0.991545 0.129766i \(-0.0414225\pi\)
−0.878451 + 0.477833i \(0.841422\pi\)
\(54\) 0 0
\(55\) −0.503601 3.27817i −0.0679055 0.442028i
\(56\) 13.2482 1.77037
\(57\) 0 0
\(58\) 1.03360 + 0.750957i 0.135719 + 0.0986054i
\(59\) 5.34734 3.88507i 0.696165 0.505793i −0.182516 0.983203i \(-0.558424\pi\)
0.878681 + 0.477410i \(0.158424\pi\)
\(60\) 0 0
\(61\) −1.65250 + 5.08587i −0.211581 + 0.651178i 0.787798 + 0.615934i \(0.211221\pi\)
−0.999379 + 0.0352447i \(0.988779\pi\)
\(62\) −1.57564 + 1.14477i −0.200106 + 0.145386i
\(63\) 0 0
\(64\) 2.72829 + 8.39682i 0.341037 + 1.04960i
\(65\) −6.18245 −0.766839
\(66\) 0 0
\(67\) −7.49018 −0.915071 −0.457536 0.889191i \(-0.651268\pi\)
−0.457536 + 0.889191i \(0.651268\pi\)
\(68\) −0.135616 0.417384i −0.0164459 0.0506153i
\(69\) 0 0
\(70\) −4.20999 + 3.05873i −0.503190 + 0.365589i
\(71\) 1.80140 5.54415i 0.213787 0.657970i −0.785450 0.618925i \(-0.787568\pi\)
0.999237 0.0390448i \(-0.0124315\pi\)
\(72\) 0 0
\(73\) −3.88448 + 2.82224i −0.454643 + 0.330318i −0.791426 0.611265i \(-0.790661\pi\)
0.336783 + 0.941582i \(0.390661\pi\)
\(74\) −5.40600 3.92769i −0.628435 0.456584i
\(75\) 0 0
\(76\) 1.02288 0.117332
\(77\) 6.55696 12.7222i 0.747235 1.44983i
\(78\) 0 0
\(79\) −4.31076 13.2672i −0.484998 1.49267i −0.831983 0.554801i \(-0.812794\pi\)
0.346985 0.937871i \(-0.387206\pi\)
\(80\) −2.11179 1.53431i −0.236106 0.171541i
\(81\) 0 0
\(82\) 1.88255 5.79391i 0.207893 0.639830i
\(83\) −3.72575 + 11.4667i −0.408954 + 1.25863i 0.508595 + 0.861006i \(0.330165\pi\)
−0.917548 + 0.397624i \(0.869835\pi\)
\(84\) 0 0
\(85\) 0.650440 + 0.472572i 0.0705501 + 0.0512576i
\(86\) 3.67830 + 11.3206i 0.396641 + 1.22074i
\(87\) 0 0
\(88\) 10.0491 + 1.63955i 1.07124 + 0.174777i
\(89\) −12.7727 −1.35390 −0.676951 0.736028i \(-0.736699\pi\)
−0.676951 + 0.736028i \(0.736699\pi\)
\(90\) 0 0
\(91\) −21.5843 15.6819i −2.26265 1.64391i
\(92\) −3.57011 + 2.59383i −0.372209 + 0.270426i
\(93\) 0 0
\(94\) 4.83894 14.8927i 0.499099 1.53607i
\(95\) −1.51601 + 1.10144i −0.155539 + 0.113006i
\(96\) 0 0
\(97\) 0.416434 + 1.28165i 0.0422825 + 0.130132i 0.969969 0.243227i \(-0.0782060\pi\)
−0.927687 + 0.373359i \(0.878206\pi\)
\(98\) −14.0154 −1.41577
\(99\) 0 0
\(100\) −0.545859 −0.0545859
\(101\) 2.60486 + 8.01692i 0.259193 + 0.797713i 0.992975 + 0.118328i \(0.0377535\pi\)
−0.733782 + 0.679385i \(0.762247\pi\)
\(102\) 0 0
\(103\) 8.00959 5.81931i 0.789208 0.573393i −0.118520 0.992952i \(-0.537815\pi\)
0.907728 + 0.419558i \(0.137815\pi\)
\(104\) 5.86517 18.0511i 0.575127 1.77006i
\(105\) 0 0
\(106\) 2.59930 1.88850i 0.252466 0.183427i
\(107\) 6.60758 + 4.80069i 0.638779 + 0.464100i 0.859430 0.511253i \(-0.170818\pi\)
−0.220652 + 0.975353i \(0.570818\pi\)
\(108\) 0 0
\(109\) 13.4997 1.29303 0.646517 0.762900i \(-0.276225\pi\)
0.646517 + 0.762900i \(0.276225\pi\)
\(110\) −3.57193 + 1.79912i −0.340570 + 0.171540i
\(111\) 0 0
\(112\) −3.48094 10.7132i −0.328917 1.01230i
\(113\) −10.9303 7.94132i −1.02824 0.747057i −0.0602808 0.998181i \(-0.519200\pi\)
−0.967955 + 0.251125i \(0.919200\pi\)
\(114\) 0 0
\(115\) 2.49819 7.68864i 0.232957 0.716969i
\(116\) −0.178713 + 0.550022i −0.0165931 + 0.0510682i
\(117\) 0 0
\(118\) −6.44824 4.68492i −0.593609 0.431282i
\(119\) 1.07214 + 3.29971i 0.0982830 + 0.302484i
\(120\) 0 0
\(121\) 6.54810 8.83869i 0.595281 0.803517i
\(122\) 6.44855 0.583824
\(123\) 0 0
\(124\) −0.713237 0.518197i −0.0640506 0.0465355i
\(125\) 0.809017 0.587785i 0.0723607 0.0525731i
\(126\) 0 0
\(127\) −0.655154 + 2.01636i −0.0581355 + 0.178923i −0.975907 0.218186i \(-0.929986\pi\)
0.917772 + 0.397108i \(0.129986\pi\)
\(128\) 3.77172 2.74031i 0.333376 0.242212i
\(129\) 0 0
\(130\) 2.30381 + 7.09039i 0.202057 + 0.621869i
\(131\) −8.72324 −0.762153 −0.381076 0.924544i \(-0.624447\pi\)
−0.381076 + 0.924544i \(0.624447\pi\)
\(132\) 0 0
\(133\) −8.08654 −0.701192
\(134\) 2.79112 + 8.59017i 0.241116 + 0.742078i
\(135\) 0 0
\(136\) −1.99685 + 1.45079i −0.171228 + 0.124405i
\(137\) 0.477068 1.46826i 0.0407587 0.125442i −0.928607 0.371065i \(-0.878993\pi\)
0.969365 + 0.245623i \(0.0789926\pi\)
\(138\) 0 0
\(139\) −13.1046 + 9.52107i −1.11152 + 0.807566i −0.982902 0.184128i \(-0.941054\pi\)
