Properties

Label 495.2.n.g.361.4
Level $495$
Weight $2$
Character 495.361
Analytic conductor $3.953$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 495.n (of order \(5\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.95259490005\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \( x^{16} - 2 x^{15} + 5 x^{14} - 8 x^{13} + 47 x^{12} + 32 x^{11} + 171 x^{10} + 26 x^{9} + 360 x^{8} - 172 x^{7} + 471 x^{6} - 430 x^{5} + 383 x^{4} + 70 x^{3} + 17 x^{2} + 4 x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 361.4
Root \(-1.41763 - 1.02997i\) of defining polynomial
Character \(\chi\) \(=\) 495.361
Dual form 495.2.n.g.181.4

$q$-expansion

\(f(q)\) \(=\) \(q+(0.850504 - 2.61758i) q^{2} +(-4.51034 - 3.27695i) q^{4} +(0.309017 + 0.951057i) q^{5} +(-2.21013 - 1.60575i) q^{7} +(-7.96046 + 5.78361i) q^{8} +O(q^{10})\) \(q+(0.850504 - 2.61758i) q^{2} +(-4.51034 - 3.27695i) q^{4} +(0.309017 + 0.951057i) q^{5} +(-2.21013 - 1.60575i) q^{7} +(-7.96046 + 5.78361i) q^{8} +2.75229 q^{10} +(-3.02195 - 1.36669i) q^{11} +(-0.857468 + 2.63902i) q^{13} +(-6.08291 + 4.41949i) q^{14} +(4.92308 + 15.1517i) q^{16} +(-1.16845 - 3.59612i) q^{17} +(3.43983 - 2.49918i) q^{19} +(1.72280 - 5.30222i) q^{20} +(-6.14759 + 6.74782i) q^{22} -1.37658 q^{23} +(-0.809017 + 0.587785i) q^{25} +(6.17856 + 4.48898i) q^{26} +(4.70645 + 14.4850i) q^{28} +(-7.17384 - 5.21210i) q^{29} +(1.68946 - 5.19964i) q^{31} +24.1685 q^{32} -10.4069 q^{34} +(0.844194 - 2.59816i) q^{35} +(1.86189 + 1.35274i) q^{37} +(-3.61622 - 11.1296i) q^{38} +(-7.96046 - 5.78361i) q^{40} +(-6.97314 + 5.06629i) q^{41} +12.3981 q^{43} +(9.15144 + 16.0670i) q^{44} +(-1.17079 + 3.60332i) q^{46} +(4.52496 - 3.28757i) q^{47} +(0.143108 + 0.440442i) q^{49} +(0.850504 + 2.61758i) q^{50} +(12.5154 - 9.09297i) q^{52} +(-0.168046 + 0.517191i) q^{53} +(0.365963 - 3.29637i) q^{55} +26.8807 q^{56} +(-19.7445 + 14.3452i) q^{58} +(-0.314933 - 0.228812i) q^{59} +(-4.43173 - 13.6395i) q^{61} +(-12.1736 - 8.84462i) q^{62} +(10.7092 - 32.9596i) q^{64} -2.77482 q^{65} +3.65454 q^{67} +(-6.51421 + 20.0487i) q^{68} +(-6.08291 - 4.41949i) q^{70} +(-2.83231 - 8.71697i) q^{71} +(-6.60178 - 4.79647i) q^{73} +(5.12445 - 3.72313i) q^{74} -23.7045 q^{76} +(4.48433 + 7.87305i) q^{77} +(-1.06521 + 3.27837i) q^{79} +(-12.8888 + 9.36425i) q^{80} +(7.33073 + 22.5617i) q^{82} +(-1.43839 - 4.42691i) q^{83} +(3.05904 - 2.22252i) q^{85} +(10.5446 - 32.4530i) q^{86} +(31.9605 - 6.59832i) q^{88} +6.62318 q^{89} +(6.13272 - 4.45568i) q^{91} +(6.20886 + 4.51100i) q^{92} +(-4.75700 - 14.6405i) q^{94} +(3.43983 + 2.49918i) q^{95} +(-5.12775 + 15.7816i) q^{97} +1.27461 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{2} - 8 q^{4} - 4 q^{5} - 4 q^{7} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 2 q^{2} - 8 q^{4} - 