Properties

Label 495.2.n.g.91.3
Level $495$
Weight $2$
Character 495.91
Analytic conductor $3.953$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 495.n (of order \(5\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.95259490005\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \( x^{16} - 2 x^{15} + 5 x^{14} - 8 x^{13} + 47 x^{12} + 32 x^{11} + 171 x^{10} + 26 x^{9} + 360 x^{8} - 172 x^{7} + 471 x^{6} - 430 x^{5} + 383 x^{4} + 70 x^{3} + 17 x^{2} + 4 x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 91.3
Root \(-0.458960 + 1.41253i\) of defining polynomial
Character \(\chi\) \(=\) 495.91
Dual form 495.2.n.g.136.3

$q$-expansion

\(f(q)\) \(=\) \(q+(0.392557 - 0.285209i) q^{2} +(-0.545277 + 1.67819i) q^{4} +(-0.809017 - 0.587785i) q^{5} +(-0.500445 + 1.54021i) q^{7} +(0.564470 + 1.73726i) q^{8} +O(q^{10})\) \(q+(0.392557 - 0.285209i) q^{2} +(-0.545277 + 1.67819i) q^{4} +(-0.809017 - 0.587785i) q^{5} +(-0.500445 + 1.54021i) q^{7} +(0.564470 + 1.73726i) q^{8} -0.485227 q^{10} +(-3.27586 - 0.518382i) q^{11} +(-4.01105 + 2.91420i) q^{13} +(0.242829 + 0.747352i) q^{14} +(-2.13804 - 1.55338i) q^{16} +(-2.53923 - 1.84486i) q^{17} +(0.339378 + 1.04450i) q^{19} +(1.42755 - 1.03718i) q^{20} +(-1.43381 + 0.730812i) q^{22} +6.75778 q^{23} +(0.309017 + 0.951057i) q^{25} +(-0.743409 + 2.28798i) q^{26} +(-2.31189 - 1.67968i) q^{28} +(-1.09732 + 3.37719i) q^{29} +(-6.90648 + 5.01785i) q^{31} -4.93567 q^{32} -1.52296 q^{34} +(1.31018 - 0.951902i) q^{35} +(-1.65626 + 5.09743i) q^{37} +(0.431126 + 0.313231i) q^{38} +(0.564470 - 1.73726i) q^{40} +(1.64408 + 5.05997i) q^{41} +3.41085 q^{43} +(2.65620 - 5.21486i) q^{44} +(2.65281 - 1.92738i) q^{46} +(-2.04000 - 6.27846i) q^{47} +(3.54132 + 2.57292i) q^{49} +(0.392557 + 0.285209i) q^{50} +(-2.70345 - 8.32036i) q^{52} +(7.86059 - 5.71105i) q^{53} +(2.34553 + 2.34488i) q^{55} -2.95823 q^{56} +(0.532447 + 1.63870i) q^{58} +(-2.22043 + 6.83377i) q^{59} +(5.36780 + 3.89994i) q^{61} +(-1.28005 + 3.93958i) q^{62} +(2.33855 - 1.69906i) q^{64} +4.95793 q^{65} +2.36043 q^{67} +(4.48061 - 3.25536i) q^{68} +(0.242829 - 0.747352i) q^{70} +(-13.4749 - 9.79011i) q^{71} +(2.62525 - 8.07968i) q^{73} +(0.803661 + 2.47341i) q^{74} -1.93792 q^{76} +(2.43781 - 4.78610i) q^{77} +(1.61147 - 1.17080i) q^{79} +(0.816659 + 2.51342i) q^{80} +(2.08855 + 1.51742i) q^{82} +(7.72554 + 5.61293i) q^{83} +(0.969900 + 2.98505i) q^{85} +(1.33895 - 0.972807i) q^{86} +(-0.948562 - 5.98364i) q^{88} +2.65371 q^{89} +(-2.48117 - 7.63626i) q^{91} +(-3.68486 + 11.3408i) q^{92} +(-2.59149 - 1.88283i) q^{94} +(0.339378 - 1.04450i) q^{95} +(11.7501 - 8.53692i) q^{97} +2.12399 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{2} - 8 q^{4} - 4 q^{5} - 4 q^{7} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 2 q^{2} - 8 q^{4} - 4 q^{5} - 4 q^{7} - 6 q^{8} + 8 q^{10} + 4 q^{11} + 2 q^{13} - 22 q^{14} + 8 q^{16} - 4 q^{17} - 4 q^{19} + 2 q^{20} - 28 q^{22} + 8 q^{23} - 4 q^{25} + 6 q^{26} - 2 q^{28} - 26 q^{29} - 10 q^{31} + 56 q^{32} - 4 q^{34} - 4 q^{35} + 22 q^{37} - 30 q^{38} - 6 q^{40} - 6 q^{41} + 28 q^{43} + 68 q^{44} + 16 q^{46} - 20 q^{47} + 10 q^{49} - 2 q^{50} + 30 q^{52} + 14 q^{53} - 6 q^{55} + 68 q^{56} - 6 q^{58} - 16 q^{59} - 38 q^{61} - 20 q^{62} + 10 q^{64} + 12 q^{65} + 20 q^{67} - 48 q^{68} - 22 q^{70} - 54 q^{71} + 2 q^{73} + 28 q^{74} - 44 q^{76} + 34 q^{77} - 12 q^{79} - 22 q^{80} + 30 q^{82} - 28 q^{83} - 4 q^{85} + 74 q^{86} + 46 q^{88} + 76 q^{89} - 34 q^{91} - 8 q^{92} - 10 q^{94} - 4 q^{95} - 18 q^{97} + 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(397\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.392557 0.285209i 0.277580 0.201673i −0.440281 0.897860i \(-0.645121\pi\)
0.717861 + 0.696186i \(0.245121\pi\)
\(3\) 0 0
\(4\) −0.545277 + 1.67819i −0.272639 + 0.839096i
\(5\) −0.809017 0.587785i −0.361803 0.262866i
\(6\) 0 0
\(7\) −0.500445 + 1.54021i −0.189150 + 0.582145i −0.999995 0.00311638i \(-0.999008\pi\)
0.810845 + 0.585261i \(0.199008\pi\)
\(8\) 0.564470 + 1.73726i 0.199570 + 0.614214i
\(9\) 0 0
\(10\) −0.485227 −0.153442
\(11\) −3.27586 0.518382i −0.987710 0.156298i
\(12\) 0 0
\(13\) −4.01105 + 2.91420i −1.11247 + 0.808254i −0.983050 0.183337i \(-0.941310\pi\)
−0.129415 + 0.991590i \(0.541310\pi\)
\(14\) 0.242829 + 0.747352i 0.0648989 + 0.199738i
\(15\) 0 0
\(16\) −2.13804 1.55338i −0.534510 0.388344i
\(17\) −2.53923 1.84486i −0.615854 0.447444i 0.235617 0.971846i \(-0.424289\pi\)
−0.851471 + 0.524402i \(0.824289\pi\)
\(18\) 0 0
\(19\) 0.339378 + 1.04450i 0.0778586 + 0.239624i 0.982409 0.186743i \(-0.0597931\pi\)
−0.904550 + 0.426367i \(0.859793\pi\)
\(20\) 1.42755 1.03718i 0.319211 0.231920i
\(21\) 0 0
\(22\) −1.43381 + 0.730812i −0.305689 + 0.155810i
\(23\) 6.75778 1.40909 0.704547 0.709657i \(-0.251150\pi\)
0.704547 + 0.709657i \(0.251150\pi\)
\(24\) 0 0
\(25\) 0.309017 + 0.951057i 0.0618034 + 0.190211i
\(26\) −0.743409 + 2.28798i −0.145795 + 0.448710i
\(27\) 0 0
\(28\) −2.31189 1.67968i −0.436905 0.317430i