−0.128617 + 0.991694i \(0.541054\pi\)
\(140\) −1.90572 1.38458i −0.161062 0.117019i
\(141\) 0 0
\(142\) −7.02962 −0.589913
\(143\) −14.4316 14.5664i −1.20683 1.21810i
\(144\) 0 0
\(145\) −0.327397 1.00763i −0.0271889 0.0836788i
\(146\) 4.68420 + 3.40327i 0.387667 + 0.281657i
\(147\) 0 0
\(148\) 0.934712 2.87675i 0.0768329 0.236467i
\(149\) −4.33189 + 13.3322i −0.354883 + 1.09222i 0.601195 + 0.799102i \(0.294692\pi\)
−0.956078 + 0.293114i \(0.905308\pi\)
\(150\) 0 0
\(151\) 10.9906 + 7.98516i 0.894404 + 0.649823i 0.937023 0.349269i \(-0.113570\pi\)
−0.0426183 + 0.999091i \(0.513570\pi\)
\(152\) −1.77772 5.47126i −0.144192 0.443777i
\(153\) 0 0
\(154\) −17.0339 2.77914i −1.37263 0.223950i
\(155\) 1.61509 0.129727
\(156\) 0 0
\(157\) 3.54409 + 2.57493i 0.282849 + 0.205502i 0.720159 0.693809i \(-0.244069\pi\)
−0.437310 + 0.899311i \(0.644069\pi\)
\(158\) −13.6092 + 9.88766i −1.08269 + 0.786620i
\(159\) 0 0
\(160\) 0.924660 2.84581i 0.0731008 0.224981i
\(161\) 28.2241 20.5060i 2.22437 1.61610i
\(162\) 0 0
\(163\) −1.44826 4.45729i −0.113437 0.349122i 0.878181 0.478328i \(-0.158757\pi\)
−0.991618 + 0.129206i \(0.958757\pi\)
\(164\) 2.75767 0.215338
\(165\) 0 0
\(166\) 14.5390 1.12844
\(167\) −0.509622 1.56846i −0.0394358 0.121371i 0.929401 0.369073i \(-0.120325\pi\)
−0.968836 + 0.247702i \(0.920325\pi\)
\(168\) 0 0
\(169\) −20.4056 + 14.8255i −1.56966 + 1.14043i
\(170\) 0.299595 0.922060i 0.0229779 0.0707188i
\(171\) 0 0
\(172\) −4.35913 + 3.16709i −0.332380 + 0.241489i
\(173\) −13.4072 9.74090i −1.01933 0.740587i −0.0531852 0.998585i \(-0.516937\pi\)
−0.966146 + 0.257998i \(0.916937\pi\)
\(174\) 0 0
\(175\) 4.31539 0.326213
\(176\) −1.31456 8.55707i −0.0990886 0.645013i
\(177\) 0 0
\(178\) 4.75957 + 14.6485i 0.356745 + 1.09795i
\(179\) 14.2383 + 10.3447i 1.06422 + 0.773201i 0.974864 0.222799i \(-0.0715193\pi\)
0.0893553 + 0.996000i \(0.471519\pi\)
\(180\) 0 0
\(181\) 2.59782 7.99527i 0.193094 0.594284i −0.806899 0.590689i \(-0.798856\pi\)
0.999994 0.00359434i \(-0.00114412\pi\)
\(182\) −9.94183 + 30.5978i −0.736937 + 2.26806i
\(183\) 0 0
\(184\) 20.0788 + 14.5881i 1.48023 + 1.07545i
\(185\) 1.71237 + 5.27013i 0.125896 + 0.387468i
\(186\) 0 0
\(187\) 0.404889 + 2.63561i 0.0296084 + 0.192735i
\(188\) 7.08835 0.516971
\(189\) 0 0
\(190\) 1.82812 + 1.32820i 0.132626 + 0.0963581i
\(191\) −4.30212 + 3.12567i −0.311290 + 0.226166i −0.732450 0.680821i \(-0.761623\pi\)
0.421160 + 0.906987i \(0.361623\pi\)
\(192\) 0 0
\(193\) 4.72401 14.5390i 0.340042 1.04654i −0.624143 0.781310i \(-0.714552\pi\)
0.964185 0.265231i \(-0.0854483\pi\)
\(194\) 1.31469 0.955181i 0.0943895 0.0685780i
\(195\) 0 0
\(196\) −1.96049 6.03378i −0.140035 0.430984i
\(197\) 1.69118 0.120492 0.0602458 0.998184i \(-0.480812\pi\)
0.0602458 + 0.998184i \(0.480812\pi\)
\(198\) 0 0
\(199\) 3.44855 0.244461 0.122230 0.992502i \(-0.460995\pi\)
0.122230 + 0.992502i \(0.460995\pi\)
\(200\) 0.948680 + 2.91974i 0.0670818 + 0.206457i
\(201\) 0 0
\(202\) 8.22360 5.97480i 0.578611 0.420385i
\(203\) 1.41285 4.34830i 0.0991624 0.305191i
\(204\) 0 0
\(205\) −4.08714 + 2.96948i −0.285458 + 0.207398i
\(206\) −9.65858 7.01737i −0.672945 0.488923i
\(207\) 0 0
\(208\) −16.1382 −1.11898
\(209\) −6.13387 1.00076i −0.424289 0.0692241i
\(210\) 0 0
\(211\) −0.121891 0.375140i −0.00839129 0.0258257i 0.946773 0.321901i \(-0.104322\pi\)
−0.955164 + 0.296076i \(0.904322\pi\)
\(212\) 1.17661 + 0.854858i 0.0808100 + 0.0587119i
\(213\) 0 0
\(214\) 3.04348 9.36687i 0.208048 0.640306i
\(215\) 3.05031 9.38789i 0.208029 0.640249i
\(216\) 0 0
\(217\) 5.63863 + 4.09670i 0.382775 + 0.278102i
\(218\) −5.03047 15.4822i −0.340707 1.04859i
\(219\) 0 0
\(220\) −1.27419 1.28609i −0.0859057 0.0867082i
\(221\) 4.97062 0.334360
\(222\) 0 0
\(223\) 6.28724 + 4.56795i 0.421025 + 0.305893i 0.778050 0.628202i \(-0.216209\pi\)
−0.357025 + 0.934095i \(0.616209\pi\)
\(224\) 10.4467 7.58994i 0.697996 0.507124i
\(225\) 0 0
\(226\) −5.03454 + 15.4947i −0.334893 + 1.03069i
\(227\) 22.0993 16.0560i 1.46678 1.06568i 0.485248 0.874377i \(-0.338729\pi\)
0.981531 0.191301i \(-0.0612705\pi\)
\(228\) 0 0
\(229\) 4.81517 + 14.8196i 0.318195 + 0.979304i 0.974419 + 0.224738i \(0.0721526\pi\)