4 q^{5} - 4 q^{7} - 6 q^{8} + 8 q^{10} + 4 q^{11} + 2 q^{13} - 22 q^{14} + 8 q^{16} - 4 q^{17} - 4 q^{19} + 2 q^{20} - 28 q^{22} + 8 q^{23} - 4 q^{25} + 6 q^{26} - 2 q^{28} - 26 q^{29} - 10 q^{31} + 56 q^{32} - 4 q^{34} - 4 q^{35} + 22 q^{37} - 30 q^{38} - 6 q^{40} - 6 q^{41} + 28 q^{43} + 68 q^{44} + 16 q^{46} - 20 q^{47} + 10 q^{49} - 2 q^{50} + 30 q^{52} + 14 q^{53} - 6 q^{55} + 68 q^{56} - 6 q^{58} - 16 q^{59} - 38 q^{61} - 20 q^{62} + 10 q^{64} + 12 q^{65} + 20 q^{67} - 48 q^{68} - 22 q^{70} - 54 q^{71} + 2 q^{73} + 28 q^{74} - 44 q^{76} + 34 q^{77} - 12 q^{79} - 22 q^{80} + 30 q^{82} - 28 q^{83} - 4 q^{85} + 74 q^{86} + 46 q^{88} + 76 q^{89} - 34 q^{91} - 8 q^{92} - 10 q^{94} - 4 q^{95} - 18 q^{97} + 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(397\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.850504 2.61758i 0.601397 1.85091i 0.0815129 0.996672i \(-0.474025\pi\)
0.519884 0.854237i \(-0.325975\pi\)
\(3\) 0 0
\(4\) −4.51034 3.27695i −2.25517 1.63848i
\(5\) 0.309017 + 0.951057i 0.138197 + 0.425325i
\(6\) 0 0
\(7\) −2.21013 1.60575i −0.835350 0.606917i 0.0857178 0.996319i \(-0.472682\pi\)
−0.921068 + 0.389402i \(0.872682\pi\)
\(8\) −7.96046 + 5.78361i −2.81445 + 2.04481i
\(9\) 0 0
\(10\) 2.75229 0.870350
\(11\) −3.02195 1.36669i −0.911152 0.412072i
\(12\) 0 0
\(13\) −0.857468 + 2.63902i −0.237819 + 0.731931i 0.758916 + 0.651188i \(0.225729\pi\)
−0.996735 + 0.0807428i \(0.974271\pi\)
\(14\) −6.08291 + 4.41949i −1.62573 + 1.18116i
\(15\) 0 0
\(16\) 4.92308 + 15.1517i 1.23077 + 3.78792i
\(17\) −1.16845 3.59612i −0.283391 0.872187i −0.986876 0.161477i \(-0.948374\pi\)
0.703486 0.710709i \(-0.251626\pi\)
\(18\) 0 0
\(19\) 3.43983 2.49918i 0.789151 0.573352i −0.118561 0.992947i \(-0.537828\pi\)
0.907711 + 0.419595i \(0.137828\pi\)
\(20\) 1.72280 5.30222i 0.385229 1.18561i
\(21\) 0 0
\(22\) −6.14759 + 6.74782i −1.31067 + 1.43864i
\(23\) −1.37658 −0.287038 −0.143519 0.989648i \(-0.545842\pi\)
−0.143519 + 0.989648i \(0.545842\pi\)
\(24\) 0 0
\(25\) −0.809017 + 0.587785i −0.161803 + 0.117557i
\(26\) 6.17856 + 4.48898i 1.21171 + 0.880362i
\(27\) 0 0
\(28\) 4.70645 + 14.4850i 0.889436 + 2.73740i
\(29\) −7.17384 5.21210i −1.33215 0.967862i −0.999694 0.0247431i \(-0.992123\pi\)
−0.332454 0.943119i \(-0.607877\pi\)
\(30\) 0 0
\(31\) 1.68946 5.19964i 0.303437 0.933883i −0.676819 0.736149i \(-0.736642\pi\)
0.980256 0.197733i \(-0.0633580\pi\)
\(32\) 24.1685 4.27243
\(33\) 0 0
\(34\) −10.4069 −1.78477
\(35\) 0.844194 2.59816i 0.142695 0.439169i
\(36\) 0 0
\(37\) 1.86189 + 1.35274i 0.306093 + 0.222389i 0.730218 0.683214i \(-0.239418\pi\)
−0.424125 + 0.905603i \(0.639418\pi\)
\(38\) −3.61622 11.1296i −0.586629 1.80546i
\(39\) 0 0
\(40\) −7.96046 5.78361i −1.25866 0.914469i
\(41\) −6.97314 + 5.06629i −1.08902 + 0.791221i −0.979234 0.202734i \(-0.935017\pi\)