\(29\) −1.09732 + 3.37719i −0.203766 + 0.627129i 0.795995 + 0.605303i \(0.206948\pi\)
−0.999762 + 0.0218260i \(0.993052\pi\)
\(30\) 0 0
\(31\) −6.90648 + 5.01785i −1.24044 + 0.901232i −0.997628 0.0688408i \(-0.978070\pi\)
−0.242812 + 0.970073i \(0.578070\pi\)
\(32\) −4.93567 −0.872511
\(33\) 0 0
\(34\) −1.52296 −0.261186
\(35\) 1.31018 0.951902i 0.221461 0.160901i
\(36\) 0 0
\(37\) −1.65626 + 5.09743i −0.272287 + 0.838013i 0.717638 + 0.696417i \(0.245223\pi\)
−0.989924 + 0.141596i \(0.954777\pi\)
\(38\) 0.431126 + 0.313231i 0.0699378 + 0.0508128i
\(39\) 0 0
\(40\) 0.564470 1.73726i 0.0892506 0.274685i
\(41\) 1.64408 + 5.05997i 0.256763 + 0.790234i 0.993477 + 0.114030i \(0.0363761\pi\)
−0.736715 + 0.676204i \(0.763624\pi\)
\(42\) 0 0
\(43\) 3.41085 0.520150 0.260075 0.965588i \(-0.416253\pi\)
0.260075 + 0.965588i \(0.416253\pi\)
\(44\) 2.65620 5.21486i 0.400437 0.786170i
\(45\) 0 0
\(46\) 2.65281 1.92738i 0.391136 0.284177i
\(47\) −2.04000 6.27846i −0.297564 0.915808i −0.982348 0.187062i \(-0.940104\pi\)
0.684784 0.728746i \(-0.259896\pi\)
\(48\) 0 0
\(49\) 3.54132 + 2.57292i 0.505902 + 0.367560i
\(50\) 0.392557 + 0.285209i 0.0555159 + 0.0403347i
\(51\) 0 0
\(52\) −2.70345 8.32036i −0.374901 1.15383i
\(53\) 7.86059 5.71105i 1.07973 0.784473i 0.102098 0.994774i \(-0.467444\pi\)
0.977637 + 0.210301i \(0.0674444\pi\)
\(54\) 0 0
\(55\) 2.34553 + 2.34488i 0.316271 + 0.316184i
\(56\) −2.95823 −0.395310
\(57\) 0 0
\(58\) 0.532447 + 1.63870i 0.0699138 + 0.215172i
\(59\) −2.22043 + 6.83377i −0.289075 + 0.889681i 0.696073 + 0.717971i \(0.254929\pi\)
−0.985148 + 0.171710i \(0.945071\pi\)
\(60\) 0 0
\(61\) 5.36780 + 3.89994i 0.687277 + 0.499336i 0.875764 0.482740i \(-0.160358\pi\)
−0.188487 + 0.982076i \(0.560358\pi\)
\(62\) −1.28005 + 3.93958i −0.162566 + 0.500328i
\(63\) 0 0
\(64\) 2.33855 1.69906i 0.292319 0.212382i
\(65\) 4.95793 0.614956
\(66\) 0 0
\(67\) 2.36043 0.288373 0.144186 0.989551i \(-0.453944\pi\)
0.144186 + 0.989551i \(0.453944\pi\)
\(68\) 4.48061 3.25536i 0.543354 0.394770i
\(69\) 0 0
\(70\) 0.242829 0.747352i 0.0290237 0.0893256i
\(71\) −13.4749 9.79011i −1.59918 1.16187i −0.889058 0.457794i \(-0.848640\pi\)
−0.710122 0.704078i \(-0.751360\pi\)
\(72\) 0 0
\(73\) 2.62525 8.07968i 0.307262 0.945655i −0.671562 0.740949i \(-0.734376\pi\)
0.978823 0.204706i \(-0.0656239\pi\)
\(74\) 0.803661 + 2.47341i 0.0934237 + 0.287528i
\(75\) 0 0
\(76\) −1.93792 −0.222295
\(77\) 2.43781 4.78610i 0.277814 0.545426i
\(78\) 0 0
\(79\) 1.61147 1.17080i 0.181305 0.131726i −0.493431 0.869785i \(-0.664258\pi\)
0.674736 + 0.738059i \(0.264258\pi\)
\(80\) 0.816659 + 2.51342i 0.0913052 + 0.281009i
\(81\) 0 0
\(82\) 2.08855 + 1.51742i 0.230641 + 0.167571i
\(83\) 7.72554 + 5.61293i 0.847988 + 0.616099i 0.924590 0.380962i \(-0.124407\pi\)
−0.0766027 + 0.997062i \(0.524407\pi\)
\(84\) 0 0
\(85\) 0.969900 + 2.98505i 0.105200 + 0.323774i
\(86\) 1.33895 0.972807i 0.144383 0.104900i
\(87\) 0 0
\(88\) −0.948562 5.98364i −0.101117 0.637858i
\(89\) 2.65371 0.281293 0.140647 0.990060i \(-0.455082\pi\)
0.140647 + 0.990060i \(0.455082\pi\)
\(90\) 0 0
\(91\) −2.48117 7.63626i −0.260097 0.800497i
\(92\) −3.68486 + 11.3408i −0.384174 + 1.18236i
\(93\) 0 0
\(94\) −2.59149 1.88283i −0.267292 0.194199i
\(95\) 0.339378 1.04450i 0.0348194 0.107163i
\(96\) 0 0
\(97\) 11.7501 8.53692i 1.19304 0.866793i 0.199456 0.979907i \(-0.436082\pi\)
0.993582 + 0.113114i \(0.0360824\pi\)
\(98\) 2.12399 0.214555
\(99\) 0 0
\(100\) −1.76455 −0.176455
\(101\) −14.3137 + 10.3995i −1.42427 + 1.03479i −0.433220 + 0.901288i \(0.642623\pi\)
−0.991048 + 0.133504i \(0.957377\pi\)
\(102\) 0 0
\(103\) −1.52540 + 4.69471i −0.150303 + 0.462584i −0.997655 0.0684477i \(-0.978195\pi\)
0.847352 + 0.531031i \(0.178195\pi\)
\(104\) −7.32684 5.32326i −0.718456 0.521989i
\(105\) 0 0
\(106\) 1.45688 4.48383i 0.141505 0.435508i
\(107\) 3.93919 + 12.1236i 0.380816 + 1.17203i 0.939470 + 0.342630i \(0.111318\pi\)
−0.558655 + 0.829400i \(0.688682\pi\)
\(108\) 0 0
\(109\) 15.5953 1.49376 0.746879 0.664960i \(-0.231551\pi\)
0.746879 + 0.664960i \(0.231551\pi\)
\(110\) 1.58954 + 0.251533i 0.151556 + 0.0239827i
\(111\) 0 0
\(112\) 3.46250 2.51565i 0.327175 0.237707i
\(113\) −1.74092 5.35799i −0.163772 0.504038i 0.835172 0.549989i \(-0.185368\pi\)
−0.998944 + 0.0459513i \(0.985368\pi\)
\(114\) 0 0
\(115\) −5.46716 3.97212i −0.509815 0.370402i
\(116\) −5.06923 3.68301i −0.470666 0.341959i
\(117\) 0 0
\(118\) 1.07741 + 3.31593i 0.0991837 + 0.305256i
\(119\) 4.11222 2.98770i 0.376966 0.273882i
\(120\) 0 0
\(121\) 10.4626 + 3.39630i 0.951142 + 0.308755i
\(122\) 3.21947 0.291477
\(123\) 0 0
\(124\) −4.65497 14.3265i −0.418028 1.28656i
\(125\) 0.309017 0.951057i 0.0276393 0.0850651i
\(126\) 0 0
\(127\) −5.95671 4.32780i −0.528572 0.384030i 0.291251 0.956647i \(-0.405928\pi\)
−0.819823 + 0.572616i \(0.805928\pi\)
\(128\) 3.48384 10.7221i 0.307931 0.947713i
\(129\) 0 0
\(130\) 1.94627 1.41405i 0.170699 0.124020i