−0.656224 + 0.754566i \(0.727847\pi\)
\(230\) −9.74869 −0.642810
\(231\) 0 0
\(232\) 3.25260 0.213544
\(233\) 8.61681 + 26.5198i 0.564506 + 1.73737i 0.669414 + 0.742889i \(0.266545\pi\)
−0.104908 + 0.994482i \(0.533455\pi\)
\(234\) 0 0
\(235\) −10.5056 + 7.63280i −0.685313 + 0.497909i
\(236\) 1.11492 3.43137i 0.0725750 0.223363i
\(237\) 0 0
\(238\) 3.38478 2.45919i 0.219403 0.159405i
\(239\) 15.1657 + 11.0185i 0.980988 + 0.712729i 0.957929 0.287005i \(-0.0926595\pi\)
0.0230587 + 0.999734i \(0.492660\pi\)
\(240\) 0 0
\(241\) −11.0049 −0.708886 −0.354443 0.935078i \(-0.615329\pi\)
−0.354443 + 0.935078i \(0.615329\pi\)
\(242\) −12.5768 4.21611i −0.808466 0.271022i
\(243\) 0 0
\(244\) 0.902031 + 2.77617i 0.0577466 + 0.177726i
\(245\) 9.40286 + 6.83158i 0.600727 + 0.436454i
\(246\) 0 0
\(247\) −3.58003 + 11.0182i −0.227792 + 0.701070i
\(248\) −1.53220 + 4.71563i −0.0972949 + 0.299443i
\(249\) 0 0
\(250\) −0.975576 0.708797i −0.0617008 0.0448283i
\(251\) 7.20429 + 22.1725i 0.454731 + 1.39952i 0.871451 + 0.490482i \(0.163179\pi\)
−0.416721 + 0.909035i \(0.636821\pi\)
\(252\) 0 0
\(253\) 23.9466 12.0615i 1.50551 0.758299i
\(254\) 2.55661 0.160416
\(255\) 0 0
\(256\) 9.73730 + 7.07456i 0.608581 + 0.442160i
\(257\) 14.1360 10.2704i 0.881779 0.640650i −0.0519427 0.998650i \(-0.516541\pi\)
0.933721 + 0.358000i \(0.116541\pi\)
\(258\) 0 0
\(259\) −7.38954 + 22.7427i −0.459164 + 1.41316i
\(260\) −2.73023 + 1.98363i −0.169322 + 0.123019i
\(261\) 0 0
\(262\) 3.25060 + 10.0043i 0.200823 + 0.618069i
\(263\) −1.61187 −0.0993921 −0.0496961 0.998764i \(-0.515825\pi\)
−0.0496961 + 0.998764i \(0.515825\pi\)
\(264\) 0 0
\(265\) −2.66437 −0.163671
\(266\) 3.01334 + 9.27412i 0.184760 + 0.568633i
\(267\) 0 0
\(268\) −3.30773 + 2.40321i −0.202052 + 0.146799i
\(269\) −2.52549 + 7.77266i −0.153982 + 0.473908i −0.998056 0.0623184i \(-0.980151\pi\)
0.844074 + 0.536226i \(0.180151\pi\)
\(270\) 0 0
\(271\) −8.49430 + 6.17147i −0.515992 + 0.374890i −0.815092 0.579332i \(-0.803314\pi\)
0.299100 + 0.954222i \(0.403314\pi\)
\(272\) 1.69786 + 1.23356i 0.102948 + 0.0747958i
\(273\) 0 0
\(274\) −1.86166 −0.112467
\(275\) 3.27334 + 0.534057i 0.197390 + 0.0322048i
\(276\) 0 0
\(277\) 2.75712 + 8.48554i 0.165659 + 0.509846i 0.999084 0.0427860i \(-0.0136234\pi\)
−0.833425 + 0.552632i \(0.813623\pi\)
\(278\) 15.8026 + 11.4812i 0.947775 + 0.688599i
\(279\) 0 0
\(280\) −4.09392 + 12.5998i −0.244659 + 0.752982i
\(281\) −1.35769 + 4.17854i −0.0809930 + 0.249271i −0.983351 0.181717i \(-0.941835\pi\)
0.902358 + 0.430987i \(0.141835\pi\)
\(282\) 0 0
\(283\) −10.5211 7.64404i −0.625416 0.454391i 0.229393 0.973334i \(-0.426326\pi\)
−0.854809 + 0.518943i \(0.826326\pi\)
\(284\) −0.983313 3.02633i −0.0583489 0.179579i
\(285\) 0 0
\(286\) −11.3278 + 21.9789i −0.669829 + 1.29964i
\(287\) −21.8013 −1.28689
\(288\) 0 0
\(289\) 13.2303 + 9.61241i 0.778255 + 0.565436i
\(290\) −1.03360 + 0.750957i −0.0606953 + 0.0440977i
\(291\) 0 0
\(292\) −0.809912 + 2.49265i −0.0473965 + 0.145871i
\(293\) 12.5757 9.13679i 0.734681 0.533777i −0.156360 0.987700i \(-0.549976\pi\)
0.891041 + 0.453923i \(0.149976\pi\)
\(294\) 0 0
\(295\) 2.04250 + 6.28618i 0.118919 + 0.365996i
\(296\) −17.0119 −0.988796
\(297\) 0 0
\(298\) 16.9044 0.979243
\(299\) −15.4449 47.5346i −0.893204 2.74900i
\(300\) 0 0
\(301\) 34.4619 25.0380i 1.98635 1.44317i
\(302\) 5.06233 15.5802i 0.291304 0.896542i
\(303\) 0 0
\(304\) −3.95726 + 2.87512i −0.226964 + 0.164899i
\(305\) −4.32630 3.14324i −0.247723 0.179981i
\(306\) 0 0
\(307\) 8.76859 0.500450 0.250225 0.968188i \(-0.419495\pi\)
0.250225 + 0.968188i \(0.419495\pi\)
\(308\) −1.18628 7.72203i −0.0675945 0.440004i
\(309\) 0 0
\(310\) −0.601841 1.85228i −0.0341823 0.105202i
\(311\) −1.41676 1.02934i −0.0803370 0.0583682i 0.546892 0.837203i \(-0.315811\pi\)
−0.627229 + 0.778835i \(0.715811\pi\)
\(312\) 0 0
\(313\) −5.41621 + 16.6694i −0.306142 + 0.942209i 0.673106 + 0.739546i \(0.264960\pi\)
−0.979249 + 0.202663i \(0.935040\pi\)
\(314\) 1.63242 5.02408i 0.0921230 0.283525i
\(315\) 0 0
\(316\) −6.16041 4.47580i −0.346550 0.251783i
\(317\) 0.615520 + 1.89438i 0.0345711 + 0.106399i 0.966853 0.255334i \(-0.0821853\pi\)