−0.109788 + 0.993955i \(0.535017\pi\)
\(42\) 0 0
\(43\) 12.3981 1.89069 0.945346 0.326070i \(-0.105724\pi\)
0.945346 + 0.326070i \(0.105724\pi\)
\(44\) 9.15144 + 16.0670i 1.37963 + 2.42219i
\(45\) 0 0
\(46\) −1.17079 + 3.60332i −0.172623 + 0.531280i
\(47\) 4.52496 3.28757i 0.660033 0.479542i −0.206641 0.978417i \(-0.566253\pi\)
0.866674 + 0.498875i \(0.166253\pi\)
\(48\) 0 0
\(49\) 0.143108 + 0.440442i 0.0204440 + 0.0629202i
\(50\) 0.850504 + 2.61758i 0.120279 + 0.370182i
\(51\) 0 0
\(52\) 12.5154 9.09297i 1.73557 1.26097i
\(53\) −0.168046 + 0.517191i −0.0230828 + 0.0710417i −0.961934 0.273281i \(-0.911891\pi\)
0.938852 + 0.344322i \(0.111891\pi\)
\(54\) 0 0
\(55\) 0.365963 3.29637i 0.0493464 0.444483i
\(56\) 26.8807 3.59208
\(57\) 0 0
\(58\) −19.7445 + 14.3452i −2.59258 + 1.88362i
\(59\) −0.314933 0.228812i −0.0410008 0.0297888i 0.567096 0.823652i \(-0.308067\pi\)
−0.608097 + 0.793863i \(0.708067\pi\)
\(60\) 0 0
\(61\) −4.43173 13.6395i −0.567425 1.74635i −0.660635 0.750707i \(-0.729713\pi\)
0.0932105 0.995646i \(-0.470287\pi\)
\(62\) −12.1736 8.84462i −1.54605 1.12327i
\(63\) 0 0
\(64\) 10.7092 32.9596i 1.33865 4.11996i
\(65\) −2.77482 −0.344175
\(66\) 0 0
\(67\) 3.65454 0.446473 0.223237 0.974764i \(-0.428338\pi\)
0.223237 + 0.974764i \(0.428338\pi\)
\(68\) −6.51421 + 20.0487i −0.789964 + 2.43126i
\(69\) 0 0
\(70\) −6.08291 4.41949i −0.727047 0.528230i
\(71\) −2.83231 8.71697i −0.336134 1.03451i −0.966161 0.257940i \(-0.916956\pi\)
0.630027 0.776573i \(-0.283044\pi\)
\(72\) 0 0
\(73\) −6.60178 4.79647i −0.772680 0.561385i 0.130093 0.991502i \(-0.458472\pi\)
−0.902773 + 0.430117i \(0.858472\pi\)
\(74\) 5.12445 3.72313i 0.595706 0.432805i
\(75\) 0 0
\(76\) −23.7045 −2.71909
\(77\) 4.48433 + 7.87305i 0.511037 + 0.897218i
\(78\) 0 0
\(79\) −1.06521 + 3.27837i −0.119845 + 0.368845i −0.992927 0.118729i \(-0.962118\pi\)
0.873082 + 0.487574i \(0.162118\pi\)
\(80\) −12.8888 + 9.36425i −1.44101 + 1.04695i
\(81\) 0 0
\(82\) 7.33073 + 22.5617i 0.809544 + 2.49152i
\(83\) −1.43839 4.42691i −0.157884 0.485916i 0.840558 0.541722i \(-0.182227\pi\)
−0.998442 + 0.0558055i \(0.982227\pi\)
\(84\) 0 0
\(85\) 3.05904 2.22252i 0.331800 0.241066i
\(86\) 10.5446 32.4530i 1.13706 3.49950i
\(87\) 0 0
\(88\) 31.9605 6.59832i 3.40700 0.703383i
\(89\) 6.62318 0.702056 0.351028 0.936365i \(-0.385832\pi\)
0.351028 + 0.936365i \(0.385832\pi\)
\(90\) 0 0
\(91\) 6.13272 4.45568i 0.642884 0.467082i
\(92\) 6.20886 + 4.51100i 0.647318 + 0.470304i
\(93\) 0 0
\(94\) −4.75700 14.6405i −0.490647 1.51006i
\(95\) 3.43983 + 2.49918i 0.352919 + 0.256411i
\(96\) 0 0
\(97\) −5.12775 + 15.7816i −0.520645 + 1.60238i 0.252126 + 0.967694i \(0.418870\pi\)
−0.772771 + 0.634685i \(0.781130\pi\)
\(98\) 1.27461 0.128755
\(99\) 0 0