\(131\) −6.74024 −0.588897 −0.294449 0.955667i \(-0.595136\pi\)
−0.294449 + 0.955667i \(0.595136\pi\)
\(132\) 0 0
\(133\) −1.77859 −0.154223
\(134\) 0.926604 0.673217i 0.0800464 0.0581571i
\(135\) 0 0
\(136\) 1.77168 5.45268i 0.151920 0.467563i
\(137\) −5.11301 3.71482i −0.436834 0.317379i 0.347542 0.937665i \(-0.387017\pi\)
−0.784376 + 0.620286i \(0.787017\pi\)
\(138\) 0 0
\(139\) −4.35212 + 13.3945i −0.369142 + 1.13610i 0.578204 + 0.815892i \(0.303754\pi\)
−0.947346 + 0.320211i \(0.896246\pi\)
\(140\) 0.883062 + 2.71779i 0.0746324 + 0.229695i
\(141\) 0 0
\(142\) −8.08191 −0.678219
\(143\) 14.6503 7.46726i 1.22512 0.624444i
\(144\) 0 0
\(145\) 2.87281 2.08722i 0.238574 0.173334i
\(146\) −1.27384 3.92048i −0.105424 0.324461i
\(147\) 0 0
\(148\) −7.65135 5.55903i −0.628937 0.456950i
\(149\) −14.0344 10.1966i −1.14975 0.835340i −0.161299 0.986906i \(-0.551568\pi\)
−0.988447 + 0.151566i \(0.951568\pi\)
\(150\) 0 0
\(151\) −2.78565 8.57334i −0.226693 0.697689i −0.998115 0.0613655i \(-0.980454\pi\)
0.771423 0.636323i \(-0.219546\pi\)
\(152\) −1.62300 + 1.17918i −0.131642 + 0.0956438i
\(153\) 0 0
\(154\) −0.408062 2.57410i −0.0328825 0.207427i
\(155\) 8.53688 0.685698
\(156\) 0 0
\(157\) 3.68855 + 11.3522i 0.294378 + 0.906003i 0.983430 + 0.181291i \(0.0580275\pi\)
−0.689051 + 0.724713i \(0.741972\pi\)
\(158\) 0.298671 0.919214i 0.0237610 0.0731287i
\(159\) 0 0
\(160\) 3.99304 + 2.90111i 0.315677 + 0.229353i
\(161\) −3.38189 + 10.4084i −0.266531 + 0.820297i
\(162\) 0 0
\(163\) 1.88293 1.36803i 0.147482 0.107152i −0.511597 0.859225i \(-0.670946\pi\)
0.659080 + 0.752073i \(0.270946\pi\)
\(164\) −9.38807 −0.733085
\(165\) 0 0
\(166\) 4.63357 0.359635
\(167\) −7.94813 + 5.77465i −0.615044 + 0.446856i −0.851187 0.524862i \(-0.824117\pi\)
0.236143 + 0.971718i \(0.424117\pi\)
\(168\) 0 0
\(169\) 3.57876 11.0143i 0.275289 0.847252i
\(170\) 1.23210 + 0.895176i 0.0944981 + 0.0686569i
\(171\) 0 0
\(172\) −1.85986 + 5.72406i −0.141813 + 0.436456i
\(173\) 7.18156 + 22.1026i 0.546004 + 1.68043i 0.718592 + 0.695432i \(0.244787\pi\)
−0.172588 + 0.984994i \(0.555213\pi\)
\(174\) 0 0
\(175\) −1.61947 −0.122421
\(176\) 6.19868 + 6.19697i 0.467243 + 0.467114i
\(177\) 0 0
\(178\) 1.04173 0.756864i 0.0780812 0.0567293i
\(179\) −0.116360 0.358121i −0.00869719 0.0267672i 0.946614 0.322370i \(-0.104480\pi\)
−0.955311 + 0.295603i \(0.904480\pi\)
\(180\) 0 0
\(181\) 6.13362 + 4.45634i 0.455909 + 0.331237i 0.791924 0.610619i \(-0.209079\pi\)
−0.336016 + 0.941856i \(0.609079\pi\)
\(182\) −3.15193 2.29001i −0.233637 0.169747i
\(183\) 0 0
\(184\) 3.81456 + 11.7400i 0.281213 + 0.865486i
\(185\) 4.33614 3.15039i 0.318799 0.231621i
\(186\) 0 0
\(187\) 7.36183 + 7.35980i 0.538351 + 0.538202i
\(188\) 11.6488 0.849578
\(189\) 0 0
\(190\) −0.164675 0.506819i −0.0119468 0.0367685i
\(191\) 0.668717 2.05810i 0.0483867 0.148919i −0.923944 0.382528i \(-0.875054\pi\)
0.972331 + 0.233609i \(0.0750536\pi\)
\(192\) 0 0
\(193\) 15.0381 + 10.9258i 1.08246 + 0.786455i 0.978111 0.208085i \(-0.0667230\pi\)
0.104352 + 0.994540i \(0.466723\pi\)
\(194\) 2.17776 6.70246i 0.156354 0.481208i
\(195\) 0 0
\(196\) −6.24885 + 4.54005i −0.446346 + 0.324289i
\(197\) −8.70640 −0.620306 −0.310153 0.950687i \(-0.600380\pi\)
−0.310153 + 0.950687i \(0.600380\pi\)
\(198\) 0 0
\(199\) −18.9231 −1.34142 −0.670712 0.741718i \(-0.734011\pi\)
−0.670712 + 0.741718i \(0.734011\pi\)
\(200\) −1.47780 + 1.07369i −0.104496 + 0.0759211i
\(201\) 0 0
\(202\) −2.65291 + 8.16481i −0.186658 + 0.574474i
\(203\) −4.65244 3.38020i −0.326537 0.237243i
\(204\) 0 0
\(205\) 1.64408 5.05997i 0.114828 0.353403i
\(206\) 0.740168 + 2.27800i 0.0515699 + 0.158716i
\(207\) 0 0
\(208\) 13.1026 0.908505
\(209\) −0.570306 3.59756i −0.0394489 0.248848i
\(210\) 0 0
\(211\) −14.0382 + 10.1994i −0.966431 + 0.702153i −0.954635 0.297777i \(-0.903755\pi\)
−0.0117958 + 0.999930i \(0.503755\pi\)
\(212\) 5.29804 + 16.3057i 0.363871 + 1.11988i
\(213\) 0 0
\(214\) 5.00411 + 3.63570i 0.342074 + 0.248531i
\(215\) −2.75944 2.00485i −0.188192 0.136730i
\(216\) 0 0
\(217\) −4.27223 13.1486i −0.290018 0.892584i
\(218\) 6.12204 4.44792i 0.414637 0.301251i
\(219\) 0 0
\(220\) −5.21413 + 2.65764i −0.351537 + 0.179178i
\(221\) 15.5613 1.04677
\(222\) 0 0
\(223\) 2.22209 + 6.83888i 0.148802 + 0.457965i 0.997480 0.0709441i \(-0.0226012\pi\)
−0.848678 + 0.528909i \(0.822601\pi\)
\(224\) 2.47003 7.60197i 0.165036 0.507928i
\(225\) 0 0
\(226\) −2.21156 1.60679i −0.147111 0.106882i
\(227\) 8.43654 25.9650i 0.559953 1.72336i −0.122538 0.992464i \(-0.539103\pi\)
0.682491 0.730894i \(-0.260897\pi\)
\(228\) 0 0
\(229\) −10.0126 + 7.27460i −0.661653 + 0.480719i −0.867221 0.497924i \(-0.834096\pi\)
0.205568 + 0.978643i \(0.434096\pi\)
\(230\) −3.27906 −0.216215
\(231\) 0 0
\(232\) −6.48646 −0.425857
\(233\) −11.7669 + 8.54918i −0.770878 + 0.560075i −0.902227 0.431261i \(-0.858069\pi\)
0.131350 + 0.991336i \(0.458069\pi\)
\(234\) 0 0
\(235\) −2.04000 + 6.27846i −0.133075 + 0.409562i