−0.932282 + 0.361733i \(0.882185\pi\)
\(318\) 0 0
\(319\) 1.60981 3.12346i 0.0901323 0.174880i
\(320\) −8.82894 −0.493553
\(321\) 0 0
\(322\) −34.0348 24.7278i −1.89669 1.37802i
\(323\) 1.21885 0.885546i 0.0678186 0.0492731i
\(324\) 0 0
\(325\) 1.91048 5.87986i 0.105975 0.326156i
\(326\) −4.57220 + 3.32190i −0.253231 + 0.183983i
\(327\) 0 0
\(328\) −4.79272 14.7505i −0.264634 0.814458i
\(329\) −56.0383 −3.08949
\(330\) 0 0
\(331\) −10.3437 −0.568541 −0.284271 0.958744i \(-0.591751\pi\)
−0.284271 + 0.958744i \(0.591751\pi\)
\(332\) 2.03373 + 6.25918i 0.111616 + 0.343517i
\(333\) 0 0
\(334\) −1.60889 + 1.16893i −0.0880347 + 0.0639609i
\(335\) 2.31459 7.12359i 0.126460 0.389203i
\(336\) 0 0
\(337\) 16.6809 12.1194i 0.908667 0.660185i −0.0320107 0.999488i \(-0.510191\pi\)
0.940677 + 0.339303i \(0.110191\pi\)
\(338\) 24.6067 + 17.8778i 1.33843 + 0.972423i
\(339\) 0 0
\(340\) 0.438864 0.0238007
\(341\) 3.77007 + 3.80528i 0.204161 + 0.206068i
\(342\) 0 0
\(343\) 6.16434 + 18.9719i 0.332843 + 1.02438i
\(344\) 24.5164 + 17.8122i 1.32184 + 0.960370i
\(345\) 0 0
\(346\) −6.17542 + 19.0060i −0.331992 + 1.02177i
\(347\) −0.922028 + 2.83771i −0.0494971 + 0.152336i −0.972750 0.231856i \(-0.925520\pi\)
0.923253 + 0.384193i \(0.125520\pi\)
\(348\) 0 0
\(349\) −9.13355 6.63591i −0.488908 0.355212i 0.315857 0.948807i \(-0.397708\pi\)
−0.804764 + 0.593595i \(0.797708\pi\)
\(350\) −1.60807 4.94914i −0.0859551 0.264542i
\(351\) 0 0
\(352\) 8.86339 4.46434i 0.472420 0.237950i
\(353\) 13.4952 0.718275 0.359137 0.933285i \(-0.383071\pi\)
0.359137 + 0.933285i \(0.383071\pi\)
\(354\) 0 0
\(355\) 4.71614 + 3.42647i 0.250307 + 0.181858i
\(356\) −5.64054 + 4.09809i −0.298948 + 0.217198i
\(357\) 0 0
\(358\) 6.55822 20.1841i 0.346613 1.06676i
\(359\) −19.9818 + 14.5176i −1.05460 + 0.766211i −0.973082 0.230461i \(-0.925977\pi\)
−0.0815173 + 0.996672i \(0.525977\pi\)
\(360\) 0 0
\(361\) −4.78623 14.7305i −0.251907 0.775289i
\(362\) −10.1375 −0.532814
\(363\) 0 0
\(364\) −14.5633 −0.763327
\(365\) −1.48374 4.56647i −0.0776624 0.239020i
\(366\) 0 0
\(367\) −5.13314 + 3.72944i −0.267948 + 0.194675i −0.713643 0.700509i \(-0.752956\pi\)
0.445696 + 0.895184i \(0.352956\pi\)
\(368\) 6.52107 20.0698i 0.339934 1.04621i
\(369\) 0 0
\(370\) 5.40600 3.92769i 0.281044 0.204191i
\(371\) −9.30191 6.75823i −0.482931 0.350870i
\(372\) 0 0
\(373\) 13.1832 0.682601 0.341301 0.939954i \(-0.389133\pi\)
0.341301 + 0.939954i \(0.389133\pi\)
\(374\) 2.87179 1.44647i 0.148497 0.0747954i
\(375\) 0 0
\(376\) −12.3193 37.9148i −0.635318 1.95531i
\(377\) −5.29921 3.85010i −0.272923 0.198290i
\(378\) 0 0
\(379\) −5.72802 + 17.6290i −0.294229 + 0.905543i 0.689251 + 0.724523i \(0.257940\pi\)
−0.983479 + 0.181020i \(0.942060\pi\)
\(380\) −0.316086 + 0.972814i −0.0162149 + 0.0499043i
\(381\) 0 0
\(382\) 5.18783 + 3.76918i 0.265432 + 0.192848i
\(383\) 8.77123 + 26.9951i 0.448189 + 1.37938i 0.878949 + 0.476917i \(0.158246\pi\)
−0.430760 + 0.902467i \(0.641754\pi\)
\(384\) 0 0
\(385\) 10.0733 + 10.1674i 0.513384 + 0.518180i
\(386\) −18.4345 −0.938293
\(387\) 0 0
\(388\) 0.595116 + 0.432377i 0.0302125 + 0.0219506i
\(389\) 15.5100 11.2687i 0.786388 0.571344i −0.120502 0.992713i \(-0.538450\pi\)
0.906889 + 0.421369i \(0.138450\pi\)
\(390\) 0 0
\(391\) −2.00851 + 6.18157i −0.101575 + 0.312615i
\(392\) −28.8667 + 20.9729i −1.45799 + 1.05929i
\(393\) 0 0
\(394\) −0.630196 1.93954i −0.0317488 0.0977127i
\(395\) 13.9499 0.701896
\(396\) 0 0
\(397\) 16.2455 0.815339 0.407670 0.913130i \(-0.366342\pi\)
0.407670 + 0.913130i \(0.366342\pi\)
\(398\) −1.28505 3.95499i −0.0644140 0.198246i
\(399\) 0 0
\(400\) 2.11179 1.53431i 0.105590 0.0767154i
\(401\) 3.80853 11.7215i 0.190189 0.585342i −0.809810 0.586692i \(-0.800430\pi\)
0.999999 + 0.00135034i \(0.000429826\pi\)
\(402\) 0 0
\(403\) 8.07820 5.86915i 0.402404 0.292363i
\(404\) 3.72254 + 2.70458i 0.185203 + 0.134558i
\(405\) 0 0
\(406\) −5.51336 −0.273623
\(407\) −8.41972 + 16.3364i −0.417350 + 0.809768i
\(408\) 0 0
\(409\) −0.604903 1.86170i −0.0299106 0.0920552i 0.934987 0.354682i \(-0.115411\pi\)
−0.964897 + 0.262627i \(0.915411\pi\)
\(410\) 4.92859 + 3.58083i 0.243406 + 0.176845i
\(411\) 0 0