\(100\) 5.57509 0.557509
\(101\) 0.166576 0.512669i 0.0165749 0.0510124i −0.942427 0.334412i \(-0.891462\pi\)
0.959002 + 0.283400i \(0.0914623\pi\)
\(102\) 0 0
\(103\) 4.94360 + 3.59174i 0.487108 + 0.353905i 0.804071 0.594533i \(-0.202663\pi\)
−0.316963 + 0.948438i \(0.602663\pi\)
\(104\) −8.43720 25.9670i −0.827335 2.54628i
\(105\) 0 0
\(106\) 1.21087 + 0.879746i 0.117610 + 0.0854485i
\(107\) −7.99070 + 5.80559i −0.772490 + 0.561247i −0.902716 0.430237i \(-0.858430\pi\)
0.130225 + 0.991484i \(0.458430\pi\)
\(108\) 0 0
\(109\) −5.44683 −0.521712 −0.260856 0.965378i \(-0.584005\pi\)
−0.260856 + 0.965378i \(0.584005\pi\)
\(110\) −8.31727 3.76151i −0.793020 0.358646i
\(111\) 0 0
\(112\) 13.4492 41.3924i 1.27083 3.91121i
\(113\) −0.629096 + 0.457065i −0.0591804 + 0.0429971i −0.616982 0.786977i \(-0.711645\pi\)
0.557802 + 0.829974i \(0.311645\pi\)
\(114\) 0 0
\(115\) −0.425388 1.30921i −0.0396676 0.122084i
\(116\) 15.2766 + 47.0167i 1.41840 + 4.36539i
\(117\) 0 0
\(118\) −0.866786 + 0.629757i −0.0797941 + 0.0579738i
\(119\) −3.19205 + 9.82412i −0.292615 + 0.900576i
\(120\) 0 0
\(121\) 7.26434 + 8.26011i 0.660394 + 0.750919i
\(122\) −39.4716 −3.57359
\(123\) 0 0
\(124\) −24.6590 + 17.9158i −2.21445 + 1.60889i
\(125\) −0.809017 0.587785i −0.0723607 0.0525731i
\(126\) 0 0
\(127\) 1.33823 + 4.11865i 0.118749 + 0.365471i 0.992710 0.120524i \(-0.0384574\pi\)
−0.873962 + 0.485995i \(0.838457\pi\)
\(128\) −38.0608 27.6528i −3.36413 2.44419i
\(129\) 0 0
\(130\) −2.36000 + 7.26333i −0.206986 + 0.637036i
\(131\) −11.7312 −1.02496 −0.512478 0.858700i \(-0.671272\pi\)
−0.512478 + 0.858700i \(0.671272\pi\)
\(132\) 0 0
\(133\) −11.6155 −1.00719
\(134\) 3.10820 9.56606i 0.268508 0.826381i
\(135\) 0 0
\(136\) 30.0999 + 21.8689i 2.58105 + 1.87524i
\(137\) 4.19773 + 12.9193i 0.358636 + 1.10377i 0.953871 + 0.300216i \(0.0970589\pi\)
−0.595235 + 0.803552i \(0.702941\pi\)
\(138\) 0 0
\(139\) 9.73424 + 7.07234i 0.825647 + 0.599868i 0.918325 0.395828i \(-0.129542\pi\)
−0.0926772 + 0.995696i \(0.529542\pi\)
\(140\) −12.3217 + 8.95221i −1.04137 + 0.756600i
\(141\) 0 0
\(142\) −25.2263 −2.11694
\(143\) 6.19793 6.80308i 0.518297 0.568902i
\(144\) 0 0
\(145\) 2.74016 8.43335i 0.227558 0.700352i
\(146\) −18.1700 + 13.2013i −1.50376 + 1.09255i
\(147\) 0 0
\(148\) −3.96488 12.2026i −0.325911 1.00305i
\(149\) −4.26239 13.1183i −0.349188 1.07469i −0.959303 0.282378i \(-0.908877\pi\)
0.610115 0.792313i \(-0.291123\pi\)
\(150\) 0 0
\(151\) 13.7584 9.99604i 1.11964 0.813466i 0.135486 0.990779i \(-0.456741\pi\)
0.984154 + 0.177313i \(0.0567405\pi\)
\(152\) −12.9283 + 39.7892i −1.04862 + 3.22733i
\(153\) 0 0
\(154\) 24.4223 5.04204i 1.96800 0.406299i
\(155\) 5.46722 0.439138
\(156\) 0 0
\(157\) 2.92121 2.12238i 0.233138 0.169385i −0.465083 0.885267i \(-0.653975\pi\)