\(236\) −10.2576 7.45260i −0.667715 0.485123i
\(237\) 0 0
\(238\) 0.762160 2.34569i 0.0494035 0.152048i
\(239\) 8.93886 + 27.5110i 0.578207 + 1.77954i 0.624991 + 0.780632i \(0.285103\pi\)
−0.0467845 + 0.998905i \(0.514897\pi\)
\(240\) 0 0
\(241\) −9.40610 −0.605900 −0.302950 0.953006i \(-0.597972\pi\)
−0.302950 + 0.953006i \(0.597972\pi\)
\(242\) 5.07581 1.65078i 0.326285 0.106116i
\(243\) 0 0
\(244\) −9.47178 + 6.88165i −0.606369 + 0.440553i
\(245\) −1.35266 4.16307i −0.0864184 0.265969i
\(246\) 0 0
\(247\) −4.40514 3.20052i −0.280292 0.203644i
\(248\) −12.6158 9.16593i −0.801105 0.582037i
\(249\) 0 0
\(250\) −0.149943 0.461478i −0.00948325 0.0291865i
\(251\) −0.0263240 + 0.0191255i −0.00166155 + 0.00120719i −0.588616 0.808413i \(-0.700327\pi\)
0.586954 + 0.809620i \(0.300327\pi\)
\(252\) 0 0
\(253\) −22.1376 3.50311i −1.39178 0.220239i
\(254\) −3.57267 −0.224170
\(255\) 0 0
\(256\) 0.0960403 + 0.295582i 0.00600252 + 0.0184738i
\(257\) 2.04470 6.29295i 0.127545 0.392544i −0.866811 0.498637i \(-0.833834\pi\)
0.994356 + 0.106093i \(0.0338342\pi\)
\(258\) 0 0
\(259\) −7.02226 5.10197i −0.436342 0.317021i
\(260\) −2.70345 + 8.32036i −0.167661 + 0.516007i
\(261\) 0 0
\(262\) −2.64593 + 1.92238i −0.163466 + 0.118765i
\(263\) 5.19057 0.320064 0.160032 0.987112i \(-0.448840\pi\)
0.160032 + 0.987112i \(0.448840\pi\)
\(264\) 0 0
\(265\) −9.71622 −0.596863
\(266\) −0.698196 + 0.507269i −0.0428092 + 0.0311027i
\(267\) 0 0
\(268\) −1.28709 + 3.96126i −0.0786215 + 0.241972i
\(269\) 12.8451 + 9.33248i 0.783177 + 0.569011i 0.905931 0.423426i \(-0.139173\pi\)
−0.122754 + 0.992437i \(0.539173\pi\)
\(270\) 0 0
\(271\) −8.10665 + 24.9497i −0.492444 + 1.51559i 0.328459 + 0.944518i \(0.393471\pi\)
−0.820903 + 0.571068i \(0.806529\pi\)
\(272\) 2.56322 + 7.88877i 0.155418 + 0.478327i
\(273\) 0 0
\(274\) −3.06665 −0.185263
\(275\) −0.519286 3.27572i −0.0313141 0.197533i
\(276\) 0 0
\(277\) 5.26762 3.82715i 0.316501 0.229951i −0.418180 0.908364i \(-0.637332\pi\)
0.734681 + 0.678413i \(0.237332\pi\)
\(278\) 2.11177 + 6.49935i 0.126655 + 0.389805i
\(279\) 0 0
\(280\) 2.39326 + 1.73881i 0.143025 + 0.103914i
\(281\) −9.07621 6.59425i −0.541441 0.393380i 0.283179 0.959067i \(-0.408611\pi\)
−0.824620 + 0.565687i \(0.808611\pi\)
\(282\) 0 0
\(283\) 2.55759 + 7.87145i 0.152033 + 0.467909i 0.997848 0.0655669i \(-0.0208856\pi\)
−0.845815 + 0.533476i \(0.820886\pi\)
\(284\) 23.7773 17.2752i 1.41092 1.02509i
\(285\) 0 0
\(286\) 3.62136 7.10973i 0.214135 0.420407i
\(287\) −8.61619 −0.508597
\(288\) 0 0
\(289\) −2.20910 6.79890i −0.129947 0.399935i
\(290\) 0.532447 1.63870i 0.0312664 0.0962281i
\(291\) 0 0
\(292\) 12.1278 + 8.81133i 0.709723 + 0.515644i
\(293\) −0.129311 + 0.397978i −0.00755443 + 0.0232501i −0.954763 0.297369i \(-0.903891\pi\)
0.947208 + 0.320619i \(0.103891\pi\)
\(294\) 0 0
\(295\) 5.81315 4.22350i 0.338455 0.245902i
\(296\) −9.79048 −0.569060
\(297\) 0 0
\(298\) −8.41749 −0.487612
\(299\) −27.1058 + 19.6935i −1.56757 + 1.13891i
\(300\) 0 0
\(301\) −1.70694 + 5.25343i −0.0983866 + 0.302803i
\(302\) −3.53872 2.57103i −0.203631 0.147946i
\(303\) 0 0
\(304\) 0.896895 2.76036i 0.0514405 0.158318i
\(305\) −2.05032 6.31023i −0.117401 0.361323i
\(306\) 0 0
\(307\) −32.7941 −1.87166 −0.935828 0.352457i \(-0.885346\pi\)
−0.935828 + 0.352457i \(0.885346\pi\)
\(308\) 6.70270 + 6.70086i 0.381922 + 0.381817i
\(309\) 0 0
\(310\) 3.35121 2.43480i 0.190336 0.138287i
\(311\) −0.157476 0.484661i −0.00892963 0.0274826i 0.946492 0.322726i \(-0.104599\pi\)
−0.955422 + 0.295243i \(0.904599\pi\)
\(312\) 0 0
\(313\) −2.29169 1.66501i −0.129534 0.0941118i 0.521132 0.853476i \(-0.325510\pi\)
−0.650666 + 0.759364i \(0.725510\pi\)
\(314\) 4.68572 + 3.40437i 0.264430 + 0.192120i
\(315\) 0 0
\(316\) 1.08613 + 3.34277i 0.0610997 + 0.188046i
\(317\) 21.8364 15.8651i 1.22646 0.891073i 0.229837 0.973229i \(-0.426181\pi\)
0.996619 + 0.0821562i \(0.0261807\pi\)
\(318\) 0 0
\(319\) 5.34533 10.4944i 0.299281 0.587573i
\(320\) −2.89061 −0.161590
\(321\) 0 0
\(322\) 1.64099 + 5.05044i 0.0914486 + 0.281450i
\(323\) 1.06519 3.27833i 0.0592689 0.182411i
\(324\) 0 0
\(325\) −4.01105 2.91420i −0.222493 0.161651i
\(326\) 0.348983 1.07406i 0.0193284 0.0594866i
\(327\) 0 0
\(328\) −7.86244 + 5.71240i −0.434131 + 0.315415i
\(329\) 10.6911 0.589417
\(330\) 0 0
\(331\) 21.5474 1.18435 0.592175 0.805809i \(-0.298269\pi\)
0.592175 + 0.805809i \(0.298269\pi\)
\(332\) −13.6321 + 9.90432i −0.748160 + 0.543570i
\(333\) 0 0
\(334\) −1.47311 + 4.53376i −0.0806049 + 0.248076i
\(335\) −1.90963 1.38743i −0.104334 0.0758032i
\(336\) 0 0
\(337\) 3.39195 10.4393i 0.184771 0.568667i −0.815173 0.579217i \(-0.803358\pi\)
0.999944 + 0.0105503i \(0.00335833\pi\)
\(338\) −1.73651 5.34443i −0.0944536 0.290698i
\(339\) 0 0
\(340\) −5.53834 −0.300359
\(341\) 25.2258 12.8576i 1.36606 0.696278i
\(342\) 0 0
\(343\) −14.9063 + 10.8301i −0.804866 + 0.584770i
\(344\) 1.92532 + 5.92554i 0.103807 + 0.319484i
\(345\) 0 0
\(346\) 9.12302 + 6.62826i 0.490457 + 0.356338i