\(412\) 1.67000 5.13972i 0.0822748 0.253216i
\(413\) −8.81420 + 27.1273i −0.433718 + 1.33485i
\(414\) 0 0
\(415\) −9.75413 7.08679i −0.478811 0.347877i
\(416\) −5.71667 17.5941i −0.280283 0.862621i
\(417\) 0 0
\(418\) 1.13797 + 7.40760i 0.0556602 + 0.362318i
\(419\) −20.5776 −1.00528 −0.502640 0.864496i \(-0.667638\pi\)
−0.502640 + 0.864496i \(0.667638\pi\)
\(420\) 0 0
\(421\) 13.8507 + 10.0632i 0.675044 + 0.490448i 0.871710 0.490022i \(-0.163011\pi\)
−0.196666 + 0.980471i \(0.563011\pi\)
\(422\) −0.384812 + 0.279582i −0.0187324 + 0.0136098i
\(423\) 0 0
\(424\) 2.52764 7.77927i 0.122753 0.377795i
\(425\) −0.650440 + 0.472572i −0.0315510 + 0.0229231i
\(426\) 0 0
\(427\) −7.13117 21.9475i −0.345101 1.06211i
\(428\) 4.45826 0.215498
\(429\) 0 0
\(430\) −11.9032 −0.574025
\(431\) −3.27801 10.0887i −0.157896 0.485955i 0.840547 0.541739i \(-0.182234\pi\)
−0.998443 + 0.0557847i \(0.982234\pi\)
\(432\) 0 0
\(433\) −20.0848 + 14.5925i −0.965215 + 0.701270i −0.954356 0.298671i \(-0.903457\pi\)
−0.0108592 + 0.999941i \(0.503457\pi\)
\(434\) 2.59718 7.99329i 0.124668 0.383690i
\(435\) 0 0
\(436\) 5.96158 4.33134i 0.285508 0.207434i
\(437\) −12.2559 8.90440i −0.586277 0.425955i
\(438\) 0 0
\(439\) 6.78781 0.323965 0.161982 0.986794i \(-0.448211\pi\)
0.161982 + 0.986794i \(0.448211\pi\)
\(440\) −4.66466 + 9.05066i −0.222379 + 0.431473i
\(441\) 0 0
\(442\) −1.85223 5.70059i −0.0881018 0.271149i
\(443\) −12.2566 8.90495i −0.582329 0.423087i 0.257234 0.966349i \(-0.417189\pi\)
−0.839563 + 0.543262i \(0.817189\pi\)
\(444\) 0 0
\(445\) 3.94698 12.1476i 0.187105 0.575849i
\(446\) 2.89593 8.91276i 0.137126 0.422031i
\(447\) 0 0
\(448\) −30.8238 22.3948i −1.45629 1.05805i
\(449\) 5.54099 + 17.0534i 0.261495 + 0.804800i 0.992480 + 0.122406i \(0.0390611\pi\)
−0.730985 + 0.682394i \(0.760939\pi\)
\(450\) 0 0
\(451\) −16.5369 2.69805i −0.778691 0.127046i
\(452\) −7.37488 −0.346885
\(453\) 0 0
\(454\) −26.6490 19.3616i −1.25070 0.908686i
\(455\) 21.5843 15.6819i 1.01189 0.735180i
\(456\) 0 0
\(457\) −12.7310 + 39.1820i −0.595531 + 1.83286i −0.0434679 + 0.999055i \(0.513841\pi\)
−0.552063 + 0.833802i \(0.686159\pi\)
\(458\) 15.2016 11.0446i 0.710325 0.516081i
\(459\) 0 0
\(460\) −1.36366 4.19691i −0.0635809 0.195682i
\(461\) −16.8145 −0.783128 −0.391564 0.920151i \(-0.628066\pi\)
−0.391564 + 0.920151i \(0.628066\pi\)
\(462\) 0 0
\(463\) −35.7050 −1.65935 −0.829676 0.558245i \(-0.811475\pi\)
−0.829676 + 0.558245i \(0.811475\pi\)
\(464\) −0.854612 2.63023i −0.0396744 0.122105i
\(465\) 0 0
\(466\) 27.2035 19.7645i 1.26018 0.915573i
\(467\) 11.1095 34.1916i 0.514087 1.58220i −0.270849 0.962622i \(-0.587304\pi\)
0.784936 0.619576i \(-0.212696\pi\)
\(468\) 0 0
\(469\) 26.1499 18.9990i 1.20749 0.877293i
\(470\) 12.6685 + 9.20422i 0.584355 + 0.424559i
\(471\) 0 0
\(472\) −20.2917 −0.934000
\(473\) 29.2389 14.7272i 1.34441 0.677156i
\(474\) 0 0
\(475\) −0.579062 1.78217i −0.0265692 0.0817716i
\(476\) 1.53217 + 1.11319i 0.0702270 + 0.0510229i
\(477\) 0 0
\(478\) 6.98539 21.4988i 0.319504 0.983333i
\(479\) 4.29272 13.2116i 0.196139 0.603655i −0.803822 0.594870i \(-0.797204\pi\)
0.999961 0.00878522i \(-0.00279646\pi\)
\(480\) 0 0
\(481\) 27.7162 + 20.1370i 1.26375 + 0.918167i
\(482\) 4.10082 + 12.6210i 0.186787 + 0.574872i
\(483\) 0 0
\(484\) 0.0558246 6.00419i 0.00253748 0.272918i
\(485\) −1.34761 −0.0611918
\(486\) 0 0
\(487\) 11.3265 + 8.22916i 0.513251 + 0.372899i 0.814055 0.580787i \(-0.197255\pi\)
−0.300804 + 0.953686i \(0.597255\pi\)
\(488\) 13.2817 9.64972i 0.601234 0.436822i
\(489\) 0 0
\(490\) 4.33100 13.3294i 0.195655 0.602163i
\(491\) −20.4259 + 14.8403i −0.921806 + 0.669731i −0.943973 0.330023i \(-0.892943\pi\)
0.0221670 + 0.999754i \(0.492943\pi\)
\(492\) 0 0
\(493\) 0.263224 + 0.810119i 0.0118550 + 0.0364859i
\(494\) 13.9703 0.628555
\(495\) 0 0
\(496\) 4.21590 0.189299
\(497\) 7.77376 + 23.9252i 0.348701 + 1.07319i
\(498\) 0 0
\(499\) 7.16997 5.20929i 0.320972 0.233200i −0.415618 0.909539i \(-0.636435\pi\)
0.736590 + 0.676340i \(0.236435\pi\)
\(500\) 0.168680 0.519143i 0.00754359 0.0232168i
\(501\) 0 0
\(502\) 22.7441 16.5246i 1.01512 0.737528i
\(503\) 0.534909 + 0.388634i 0.0238504 + 0.0173283i 0.599647 0.800265i \(-0.295308\pi\)