0.698221 + 0.715883i \(0.253975\pi\)
\(158\) 7.67543 + 5.57652i 0.610624 + 0.443644i
\(159\) 0 0
\(160\) 7.46848 + 22.9856i 0.590435 + 1.81717i
\(161\) 3.04243 + 2.21045i 0.239777 + 0.174208i
\(162\) 0 0
\(163\) −1.11971 + 3.44612i −0.0877027 + 0.269921i −0.985283 0.170929i \(-0.945323\pi\)
0.897581 + 0.440850i \(0.145323\pi\)
\(164\) 48.0532 3.75233
\(165\) 0 0
\(166\) −12.8111 −0.994337
\(167\) 0.701987 2.16049i 0.0543214 0.167184i −0.920215 0.391413i \(-0.871986\pi\)
0.974536 + 0.224229i \(0.0719864\pi\)
\(168\) 0 0
\(169\) 4.28807 + 3.11547i 0.329852 + 0.239651i
\(170\) −3.21591 9.89755i −0.246649 0.759107i
\(171\) 0 0
\(172\) −55.9196 40.6280i −4.26383 3.09785i
\(173\) 15.5901 11.3269i 1.18530 0.861169i 0.192538 0.981290i \(-0.438328\pi\)
0.992759 + 0.120121i \(0.0383282\pi\)
\(174\) 0 0
\(175\) 2.73187 0.206510
\(176\) 5.83031 52.5159i 0.439476 3.95853i
\(177\) 0 0
\(178\) 5.63304 17.3367i 0.422214 1.29944i
\(179\) 5.88061 4.27251i 0.439537 0.319343i −0.345914 0.938266i \(-0.612431\pi\)
0.785451 + 0.618924i \(0.212431\pi\)
\(180\) 0 0
\(181\) −2.50887 7.72150i −0.186483 0.573934i 0.813488 0.581581i \(-0.197566\pi\)
−0.999971 + 0.00764707i \(0.997566\pi\)
\(182\) −6.44721 19.8425i −0.477899 1.47082i
\(183\) 0 0
\(184\) 10.9582 7.96162i 0.807852 0.586939i
\(185\) −0.711178 + 2.18878i −0.0522869 + 0.160922i
\(186\) 0 0
\(187\) −1.38377 + 12.4642i −0.101191 + 0.911471i
\(188\) −31.1823 −2.27420
\(189\) 0 0
\(190\) 9.46740 6.87847i 0.686837 0.499016i
\(191\) 16.1974 + 11.7681i 1.17201 + 0.851512i 0.991248 0.132016i \(-0.0421450\pi\)
0.180758 + 0.983528i \(0.442145\pi\)
\(192\) 0 0
\(193\) −6.04819 18.6144i −0.435359 1.33990i −0.892719 0.450614i \(-0.851205\pi\)
0.457360 0.889282i \(-0.348795\pi\)
\(194\) 36.9485 + 26.8446i 2.65274 + 1.92733i
\(195\) 0 0
\(196\) 0.797840 2.45550i 0.0569886 0.175393i
\(197\) 22.9044 1.63187 0.815937 0.578141i \(-0.196222\pi\)
0.815937 + 0.578141i \(0.196222\pi\)
\(198\) 0 0
\(199\) −17.3671 −1.23112 −0.615560 0.788090i \(-0.711070\pi\)
−0.615560 + 0.788090i \(0.711070\pi\)
\(200\) 3.04062 9.35808i 0.215005 0.661716i
\(201\) 0 0
\(202\) −1.20028 0.872053i −0.0844513 0.0613574i
\(203\) 7.48576 + 23.0388i 0.525398 + 1.61701i
\(204\) 0 0
\(205\) −6.97314 5.06629i −0.487026 0.353845i
\(206\) 13.6062 9.88550i 0.947990 0.688755i
\(207\) 0 0
\(208\) −44.2069 −3.06520
\(209\) −13.8106 + 2.85123i −0.955298 + 0.197224i
\(210\) 0 0
\(211\) 5.13295 15.7976i 0.353367 1.08755i −0.603583 0.797300i \(-0.706261\pi\)
0.956950 0.290252i \(-0.0937391\pi\)
\(212\) 2.45275 1.78203i 0.168456 0.122390i
\(213\) 0 0
\(214\) 8.40047 + 25.8540i 0.574244 + 1.76734i
\(215\) 3.83122 + 11.7913i 0.261287 + 0.804159i
\(216\) 0 0
\(217\) −12.0833 + 8.77901i −0.820266 + 0.595958i
\(218\) −4.63255 + 14.2575i −0.313756 + 0.965641i