\(347\) −13.5261 9.82728i −0.726119 0.527556i 0.162215 0.986756i \(-0.448136\pi\)
−0.888333 + 0.459199i \(0.848136\pi\)
\(348\) 0 0
\(349\) 1.42097 + 4.37331i 0.0760629 + 0.234098i 0.981858 0.189619i \(-0.0607253\pi\)
−0.905795 + 0.423717i \(0.860725\pi\)
\(350\) −0.635735 + 0.461889i −0.0339815 + 0.0246890i
\(351\) 0 0
\(352\) 16.1686 + 2.55856i 0.861788 + 0.136372i
\(353\) −14.4628 −0.769775 −0.384887 0.922964i \(-0.625760\pi\)
−0.384887 + 0.922964i \(0.625760\pi\)
\(354\) 0 0
\(355\) 5.14697 + 15.8407i 0.273173 + 0.840739i
\(356\) −1.44701 + 4.45344i −0.0766914 + 0.236032i
\(357\) 0 0
\(358\) −0.147817 0.107396i −0.00781240 0.00567604i
\(359\) −2.64715 + 8.14708i −0.139711 + 0.429986i −0.996293 0.0860247i \(-0.972584\pi\)
0.856582 + 0.516011i \(0.172584\pi\)
\(360\) 0 0
\(361\) 14.3955 10.4590i 0.757659 0.550472i
\(362\) 3.67879 0.193353
\(363\) 0 0
\(364\) 14.1680 0.742607
\(365\) −6.87299 + 4.99352i −0.359749 + 0.261373i
\(366\) 0 0
\(367\) 0.355143 1.09302i 0.0185383 0.0570551i −0.941359 0.337405i \(-0.890451\pi\)
0.959898 + 0.280350i \(0.0904507\pi\)
\(368\) −14.4484 10.4974i −0.753175 0.547214i
\(369\) 0 0
\(370\) 0.803661 2.47341i 0.0417803 0.128587i
\(371\) 4.86243 + 14.9650i 0.252445 + 0.776945i
\(372\) 0 0
\(373\) 32.1348 1.66388 0.831939 0.554867i \(-0.187231\pi\)
0.831939 + 0.554867i \(0.187231\pi\)
\(374\) 4.98902 + 0.789478i 0.257976 + 0.0408229i
\(375\) 0 0
\(376\) 9.75581 7.08801i 0.503117 0.365536i
\(377\) −5.44042 16.7439i −0.280196 0.862354i
\(378\) 0 0
\(379\) −11.9238 8.66316i −0.612485 0.444996i 0.237803 0.971313i \(-0.423573\pi\)
−0.850289 + 0.526317i \(0.823573\pi\)
\(380\) 1.56781 + 1.13908i 0.0804271 + 0.0584337i
\(381\) 0 0
\(382\) −0.324480 0.998646i −0.0166018 0.0510952i
\(383\) −24.3423 + 17.6857i −1.24383 + 0.903698i −0.997848 0.0655753i \(-0.979112\pi\)
−0.245986 + 0.969273i \(0.579112\pi\)
\(384\) 0 0
\(385\) −4.78542 + 2.43913i −0.243888 + 0.124309i
\(386\) 9.01943 0.459077
\(387\) 0 0
\(388\) 7.91954 + 24.3738i 0.402054 + 1.23739i
\(389\) −10.7154 + 32.9785i −0.543291 + 1.67208i 0.181727 + 0.983349i \(0.441831\pi\)
−0.725018 + 0.688730i \(0.758169\pi\)
\(390\) 0 0
\(391\) −17.1596 12.4672i −0.867797 0.630491i
\(392\) −2.47086 + 7.60452i −0.124797 + 0.384086i
\(393\) 0 0
\(394\) −3.41776 + 2.48315i −0.172184 + 0.125099i
\(395\) −1.99189 −0.100223
\(396\) 0 0
\(397\) 36.4341 1.82858 0.914288 0.405064i \(-0.132751\pi\)
0.914288 + 0.405064i \(0.132751\pi\)
\(398\) −7.42840 + 5.39705i −0.372352 + 0.270529i
\(399\) 0 0
\(400\) 0.816659 2.51342i 0.0408329 0.125671i
\(401\) 17.4291 + 12.6630i 0.870367 + 0.632359i 0.930685 0.365820i \(-0.119212\pi\)
−0.0603183 + 0.998179i \(0.519212\pi\)
\(402\) 0 0
\(403\) 13.0792 40.2537i 0.651523 2.00518i
\(404\) −9.64745 29.6918i −0.479979 1.47722i
\(405\) 0 0
\(406\) −2.79041 −0.138486
\(407\) 8.06809 15.8399i 0.399920 0.785156i
\(408\) 0 0
\(409\) 4.67164 3.39415i 0.230998 0.167830i −0.466265 0.884645i \(-0.654401\pi\)
0.697263 + 0.716815i \(0.254401\pi\)
\(410\) −0.797753 2.45523i −0.0393982 0.121255i
\(411\) 0 0
\(412\) −7.04686 5.11984i −0.347174 0.252236i
\(413\) −9.41424 6.83985i −0.463245 0.336567i
\(414\) 0 0
\(415\) −2.95089 9.08191i −0.144854 0.445814i
\(416\) 19.7972 14.3835i 0.970638 0.705210i
\(417\) 0 0
\(418\) −1.24994 1.24959i −0.0611363 0.0611195i
\(419\) 13.4745 0.658273 0.329137 0.944282i \(-0.393242\pi\)
0.329137 + 0.944282i \(0.393242\pi\)
\(420\) 0 0
\(421\) −7.48952 23.0504i −0.365017 1.12341i −0.949971 0.312340i \(-0.898887\pi\)
0.584954 0.811067i \(-0.301113\pi\)
\(422\) −2.60185 + 8.00766i −0.126656 + 0.389807i
\(423\) 0 0
\(424\) 14.3587 + 10.4322i 0.697318 + 0.506631i
\(425\) 0.969900 2.98505i 0.0470471 0.144796i
\(426\) 0 0
\(427\) −8.69301 + 6.31584i −0.420684 + 0.305645i
\(428\) −22.4936 −1.08727
\(429\) 0 0
\(430\) −1.65504 −0.0798130
\(431\) −0.627719 + 0.456065i −0.0302362 + 0.0219679i −0.602801 0.797892i \(-0.705949\pi\)
0.572565 + 0.819860i \(0.305949\pi\)
\(432\) 0 0
\(433\) 10.6870 32.8911i 0.513583 1.58065i −0.272262 0.962223i \(-0.587772\pi\)
0.785845 0.618423i \(-0.212228\pi\)
\(434\) −5.42719 3.94309i −0.260514 0.189274i
\(435\) 0 0
\(436\) −8.50376 + 26.1719i −0.407256 + 1.25341i
\(437\) 2.29344 + 7.05849i 0.109710 + 0.337653i
\(438\) 0 0
\(439\) 7.24100 0.345594 0.172797 0.984957i \(-0.444720\pi\)
0.172797 + 0.984957i \(0.444720\pi\)
\(440\) −2.74969 + 5.39842i −0.131086 + 0.257359i
\(441\) 0 0
\(442\) 6.10869 4.43822i 0.290561 0.211105i
\(443\) 1.67245 + 5.14726i 0.0794603 + 0.244554i 0.982893 0.184175i \(-0.0589615\pi\)
−0.903433 + 0.428729i \(0.858961\pi\)
\(444\) 0 0
\(445\) −2.14690 1.55981i −0.101773 0.0739423i
\(446\) 2.82281 + 2.05089i 0.133664 + 0.0971124i
\(447\) 0 0
\(448\) 1.44659 + 4.45214i 0.0683449 + 0.210344i
\(449\) 10.4290 7.57708i 0.492173 0.357585i −0.313846 0.949474i \(-0.601618\pi\)
0.806019 + 0.591889i \(0.201618\pi\)
\(450\) 0 0
\(451\) −2.76279 17.4280i −0.130095 0.820654i
\(452\) 9.94102 0.467586