−0.575796 + 0.817593i \(0.695308\pi\)
\(504\) 0 0
\(505\) −8.42949 −0.375107
\(506\) −22.7562 22.9687i −1.01164 1.02108i
\(507\) 0 0
\(508\) 0.357621 + 1.10065i 0.0158669 + 0.0488333i
\(509\) 31.3224 + 22.7570i 1.38834 + 1.00869i 0.996045 + 0.0888492i \(0.0283189\pi\)
0.392295 + 0.919839i \(0.371681\pi\)
\(510\) 0 0
\(511\) 6.40290 19.7061i 0.283248 0.871747i
\(512\) 7.36638 22.6714i 0.325551 1.00194i
\(513\) 0 0
\(514\) −17.0463 12.3848i −0.751879 0.546272i
\(515\) 3.05939 + 9.41583i 0.134813 + 0.414911i
\(516\) 0 0
\(517\) −42.5066 6.93510i −1.86944 0.305005i
\(518\) 28.8362 1.26699
\(519\) 0 0
\(520\) 15.3552 + 11.1562i 0.673371 + 0.489233i
\(521\) −19.8803 + 14.4439i −0.870971 + 0.632797i −0.930847 0.365408i \(-0.880929\pi\)
0.0598763 + 0.998206i \(0.480929\pi\)
\(522\) 0 0
\(523\) 10.4121 32.0453i 0.455291 1.40124i −0.415501 0.909593i \(-0.636394\pi\)
0.870793 0.491650i \(-0.163606\pi\)
\(524\) −3.85226 + 2.79883i −0.168287 + 0.122268i
\(525\) 0 0
\(526\) 0.600642 + 1.84859i 0.0261892 + 0.0806021i
\(527\) −1.29851 −0.0565640
\(528\) 0 0
\(529\) 42.3561 1.84157
\(530\) 0.992842 + 3.05565i 0.0431263 + 0.132729i
\(531\) 0 0
\(532\) −3.57109 + 2.59455i −0.154826 + 0.112488i
\(533\) −9.65172 + 29.7050i −0.418063 + 1.28666i
\(534\) 0 0
\(535\) −6.60758 + 4.80069i −0.285671 + 0.207552i
\(536\) 18.6032 + 13.5160i 0.803536 + 0.583803i
\(537\) 0 0
\(538\) 9.85523 0.424889
\(539\) 5.85314 + 38.1008i 0.252113 + 1.64112i
\(540\) 0 0
\(541\) −2.53653 7.80665i −0.109054 0.335634i 0.881606 0.471985i \(-0.156462\pi\)
−0.990661 + 0.136351i \(0.956462\pi\)
\(542\) 10.2431 + 7.44204i 0.439978 + 0.319663i
\(543\) 0 0
\(544\) −0.743415 + 2.28800i −0.0318737 + 0.0980971i
\(545\) −4.17163 + 12.8390i −0.178693 + 0.549960i
\(546\) 0 0
\(547\) −28.3770 20.6171i −1.21331 0.881523i −0.217785 0.975997i \(-0.569883\pi\)
−0.995527 + 0.0944734i \(0.969883\pi\)
\(548\) −0.260412 0.801465i −0.0111242 0.0342369i
\(549\) 0 0
\(550\) −0.607281 3.95307i −0.0258945 0.168559i
\(551\) −1.98534 −0.0845785
\(552\) 0 0
\(553\) 48.7022 + 35.3843i 2.07103 + 1.50469i
\(554\) 8.70430 6.32404i 0.369810 0.268683i
\(555\) 0 0
\(556\) −2.73231 + 8.40918i −0.115876 + 0.356629i
\(557\) 32.0476 23.2839i 1.35790 0.986572i 0.359325 0.933212i \(-0.383007\pi\)
0.998575 0.0533600i \(-0.0169931\pi\)
\(558\) 0 0
\(559\) −18.8584 58.0402i −0.797625 2.45484i
\(560\) 11.2645 0.476014
\(561\) 0 0
\(562\) 5.29812 0.223488
\(563\) −6.69959 20.6192i −0.282354 0.868996i −0.987179 0.159615i \(-0.948975\pi\)
0.704825 0.709381i \(-0.251025\pi\)
\(564\) 0 0
\(565\) 10.9303 7.94132i 0.459841 0.334094i
\(566\) −4.84607 + 14.9147i −0.203696 + 0.626911i
\(567\) 0 0
\(568\) −14.4785 + 10.5193i −0.607505 + 0.441378i
\(569\) −22.2187 16.1428i −0.931457 0.676743i 0.0148922 0.999889i \(-0.495259\pi\)
−0.946349 + 0.323146i \(0.895259\pi\)
\(570\) 0 0
\(571\) 23.8306 0.997281 0.498641 0.866809i \(-0.333833\pi\)
0.498641 + 0.866809i \(0.333833\pi\)
\(572\) −11.0467 1.80231i −0.461886 0.0753582i
\(573\) 0 0
\(574\) 8.12395 + 25.0029i 0.339087 + 1.04360i
\(575\) 6.54034 + 4.75184i 0.272751 + 0.198165i
\(576\) 0 0
\(577\) −4.96685 + 15.2864i −0.206773 + 0.636381i 0.792863 + 0.609400i \(0.208589\pi\)
−0.999636 + 0.0269812i \(0.991411\pi\)
\(578\) 6.09395 18.7553i 0.253475 0.780116i
\(579\) 0 0
\(580\) −0.467876 0.339932i −0.0194275 0.0141149i
\(581\) −16.0780 49.4831i −0.667030 2.05291i
\(582\) 0 0
\(583\) −6.21939 6.27748i −0.257581 0.259987i
\(584\) 14.7405 0.609966
\(585\) 0 0
\(586\) −15.1648 11.0178i −0.626451 0.455143i
\(587\) −14.3837 + 10.4504i −0.593680 + 0.431334i −0.843630 0.536925i \(-0.819586\pi\)
0.249950 + 0.968259i \(0.419586\pi\)
\(588\) 0 0
\(589\) 0.935237 2.87836i 0.0385358 0.118601i
\(590\) 6.44824 4.68492i 0.265470 0.192875i
\(591\) 0 0
\(592\) 4.46983 + 13.7567i 0.183709 + 0.565398i
\(593\) 20.2944 0.833389 0.416695 0.909046i \(-0.363188\pi\)
0.416695 + 0.909046i \(0.363188\pi\)
\(594\) 0 0
\(595\) −3.46952 −0.142236
\(596\) 2.36460 + 7.27750i 0.0968579 + 0.298098i
\(597\) 0 0
\(598\) −48.7601 + 35.4263i −1.99395 + 1.44869i
\(599\) −2.78334 + 8.56623i −0.113724 + 0.350007i −0.991679 0.128737i \(-0.958908\pi\)