\(219\) 0 0
\(220\) −12.4527 + 13.6685i −0.839559 + 0.921531i
\(221\) 10.4921 0.705776
\(222\) 0 0
\(223\) 7.24917 5.26683i 0.485440 0.352693i −0.317988 0.948095i \(-0.603007\pi\)
0.803428 + 0.595402i \(0.203007\pi\)
\(224\) −53.4155 38.8086i −3.56897 2.59301i
\(225\) 0 0
\(226\) 0.661356 + 2.03545i 0.0439928 + 0.135396i
\(227\) −0.858807 0.623960i −0.0570010 0.0414137i 0.558920 0.829222i \(-0.311216\pi\)
−0.615921 + 0.787808i \(0.711216\pi\)
\(228\) 0 0
\(229\) −1.80884 + 5.56705i −0.119532 + 0.367881i −0.992865 0.119242i \(-0.961954\pi\)
0.873334 + 0.487123i \(0.161954\pi\)
\(230\) −3.78875 −0.249823
\(231\) 0 0
\(232\) 87.2518 5.72836
\(233\) 0.580093 1.78534i 0.0380031 0.116962i −0.930255 0.366913i \(-0.880415\pi\)
0.968258 + 0.249951i \(0.0804146\pi\)
\(234\) 0 0
\(235\) 4.52496 + 3.28757i 0.295176 + 0.214458i
\(236\) 0.670648 + 2.06404i 0.0436554 + 0.134358i
\(237\) 0 0
\(238\) 23.0006 + 16.7109i 1.49091 + 1.08321i
\(239\) −1.65086 + 1.19942i −0.106785 + 0.0775841i −0.639896 0.768461i \(-0.721023\pi\)
0.533111 + 0.846045i \(0.321023\pi\)
\(240\) 0 0
\(241\) 15.3922 0.991500 0.495750 0.868465i \(-0.334893\pi\)
0.495750 + 0.868465i \(0.334893\pi\)
\(242\) 27.7999 11.9897i 1.78704 0.770729i
\(243\) 0 0
\(244\) −24.7073 + 76.0411i −1.58172 + 4.86804i
\(245\) −0.374662 + 0.272208i −0.0239363 + 0.0173907i
\(246\) 0 0
\(247\) 3.64584 + 11.2207i 0.231979 + 0.713958i
\(248\) 16.6238 + 51.1627i 1.05561 + 3.24883i
\(249\) 0 0
\(250\) −2.22665 + 1.61775i −0.140826 + 0.102316i
\(251\) 4.14616 12.7606i 0.261703 0.805439i −0.730732 0.682665i \(-0.760821\pi\)
0.992435 0.122774i \(-0.0391791\pi\)
\(252\) 0 0
\(253\) 4.15996 + 1.88136i 0.261535 + 0.118280i
\(254\) 11.9191 0.747869
\(255\) 0 0
\(256\) −48.6801 + 35.3681i −3.04250 + 2.21051i
\(257\) −7.77754 5.65071i −0.485150 0.352482i 0.318166 0.948035i \(-0.396933\pi\)
−0.803316 + 0.595553i \(0.796933\pi\)
\(258\) 0 0
\(259\) −1.94285 5.97946i −0.120723 0.371546i
\(260\) 12.5154 + 9.09297i 0.776172 + 0.563922i
\(261\) 0 0
\(262\) −9.97740 + 30.7073i −0.616406 + 1.89710i
\(263\) −23.4178 −1.44400 −0.722002 0.691891i \(-0.756778\pi\)
−0.722002 + 0.691891i \(0.756778\pi\)
\(264\) 0 0
\(265\) −0.543807 −0.0334058
\(266\) −9.87905 + 30.4046i −0.605723 + 1.86422i
\(267\) 0 0
\(268\) −16.4832 11.9758i −1.00687 0.731536i
\(269\) 2.92395 + 8.99899i 0.178276 + 0.548678i 0.999768 0.0215424i \(-0.00685769\pi\)
−0.821492 + 0.570221i \(0.806858\pi\)
\(270\) 0 0
\(271\) −20.6671 15.0155i −1.25544 0.912128i −0.256912 0.966435i \(-0.582705\pi\)
−0.998524 + 0.0543073i \(0.982705\pi\)
\(272\) 48.7348 35.4079i 2.95498 2.14692i
\(273\) 0 0
\(274\) 37.3874 2.25866
\(275\) 3.24813 0.670584i 0.195869 0.0404377i
\(276\) 0 0
\(277\) −1.43703 + 4.42272i −0.0863427 + 0.265736i −0.984901 0.173119i \(-0.944616\pi\)