\(453\) 0 0
\(454\) −4.09364 12.5989i −0.192124 0.591297i
\(455\) −2.48117 + 7.63626i −0.116319 + 0.357993i
\(456\) 0 0
\(457\) −1.37974 1.00244i −0.0645415 0.0468921i 0.555047 0.831819i \(-0.312700\pi\)
−0.619588 + 0.784927i \(0.712700\pi\)
\(458\) −1.85574 + 5.71139i −0.0867132 + 0.266876i
\(459\) 0 0
\(460\) 9.64710 7.00903i 0.449798 0.326798i
\(461\) 29.9226 1.39364 0.696818 0.717248i \(-0.254599\pi\)
0.696818 + 0.717248i \(0.254599\pi\)
\(462\) 0 0
\(463\) −33.9765 −1.57902 −0.789511 0.613736i \(-0.789666\pi\)
−0.789511 + 0.613736i \(0.789666\pi\)
\(464\) 7.59216 5.51603i 0.352457 0.256075i
\(465\) 0 0
\(466\) −2.18089 + 6.71208i −0.101028 + 0.310931i
\(467\) −0.137470 0.0998775i −0.00636133 0.00462178i 0.584600 0.811322i \(-0.301251\pi\)
−0.590961 + 0.806700i \(0.701251\pi\)
\(468\) 0 0
\(469\) −1.18127 + 3.63556i −0.0545458 + 0.167875i
\(470\) 0.989861 + 3.04648i 0.0456589 + 0.140524i
\(471\) 0 0
\(472\) −13.1254 −0.604146
\(473\) −11.1735 1.76813i −0.513757 0.0812985i
\(474\) 0 0
\(475\) −0.888503 + 0.645535i −0.0407673 + 0.0296192i
\(476\) 2.77163 + 8.53022i 0.127038 + 0.390982i
\(477\) 0 0
\(478\) 11.3554 + 8.25018i 0.519384 + 0.377354i
\(479\) −11.8262 8.59223i −0.540352 0.392589i 0.283863 0.958865i \(-0.408384\pi\)
−0.824216 + 0.566276i \(0.808384\pi\)
\(480\) 0 0
\(481\) −8.21161 25.2727i −0.374417 1.15234i
\(482\) −3.69243 + 2.68271i −0.168186 + 0.122194i
\(483\) 0 0
\(484\) −11.4046 + 15.7062i −0.518393 + 0.713920i
\(485\) −14.5239 −0.659495
\(486\) 0 0
\(487\) −7.40157 22.7797i −0.335397 1.03225i −0.966526 0.256569i \(-0.917408\pi\)
0.631129 0.775678i \(-0.282592\pi\)
\(488\) −3.74524 + 11.5267i −0.169539 + 0.521788i
\(489\) 0 0
\(490\) −1.71834 1.24845i −0.0776268 0.0563992i
\(491\) 9.80474 30.1759i 0.442482 1.36182i −0.442740 0.896650i \(-0.645994\pi\)
0.885222 0.465169i \(-0.154006\pi\)
\(492\) 0 0
\(493\) 9.01679 6.55108i 0.406096 0.295046i
\(494\) −2.64209 −0.118873
\(495\) 0 0
\(496\) 22.5609 1.01302
\(497\) 21.8223 15.8548i 0.978864 0.711186i
\(498\) 0 0
\(499\) 10.2290 31.4816i 0.457912 1.40931i −0.409770 0.912189i \(-0.634391\pi\)
0.867682 0.497119i \(-0.165609\pi\)
\(500\) 1.42755 + 1.03718i 0.0638422 + 0.0463841i
\(501\) 0 0
\(502\) −0.00487889 + 0.0150157i −0.000217755 + 0.000670182i
\(503\) 5.60622 + 17.2542i 0.249969 + 0.769326i 0.994779 + 0.102050i \(0.0325400\pi\)
−0.744810 + 0.667276i \(0.767460\pi\)
\(504\) 0 0
\(505\) 17.6927 0.787316
\(506\) −9.68937 + 4.93867i −0.430745 + 0.219550i
\(507\) 0 0
\(508\) 10.5109 7.63664i 0.466347 0.338821i
\(509\) −5.15242 15.8575i −0.228377 0.702872i −0.997931 0.0642907i \(-0.979522\pi\)
0.769554 0.638582i \(-0.220478\pi\)
\(510\) 0 0
\(511\) 11.1306 + 8.08687i 0.492389 + 0.357742i
\(512\) 18.3636 + 13.3419i 0.811565 + 0.589636i
\(513\) 0 0
\(514\) −0.992146 3.05351i −0.0437617 0.134685i
\(515\) 3.99356 2.90149i 0.175977 0.127855i
\(516\) 0 0
\(517\) 3.42810 + 21.6249i 0.150768 + 0.951061i
\(518\) −4.21176 −0.185054
\(519\) 0 0
\(520\) 2.79861 + 8.61322i 0.122727 + 0.377715i
\(521\) 6.34181 19.5181i 0.277840 0.855103i −0.710614 0.703582i \(-0.751583\pi\)
0.988454 0.151521i \(-0.0484172\pi\)
\(522\) 0 0
\(523\) −0.327380 0.237856i −0.0143153 0.0104007i 0.580605 0.814186i \(-0.302816\pi\)
−0.594920 + 0.803785i \(0.702816\pi\)
\(524\) 3.67530 11.3114i 0.160556 0.494141i
\(525\) 0 0
\(526\) 2.03759 1.48040i 0.0888433 0.0645484i
\(527\) 26.7944 1.16718
\(528\) 0 0
\(529\) 22.6676 0.985546
\(530\) −3.81417 + 2.77116i −0.165677 + 0.120371i
\(531\) 0 0
\(532\) 0.969823 2.98481i 0.0420472 0.129408i
\(533\) −21.3403 15.5046i −0.924349 0.671579i
\(534\) 0 0
\(535\) 3.93919 12.1236i 0.170306 0.524148i
\(536\) 1.33239 + 4.10068i 0.0575506 + 0.177123i
\(537\) 0 0
\(538\) 7.70412 0.332148
\(539\) −10.2671 10.2643i −0.442236 0.442114i
\(540\) 0 0
\(541\) 14.3226 10.4060i 0.615777 0.447388i −0.235667 0.971834i \(-0.575728\pi\)
0.851444 + 0.524446i \(0.175728\pi\)
\(542\) 3.93356 + 12.1063i 0.168961 + 0.520009i
\(543\) 0 0
\(544\) 12.5328 + 9.10562i 0.537340 + 0.390400i
\(545\) −12.6169 9.16668i −0.540447 0.392658i
\(546\) 0 0
\(547\) 1.78996 + 5.50893i 0.0765331 + 0.235545i 0.982003 0.188866i \(-0.0604812\pi\)
−0.905470 + 0.424411i \(0.860481\pi\)
\(548\) 9.02219 6.55501i 0.385409 0.280016i
\(549\) 0 0
\(550\) −1.13812 1.13780i −0.0485294 0.0485160i
\(551\) −3.89987 −0.166140
\(552\) 0 0
\(553\) 0.996831 + 3.06793i 0.0423896 + 0.130462i
\(554\) 0.976302 3.00475i 0.0414791 0.127660i
\(555\) 0 0
\(556\) −20.1053 14.6074i −0.852657 0.619491i
\(557\) −12.7219 + 39.1539i −0.539043 + 1.65901i 0.195703 + 0.980663i \(0.437301\pi\)
−0.734746 + 0.678342i \(0.762699\pi\)
\(558\) 0 0
\(559\) −13.6811 + 9.93990i −0.578649 + 0.420413i
\(560\) −4.27988 −0.180858
\(561\) 0 0
\(562\) −5.44367 −0.229627
\(563\) −9.73841 + 7.07537i −0.410425 + 0.298191i −0.773774 0.633462i \(-0.781633\pi\)
0.363349 + 0.931653i \(0.381633\pi\)
\(564\) 0 0
\(565\) −1.74092 + 5.35799i −0.0732410 + 0.225412i