0.877955 + 0.478744i \(0.158908\pi\)
\(600\) 0 0
\(601\) −33.2571 + 24.1627i −1.35659 + 0.985618i −0.357933 + 0.933747i \(0.616519\pi\)
−0.998654 + 0.0518711i \(0.983481\pi\)
\(602\) −41.5568 30.1928i −1.69373 1.23057i
\(603\) 0 0
\(604\) 7.41558 0.301736
\(605\) 6.38262 + 8.95891i 0.259490 + 0.364232i
\(606\) 0 0
\(607\) 0.367905 + 1.13230i 0.0149328 + 0.0459585i 0.958245 0.285948i \(-0.0923083\pi\)
−0.943312 + 0.331906i \(0.892308\pi\)
\(608\) −4.53629 3.29580i −0.183971 0.133663i
\(609\) 0 0
\(610\) −1.99271 + 6.13293i −0.0806825 + 0.248315i
\(611\) −24.8089 + 76.3540i −1.00366 + 3.08895i
\(612\) 0 0
\(613\) −0.110508 0.0802891i −0.00446339 0.00324284i 0.585551 0.810635i \(-0.300878\pi\)
−0.590015 + 0.807392i \(0.700878\pi\)
\(614\) −3.26750 10.0563i −0.131866 0.405840i
\(615\) 0 0
\(616\) −39.2426 + 19.7658i −1.58113 + 0.796389i
\(617\) 17.7011 0.712620 0.356310 0.934368i \(-0.384035\pi\)
0.356310 + 0.934368i \(0.384035\pi\)
\(618\) 0 0
\(619\) 5.73528 + 4.16693i 0.230521 + 0.167483i 0.697050 0.717023i \(-0.254496\pi\)
−0.466529 + 0.884506i \(0.654496\pi\)
\(620\) 0.713237 0.518197i 0.0286443 0.0208113i
\(621\) 0 0
\(622\) −0.652565 + 2.00839i −0.0261655 + 0.0805290i
\(623\) 44.5923 32.3982i 1.78655 1.29801i
\(624\) 0 0
\(625\) 0.309017 + 0.951057i 0.0123607 + 0.0380423i
\(626\) 21.1357 0.844752
\(627\) 0 0
\(628\) 2.39127 0.0954219
\(629\) −1.37672 4.23712i −0.0548936 0.168945i
\(630\) 0 0
\(631\) −19.5299 + 14.1893i −0.777473 + 0.564867i −0.904220 0.427068i \(-0.859547\pi\)
0.126746 + 0.991935i \(0.459547\pi\)
\(632\) −13.2340 + 40.7301i −0.526421 + 1.62016i
\(633\) 0 0
\(634\) 1.94322 1.41183i 0.0771750 0.0560709i
\(635\) −1.71521 1.24618i −0.0680662 0.0494530i
\(636\) 0 0
\(637\) 71.8560 2.84704
\(638\) −4.18204 0.682313i −0.165568 0.0270130i
\(639\) 0 0
\(640\) 1.44067 + 4.43392i 0.0569474 + 0.175266i
\(641\) −34.6422 25.1690i −1.36828 0.994116i −0.997869 0.0652496i \(-0.979216\pi\)
−0.370415 0.928867i \(-0.620784\pi\)
\(642\) 0 0
\(643\) −10.5810 + 32.5651i −0.417275 + 1.28424i 0.492925 + 0.870072i \(0.335928\pi\)
−0.910200 + 0.414169i \(0.864072\pi\)
\(644\) 5.88472 18.1113i 0.231890 0.713685i
\(645\) 0 0
\(646\) −1.46978 1.06786i −0.0578279 0.0420144i
\(647\) 3.36612 + 10.3598i 0.132336 + 0.407287i 0.995166 0.0982061i \(-0.0313104\pi\)
−0.862830 + 0.505494i \(0.831310\pi\)
\(648\) 0 0
\(649\) −10.0430 + 19.4860i −0.394222 + 0.764893i
\(650\) −7.45528 −0.292420
\(651\) 0 0
\(652\) −2.06968 1.50371i −0.0810549 0.0588898i
\(653\) −34.0195 + 24.7166i −1.33129 + 0.967237i −0.331571 + 0.943430i \(0.607579\pi\)
−0.999717 + 0.0238064i \(0.992421\pi\)
\(654\) 0 0
\(655\) 2.69563 8.29629i 0.105327 0.324163i
\(656\) −10.6687 + 7.75129i −0.416544 + 0.302637i
\(657\) 0 0
\(658\) 20.8819 + 64.2679i 0.814062 + 2.50543i
\(659\) −0.425249 −0.0165654 −0.00828268 0.999966i \(-0.502636\pi\)
−0.00828268 + 0.999966i \(0.502636\pi\)
\(660\) 0 0
\(661\) −7.08477 −0.275565 −0.137783 0.990462i \(-0.543998\pi\)
−0.137783 + 0.990462i \(0.543998\pi\)
\(662\) 3.85444 + 11.8628i 0.149807 + 0.461059i
\(663\) 0 0
\(664\) 29.9451 21.7564i 1.16210 0.844312i
\(665\) 2.49888 7.69076i 0.0969024 0.298235i
\(666\) 0 0
\(667\) 6.92937 5.03448i 0.268306 0.194936i
\(668\) −0.728290 0.529134i −0.0281784 0.0204728i
\(669\) 0 0
\(670\) −9.03224 −0.348946
\(671\) −2.69305 17.5303i −0.103964 0.676750i
\(672\) 0 0
\(673\) −3.79575 11.6821i −0.146315 0.450313i 0.850862 0.525389i \(-0.176080\pi\)
−0.997178 + 0.0750760i \(0.976080\pi\)
\(674\) −20.1151 14.6145i −0.774806 0.562929i
\(675\) 0 0
\(676\) −4.25456 + 13.0942i −0.163637 + 0.503623i
\(677\) 5.33859 16.4305i 0.205179 0.631475i −0.794527 0.607228i \(-0.792281\pi\)
0.999706 0.0242467i \(-0.00771873\pi\)
\(678\) 0 0
\(679\) −4.70480 3.41824i −0.180554 0.131180i
\(680\) −0.762728 2.34743i −0.0292493 0.0900200i
\(681\) 0 0
\(682\) 2.95925 5.74172i 0.113316 0.219862i
\(683\) 26.8858 1.02876 0.514379 0.857563i \(-0.328022\pi\)
0.514379 + 0.857563i \(0.328022\pi\)
\(684\) 0 0
\(685\) 1.24898 + 0.907437i 0.0477211 + 0.0346714i
\(686\) 19.4610 14.1392i 0.743024 0.539838i
\(687\) 0 0
\(688\) 7.96228 24.5054i 0.303559 0.934259i
\(689\) −13.3264 + 9.68220i −0.507696 + 0.368862i