0.898558 + 0.438854i \(0.144616\pi\)
\(278\) 26.7914 19.4651i 1.60684 1.16744i
\(279\) 0 0
\(280\) 8.30658 + 25.5650i 0.496413 + 1.52780i
\(281\) 3.33872 + 10.2755i 0.199172 + 0.612987i 0.999903 + 0.0139628i \(0.00444464\pi\)
−0.800731 + 0.599024i \(0.795555\pi\)
\(282\) 0 0
\(283\) −1.62343 + 1.17949i −0.0965028 + 0.0701134i −0.634990 0.772520i \(-0.718996\pi\)
0.538487 + 0.842634i \(0.318996\pi\)
\(284\) −15.7904 + 48.5978i −0.936987 + 2.88375i
\(285\) 0 0
\(286\) −12.5362 22.0096i −0.741283 1.30146i
\(287\) 23.5467 1.38992
\(288\) 0 0
\(289\) 2.18650 1.58859i 0.128618 0.0934462i
\(290\) −19.7445 14.3452i −1.15943 0.842379i
\(291\) 0 0
\(292\) 14.0584 + 43.2675i 0.822708 + 2.53204i
\(293\) 0.487479 + 0.354174i 0.0284788 + 0.0206911i 0.601934 0.798546i \(-0.294397\pi\)
−0.573455 + 0.819237i \(0.694397\pi\)
\(294\) 0 0
\(295\) 0.120294 0.370226i 0.00700377 0.0215554i
\(296\) −22.6452 −1.31623
\(297\) 0 0
\(298\) −37.9633 −2.19916
\(299\) 1.18038 3.63283i 0.0682629 0.210092i
\(300\) 0 0
\(301\) −27.4014 19.9083i −1.57939 1.14749i
\(302\) −14.4639 44.5153i −0.832304 2.56157i
\(303\) 0 0
\(304\) 54.8013 + 39.8155i 3.14307 + 2.28357i
\(305\) 11.6024 8.42965i 0.664352 0.482680i
\(306\) 0 0
\(307\) 30.7715 1.75622 0.878112 0.478454i \(-0.158803\pi\)
0.878112 + 0.478454i \(0.158803\pi\)
\(308\) 5.57376 50.2051i 0.317595 2.86070i
\(309\) 0 0
\(310\) 4.64989 14.3109i 0.264096 0.812804i
\(311\) 1.16730 0.848096i 0.0661917 0.0480911i −0.554197 0.832385i \(-0.686975\pi\)
0.620389 + 0.784294i \(0.286975\pi\)
\(312\) 0 0
\(313\) 7.26167 + 22.3491i 0.410454 + 1.26325i 0.916255 + 0.400596i \(0.131197\pi\)
−0.505801 + 0.862650i \(0.668803\pi\)
\(314\) −3.07101 9.45160i −0.173307 0.533384i
\(315\) 0 0
\(316\) 15.5475 11.2959i 0.874615 0.635445i
\(317\) −4.42454 + 13.6173i −0.248507 + 0.764825i 0.746533 + 0.665348i \(0.231717\pi\)
−0.995040 + 0.0994767i \(0.968283\pi\)
\(318\) 0 0
\(319\) 14.5557 + 25.5551i 0.814960 + 1.43081i
\(320\) 34.6558 1.93732
\(321\) 0 0
\(322\) 8.37363 6.08380i 0.466644 0.339037i
\(323\) −13.0066 9.44986i −0.723707 0.525804i
\(324\) 0 0
\(325\) −0.857468 2.63902i −0.0475638 0.146386i
\(326\) 8.06818 + 5.86188i 0.446855 + 0.324659i
\(327\) 0 0
\(328\) 26.2080 80.6599i 1.44709 4.45370i
\(329\) −15.2798 −0.842400
\(330\) 0 0
\(331\) −4.93282 −0.271132 −0.135566 0.990768i \(-0.543285\pi\)
−0.135566 + 0.990768i \(0.543285\pi\)
\(332\) −8.01914 + 24.6804i −0.440108 + 1.35451i
\(333\) 0 0
\(334\) −5.05823 3.67502i −0.276774 0.201088i
\(335\) 1.12932 + 3.47567i 0.0617011 + 0.189896i
\(336\) 0 0
\(337\) −6.22343 4.52159i −0.339012 0.246306i 0.405233 0.914213i \(-0.367190\pi\)
−0.744245 + 0.667907i \(0.767190\pi\)
\(338\) 11.8020 8.57466i 0.641944 0.466400i
\(339\) 0 0
\(340\) −21.0804 −1.14325