\(566\) 3.24901 + 2.36054i 0.136566 + 0.0992210i
\(567\) 0 0
\(568\) 9.40178 28.9357i 0.394490 1.21411i
\(569\) 1.14144 + 3.51299i 0.0478517 + 0.147272i 0.972127 0.234453i \(-0.0753300\pi\)
−0.924276 + 0.381725i \(0.875330\pi\)
\(570\) 0 0
\(571\) −5.17733 −0.216665 −0.108332 0.994115i \(-0.534551\pi\)
−0.108332 + 0.994115i \(0.534551\pi\)
\(572\) 4.54300 + 28.6578i 0.189952 + 1.19824i
\(573\) 0 0
\(574\) −3.38234 + 2.45742i −0.141176 + 0.102571i
\(575\) 2.08827 + 6.42703i 0.0870868 + 0.268026i
\(576\) 0 0
\(577\) −0.796182 0.578460i −0.0331455 0.0240816i 0.571089 0.820888i \(-0.306521\pi\)
−0.604235 + 0.796806i \(0.706521\pi\)
\(578\) −2.80631 2.03890i −0.116727 0.0848071i
\(579\) 0 0
\(580\) 1.93627 + 5.95924i 0.0803994 + 0.247444i
\(581\) −12.5113 + 9.08999i −0.519056 + 0.377116i
\(582\) 0 0
\(583\) −28.7107 + 14.6338i −1.18908 + 0.606071i
\(584\) 15.5184 0.642155
\(585\) 0 0
\(586\) 0.0627452 + 0.193110i 0.00259198 + 0.00797729i
\(587\) 9.78070 30.1019i 0.403693 1.24244i −0.518289 0.855205i \(-0.673431\pi\)
0.921982 0.387233i \(-0.126569\pi\)
\(588\) 0 0
\(589\) −7.58504 5.51085i −0.312536 0.227071i
\(590\) 1.07741 3.31593i 0.0443563 0.136515i
\(591\) 0 0
\(592\) 11.4594 8.32573i 0.470978 0.342185i
\(593\) −38.9330 −1.59879 −0.799394 0.600808i \(-0.794846\pi\)
−0.799394 + 0.600808i \(0.794846\pi\)
\(594\) 0 0
\(595\) −5.08298 −0.208382
\(596\) 24.7645 17.9925i 1.01440 0.737001i
\(597\) 0 0
\(598\) −5.02380 + 15.4617i −0.205438 + 0.632274i
\(599\) −1.37426 0.998461i −0.0561509 0.0407960i 0.559356 0.828928i \(-0.311049\pi\)
−0.615507 + 0.788132i \(0.711049\pi\)
\(600\) 0 0
\(601\) −12.6949 + 39.0710i −0.517838 + 1.59374i 0.260221 + 0.965549i \(0.416205\pi\)
−0.778059 + 0.628192i \(0.783795\pi\)
\(602\) 0.828255 + 2.54911i 0.0337571 + 0.103894i
\(603\) 0 0
\(604\) 15.9067 0.647233
\(605\) −6.46809 8.89740i −0.262965 0.361731i
\(606\) 0 0
\(607\) 17.6712 12.8389i 0.717253 0.521115i −0.168253 0.985744i \(-0.553812\pi\)
0.885505 + 0.464629i \(0.153812\pi\)
\(608\) −1.67506 5.15529i −0.0679325 0.209075i
\(609\) 0 0
\(610\) −2.60460 1.89235i −0.105457 0.0766192i
\(611\) 26.4792 + 19.2383i 1.07123 + 0.778297i
\(612\) 0 0
\(613\) 14.1471 + 43.5402i 0.571394 + 1.75857i 0.648141 + 0.761521i \(0.275547\pi\)
−0.0767464 + 0.997051i \(0.524453\pi\)
\(614\) −12.8735 + 9.35317i −0.519534 + 0.377463i
\(615\) 0 0
\(616\) 9.69077 + 1.53350i 0.390452 + 0.0617863i
\(617\) 37.0763 1.49263 0.746317 0.665590i \(-0.231820\pi\)
0.746317 + 0.665590i \(0.231820\pi\)
\(618\) 0 0
\(619\) 5.02300 + 15.4592i 0.201891 + 0.621358i 0.999827 + 0.0186148i \(0.00592562\pi\)
−0.797935 + 0.602743i \(0.794074\pi\)
\(620\) −4.65497 + 14.3265i −0.186948 + 0.575367i
\(621\) 0 0
\(622\) −0.200048 0.145343i −0.00802119 0.00582774i
\(623\) −1.32804 + 4.08728i −0.0532067 + 0.163753i
\(624\) 0 0
\(625\) −0.809017 + 0.587785i −0.0323607 + 0.0235114i
\(626\) −1.37449 −0.0549358
\(627\) 0 0
\(628\) −21.0624 −0.840482
\(629\) 13.6097 9.88801i 0.542653 0.394261i
\(630\) 0 0
\(631\) −2.80690 + 8.63874i −0.111741 + 0.343903i −0.991253 0.131973i \(-0.957869\pi\)
0.879513 + 0.475876i \(0.157869\pi\)
\(632\) 2.94362 + 2.13866i 0.117091 + 0.0850715i
\(633\) 0 0
\(634\) 4.04717 12.4559i 0.160734 0.494687i
\(635\) 2.27526 + 7.00253i 0.0902909 + 0.277887i
\(636\) 0 0
\(637\) −21.7024 −0.859880
\(638\) −0.894749 5.64418i −0.0354235 0.223455i
\(639\) 0 0
\(640\) −9.12081 + 6.62665i −0.360531 + 0.261941i
\(641\) 2.30363 + 7.08985i 0.0909879 + 0.280032i 0.986187 0.165634i \(-0.0529670\pi\)
−0.895199 + 0.445666i \(0.852967\pi\)
\(642\) 0 0
\(643\) −35.7255 25.9561i −1.40888 1.02361i −0.993485 0.113966i \(-0.963645\pi\)
−0.415391 0.909643i \(-0.636355\pi\)
\(644\) −15.6232 11.3509i −0.615641 0.447289i
\(645\) 0 0
\(646\) −0.516861 1.59073i −0.0203356 0.0625866i
\(647\) −9.25415 + 6.72353i −0.363818 + 0.264329i −0.754643 0.656136i \(-0.772190\pi\)
0.390825 + 0.920465i \(0.372190\pi\)
\(648\) 0 0
\(649\) 10.8163 21.2355i 0.424578 0.833565i
\(650\) −2.40572 −0.0943602
\(651\) 0 0
\(652\) 1.26909 + 3.90587i 0.0497016 + 0.152966i
\(653\) −0.611505 + 1.88202i −0.0239301 + 0.0736491i −0.962308 0.271961i \(-0.912328\pi\)
0.938378 + 0.345610i \(0.112328\pi\)
\(654\) 0 0
\(655\) 5.45297 + 3.96181i 0.213065 + 0.154801i
\(656\) 4.34492 13.3723i 0.169641 0.522100i
\(657\) 0 0
\(658\) 4.19685 3.04919i 0.163610 0.118870i
\(659\) 18.3062 0.713107 0.356553 0.934275i \(-0.383952\pi\)
0.356553 + 0.934275i \(0.383952\pi\)
\(660\) 0 0
\(661\) −1.16189 −0.0451922 −0.0225961 0.999745i \(-0.507193\pi\)
−0.0225961 + 0.999745i \(0.507193\pi\)
\(662\) 8.45857 6.14551i 0.328752 0.238852i
\(663\) 0 0
\(664\) −5.39029 + 16.5896i −0.209184 + 0.643801i
\(665\) 1.43891 + 1.04543i 0.0557984 + 0.0405399i
\(666\) 0 0
\(667\) −7.41542 + 22.8223i −0.287126 + 0.883683i
\(668\) −5.35704 16.4873i −0.207270 0.637911i
\(669\) 0 0
\(670\) −1.14535 −0.0442485
\(671\) −15.5625 15.5582i −0.600785 0.600619i
\(672\) 0 0
\(673\) −1.06279 + 0.772159i −0.0409674 + 0.0297645i −0.608081 0.793875i \(-0.708060\pi\)