\(690\) 0 0
\(691\) 7.70472 + 23.7127i 0.293102 + 0.902074i 0.983853 + 0.178981i \(0.0572801\pi\)
−0.690751 + 0.723093i \(0.742720\pi\)
\(692\) −9.04609 −0.343881
\(693\) 0 0
\(694\) 3.59803 0.136579
\(695\) −5.00552 15.4054i −0.189870 0.584361i
\(696\) 0 0
\(697\) 3.28601 2.38743i 0.124467 0.0904302i
\(698\) −4.20695 + 12.9477i −0.159235 + 0.490076i
\(699\) 0 0
\(700\) 1.90572 1.38458i 0.0720293 0.0523323i
\(701\) −16.2387 11.7981i −0.613325 0.445607i 0.237258 0.971447i \(-0.423751\pi\)
−0.850584 + 0.525840i \(0.823751\pi\)
\(702\) 0 0
\(703\) 10.3838 0.391634
\(704\) −20.6092 20.8017i −0.776740 0.783995i
\(705\) 0 0
\(706\) −5.02879 15.4770i −0.189261 0.582485i
\(707\) −29.4292 21.3816i −1.10680 0.804137i
\(708\) 0 0
\(709\) −3.50289 + 10.7808i −0.131554 + 0.404881i −0.995038 0.0994949i \(-0.968277\pi\)
0.863484 + 0.504376i \(0.168277\pi\)
\(710\) 2.17227 6.68557i 0.0815240 0.250905i
\(711\) 0 0
\(712\) 31.7232 + 23.0483i 1.18888 + 0.863771i
\(713\) 4.03479 + 12.4178i 0.151104 + 0.465051i
\(714\) 0 0
\(715\) 18.3131 9.22399i 0.684869 0.344958i
\(716\) 9.60684 0.359025
\(717\) 0 0
\(718\) 24.0956 + 17.5065i 0.899240 + 0.653336i
\(719\) −3.75010 + 2.72460i −0.139855 + 0.101611i −0.655513 0.755184i \(-0.727548\pi\)
0.515658 + 0.856795i \(0.327548\pi\)
\(720\) 0 0
\(721\) −13.2025 + 40.6330i −0.491685 + 1.51325i
\(722\) −15.1103 + 10.9782i −0.562345 + 0.408568i
\(723\) 0 0
\(724\) −1.41804 4.36429i −0.0527012 0.162198i
\(725\) 1.05948 0.0393481
\(726\) 0 0
\(727\) −2.22651 −0.0825766 −0.0412883 0.999147i \(-0.513146\pi\)
−0.0412883 + 0.999147i \(0.513146\pi\)
\(728\) 25.3105 + 77.8977i 0.938069 + 2.88708i
\(729\) 0 0
\(730\) −4.68420 + 3.40327i −0.173370 + 0.125961i
\(731\) −2.45241 + 7.54775i −0.0907057 + 0.279164i
\(732\) 0 0
\(733\) 24.6573 17.9145i 0.910737 0.661689i −0.0304645 0.999536i \(-0.509699\pi\)
0.941201 + 0.337847i \(0.109699\pi\)
\(734\) 6.18994 + 4.49725i 0.228475 + 0.165997i
\(735\) 0 0
\(736\) 24.1904 0.891669
\(737\) 22.1867 11.1751i 0.817257 0.411639i
\(738\) 0 0
\(739\) −2.84351 8.75141i −0.104600 0.321926i 0.885036 0.465522i \(-0.154133\pi\)
−0.989636 + 0.143596i \(0.954133\pi\)
\(740\) 2.44711 + 1.77793i 0.0899575 + 0.0653579i
\(741\) 0 0
\(742\) −4.28450 + 13.1863i −0.157289 + 0.484086i
\(743\) 0.534297 1.64440i 0.0196014 0.0603270i −0.940777 0.339025i \(-0.889903\pi\)
0.960379 + 0.278698i \(0.0899029\pi\)
\(744\) 0 0
\(745\) −11.3410 8.23975i −0.415504 0.301881i
\(746\) −4.91255 15.1193i −0.179861 0.553556i
\(747\) 0 0
\(748\) 1.02443 + 1.03400i 0.0374569 + 0.0378068i
\(749\) −35.2456 −1.28785
\(750\) 0 0
\(751\) −27.4077 19.9129i −1.00012 0.726631i −0.0380072 0.999277i \(-0.512101\pi\)
−0.962114 + 0.272647i \(0.912101\pi\)
\(752\) −27.4231 + 19.9240i −1.00002 + 0.726555i
\(753\) 0 0
\(754\) −2.44084 + 7.51213i −0.0888901 + 0.273576i
\(755\) −10.9906 + 7.98516i −0.399990 + 0.290610i
\(756\) 0 0
\(757\) −8.30257 25.5527i −0.301762 0.928728i −0.980866 0.194685i \(-0.937631\pi\)
0.679104 0.734042i \(-0.262369\pi\)
\(758\) 22.3525 0.811879
\(759\) 0 0
\(760\) 5.75282 0.208677
\(761\) −5.38966 16.5877i −0.195375 0.601303i −0.999972 0.00748151i \(-0.997619\pi\)
0.804597 0.593821i \(-0.202381\pi\)
\(762\) 0 0
\(763\) −47.1304 + 34.2422i −1.70623 + 1.23965i
\(764\) −0.896990 + 2.76065i −0.0324520 + 0.0998769i
\(765\) 0 0
\(766\) 27.6910 20.1187i 1.00052 0.726918i
\(767\) 33.0597 + 24.0193i 1.19372 + 0.867286i
\(768\) 0 0
\(769\) −41.6485 −1.50188 −0.750942 0.660368i \(-0.770400\pi\)
−0.750942 + 0.660368i \(0.770400\pi\)
\(770\) 7.90689 15.3414i 0.284945 0.552867i
\(771\) 0 0
\(772\) −2.57865 7.93626i −0.0928075 0.285632i
\(773\) −17.9209 13.0203i −0.644570 0.468308i 0.216847 0.976206i \(-0.430423\pi\)
−0.861417 + 0.507898i \(0.830423\pi\)
\(774\) 0 0
\(775\) −0.499089 + 1.53604i −0.0179278 + 0.0551762i
\(776\) 1.27845 3.93466i 0.0458937 0.141246i
\(777\) 0 0
\(778\) −18.7032 13.5886i −0.670540 0.487176i
\(779\) 2.92541 + 9.00350i 0.104814 + 0.322584i
\(780\) 0 0
\(781\) 2.93572 + 19.1100i 0.105048 + 0.683809i
\(782\) 7.83783 0.280280
\(783\) 0 0
\(784\) 24.5445 + 17.8326i 0.876588 + 0.636879i
\(785\) −3.54409 + 2.57493i −0.126494 + 0.0919033i