0.567113 + 0.823640i \(0.308060\pi\)
\(674\) −1.64586 5.06545i −0.0633963 0.195114i
\(675\) 0 0
\(676\) 16.5326 + 12.0117i 0.635871 + 0.461987i
\(677\) 15.5872 + 11.3248i 0.599064 + 0.435246i 0.845547 0.533902i \(-0.179275\pi\)
−0.246482 + 0.969147i \(0.579275\pi\)
\(678\) 0 0
\(679\) 7.26840 + 22.3698i 0.278936 + 0.858475i
\(680\) −4.63832 + 3.36994i −0.177872 + 0.129231i
\(681\) 0 0
\(682\) 6.23547 12.2420i 0.238769 0.468770i
\(683\) −7.15293 −0.273699 −0.136850 0.990592i \(-0.543698\pi\)
−0.136850 + 0.990592i \(0.543698\pi\)
\(684\) 0 0
\(685\) 1.95300 + 6.01071i 0.0746202 + 0.229657i
\(686\) −2.76274 + 8.50285i −0.105482 + 0.324640i
\(687\) 0 0
\(688\) −7.29254 5.29834i −0.278025 0.201997i
\(689\) −14.8861 + 45.8146i −0.567114 + 1.74540i
\(690\) 0 0
\(691\) −16.8534 + 12.2447i −0.641134 + 0.465811i −0.860240 0.509890i \(-0.829686\pi\)
0.219106 + 0.975701i \(0.429686\pi\)
\(692\) −41.0083 −1.55890
\(693\) 0 0
\(694\) −8.11259 −0.307950
\(695\) 11.3940 8.27823i 0.432199 0.314011i
\(696\) 0 0
\(697\) 5.16022 15.8815i 0.195457 0.601556i
\(698\) 1.80512 + 1.31150i 0.0683248 + 0.0496409i
\(699\) 0 0
\(700\) 0.883062 2.71779i 0.0333766 0.102723i
\(701\) 5.78777 + 17.8129i 0.218601 + 0.672785i 0.998878 + 0.0473511i \(0.0150780\pi\)
−0.780277 + 0.625434i \(0.784922\pi\)
\(702\) 0 0
\(703\) −5.88636 −0.222008
\(704\) −8.54153 + 4.35361i −0.321921 + 0.164083i
\(705\) 0 0
\(706\) −5.67745 + 4.12491i −0.213674 + 0.155243i
\(707\) −8.85424 27.2505i −0.332998 1.02486i
\(708\) 0 0
\(709\) 14.5888 + 10.5994i 0.547895 + 0.398069i 0.827009 0.562189i \(-0.190041\pi\)
−0.279114 + 0.960258i \(0.590041\pi\)
\(710\) 6.53840 + 4.75043i 0.245382 + 0.178280i
\(711\) 0 0
\(712\) 1.49794 + 4.61019i 0.0561378 + 0.172774i
\(713\) −46.6724 + 33.9095i −1.74790 + 1.26992i
\(714\) 0 0
\(715\) −16.2415 2.57011i −0.607398 0.0961165i
\(716\) 0.664444 0.0248314
\(717\) 0 0
\(718\) 1.28447 + 3.95318i 0.0479359 + 0.147531i
\(719\) 12.1961 37.5357i 0.454837 1.39984i −0.416489 0.909141i \(-0.636740\pi\)
0.871326 0.490704i \(-0.163260\pi\)
\(720\) 0 0
\(721\) −6.46746 4.69889i −0.240861 0.174996i
\(722\) 2.66807 8.21148i 0.0992953 0.305599i
\(723\) 0 0
\(724\) −10.8231 + 7.86345i −0.402238 + 0.292243i
\(725\) −3.55099 −0.131880
\(726\) 0 0
\(727\) 12.4002 0.459899 0.229950 0.973203i \(-0.426144\pi\)
0.229950 + 0.973203i \(0.426144\pi\)
\(728\) 11.8656 8.62088i 0.439769 0.319511i
\(729\) 0 0
\(730\) −1.27384 + 3.92048i −0.0471470 + 0.145103i
\(731\) −8.66095 6.29255i −0.320337 0.232738i
\(732\) 0 0
\(733\) 3.38267 10.4108i 0.124942 0.384531i −0.868949 0.494902i \(-0.835204\pi\)
0.993890 + 0.110371i \(0.0352040\pi\)
\(734\) −0.172325 0.530362i −0.00636063 0.0195760i
\(735\) 0 0
\(736\) −33.3541 −1.22945
\(737\) −7.73245 1.22361i −0.284828 0.0450721i
\(738\) 0 0
\(739\) −11.8963 + 8.64319i −0.437614 + 0.317945i −0.784686 0.619893i \(-0.787176\pi\)
0.347072 + 0.937838i \(0.387176\pi\)
\(740\) 2.92256 + 8.99470i 0.107435 + 0.330652i
\(741\) 0 0
\(742\) 6.17695 + 4.48781i 0.226763 + 0.164753i
\(743\) 23.3464 + 16.9622i 0.856498 + 0.622282i 0.926930 0.375234i \(-0.122438\pi\)
−0.0704319 + 0.997517i \(0.522438\pi\)
\(744\) 0 0
\(745\) 5.36068 + 16.4985i 0.196400 + 0.604458i
\(746\) 12.6148 9.16515i 0.461859 0.335560i
\(747\) 0 0
\(748\) −16.3654 + 8.34143i −0.598378 + 0.304993i
\(749\) −20.6442 −0.754323
\(750\) 0 0
\(751\) −7.95563 24.4849i −0.290305 0.893467i −0.984758 0.173929i \(-0.944354\pi\)
0.694453 0.719538i \(-0.255646\pi\)
\(752\) −5.39122 + 16.5925i −0.196598 + 0.605066i
\(753\) 0 0
\(754\) −6.91119 5.02127i −0.251691 0.182864i
\(755\) −2.78565 + 8.57334i −0.101380 + 0.312016i
\(756\) 0 0
\(757\) −32.0812 + 23.3083i −1.16601 + 0.847156i −0.990526 0.137326i \(-0.956149\pi\)
−0.175485 + 0.984482i \(0.556149\pi\)
\(758\) −7.15159 −0.259757
\(759\) 0 0
\(760\) 2.00613 0.0727701
\(761\) 25.2185 18.3223i 0.914170 0.664183i −0.0278959 0.999611i \(-0.508881\pi\)
0.942066 + 0.335427i \(0.108881\pi\)
\(762\) 0 0
\(763\) −7.80458 + 24.0200i −0.282545 + 0.869583i
\(764\) 3.08925 + 2.24447i 0.111765 + 0.0812021i
\(765\) 0 0
\(766\) −4.51161 + 13.8853i −0.163011 + 0.501696i
\(767\) −11.0087 33.8814i −0.397502 1.22339i
\(768\) 0 0
\(769\) −38.5273 −1.38933 −0.694666 0.719333i \(-0.744448\pi\)
−0.694666 + 0.719333i \(0.744448\pi\)
\(770\) −1.18289 + 2.32234i −0.0426284 + 0.0836915i
\(771\) 0 0
\(772\) −26.5355 + 19.2792i −0.955033 + 0.693872i
\(773\) −13.2417 40.7537i −0.476270 1.46581i −0.844237 0.535970i \(-0.819946\pi\)
0.367967 0.929839i \(-0.380054\pi\)
\(774\) 0 0
\(775\) −6.90648 5.01785i −0.248088 0.180246i
\(776\) 21.4634 + 15.5941i 0.770492 + 0.559795i
\(777\) 0 0
\(778\) 5.19939 + 16.0021i 0.186407 + 0.573702i
\(779\) −4.72716 + 3.43448i −0.169368 + 0.123053i
\(780\) 0 0
\(781\) 39.0670 + 39.0562i 1.39793 + 1.39754i
\(782\) −10.2919 −0.368036
\(783\) 0 0
\(784\) −3.57477 11.0020i −0.127670 0.392928i
\(785\) 3.68855 11.3522i 0.131650 0.405177i