\(341\) −12.2118 + 13.4041i −0.661303 + 0.725871i
\(342\) 0 0
\(343\) −5.51840 + 16.9839i −0.297966 + 0.917045i
\(344\) −98.6945 + 71.7057i −5.32125 + 3.86611i
\(345\) 0 0
\(346\) −16.3896 50.4420i −0.881111 2.71178i
\(347\) 5.30460 + 16.3259i 0.284766 + 0.876420i 0.986469 + 0.163950i \(0.0524235\pi\)
−0.701703 + 0.712470i \(0.747576\pi\)
\(348\) 0 0
\(349\) −19.6433 + 14.2717i −1.05148 + 0.763948i −0.972494 0.232927i \(-0.925170\pi\)
−0.0789902 + 0.996875i \(0.525170\pi\)
\(350\) 2.32346 7.15089i 0.124194 0.382231i
\(351\) 0 0
\(352\) −73.0359 33.0308i −3.89283 1.76055i
\(353\) −5.84602 −0.311152 −0.155576 0.987824i \(-0.549723\pi\)
−0.155576 + 0.987824i \(0.549723\pi\)
\(354\) 0 0
\(355\) 7.41509 5.38738i 0.393552 0.285932i
\(356\) −29.8728 21.7038i −1.58325 1.15030i
\(357\) 0 0
\(358\) −6.18217 19.0268i −0.326738 1.00560i
\(359\) −6.58896 4.78716i −0.347752 0.252656i 0.400173 0.916439i \(-0.368950\pi\)
−0.747925 + 0.663783i \(0.768950\pi\)
\(360\) 0 0
\(361\) −0.284813 + 0.876565i −0.0149902 + 0.0461350i
\(362\) −22.3454 −1.17445
\(363\) 0 0
\(364\) −42.2617 −2.21512
\(365\) 2.52166 7.76086i 0.131989 0.406222i
\(366\) 0 0
\(367\) −18.3442 13.3279i −0.957561 0.695709i −0.00497831 0.999988i \(-0.501585\pi\)
−0.952583 + 0.304279i \(0.901585\pi\)
\(368\) −6.77703 20.8575i −0.353277 1.08727i
\(369\) 0 0
\(370\) 5.12445 + 3.72313i 0.266408 + 0.193556i
\(371\) 1.20188 0.873219i 0.0623987 0.0453353i
\(372\) 0 0
\(373\) −14.0566 −0.727825 −0.363913 0.931433i \(-0.618559\pi\)
−0.363913 + 0.931433i \(0.618559\pi\)
\(374\) 31.4491 + 14.2230i 1.62619 + 0.735452i
\(375\) 0 0
\(376\) −17.0067 + 52.3411i −0.877052 + 2.69929i
\(377\) 19.9061 14.4627i 1.02522 0.744865i
\(378\) 0 0
\(379\) −7.79252 23.9829i −0.400275 1.23192i −0.924777 0.380511i \(-0.875748\pi\)
0.524502 0.851410i \(-0.324252\pi\)
\(380\) −7.32509 22.5443i −0.375769 1.15650i
\(381\) 0 0
\(382\) 44.5800 32.3893i 2.28091 1.65718i
\(383\) −7.58065 + 23.3308i −0.387353 + 1.19215i 0.547406 + 0.836867i \(0.315615\pi\)
−0.934759 + 0.355283i \(0.884385\pi\)
\(384\) 0 0
\(385\) −6.10198 + 6.69776i −0.310986 + 0.341349i
\(386\) −53.8688 −2.74185
\(387\) 0 0
\(388\) 74.8435 54.3770i 3.79960 2.76057i
\(389\) −19.5464 14.2013i −0.991044 0.720035i −0.0308944 0.999523i \(-0.509836\pi\)
−0.960149 + 0.279487i \(0.909836\pi\)
\(390\) 0 0
\(391\) 1.60847 + 4.95036i 0.0813437 + 0.250350i
\(392\) −3.68655 2.67843i −0.186199 0.135281i
\(393\) 0 0
\(394\) 19.4803 59.9542i 0.981404 3.02045i
\(395\) −3.44708 −0.173441
\(396\) 0 0
\(397\) −29.4680 −1.47896 −0.739479 0.673179i \(-0.764928\pi\)
−0.739479 + 0.673179i \(0.764928\pi\)
\(398\) −14.7708 + 45.4597i −0.740392 + 2.27869i
\(399\) 0 0
\(400\) −12.8888 9.36425i −0.644439 0.468212i
\(401\) −1.41465 4.35386i −0.0706444 0.217421i 0.909501 0.415702i \(-0.136464\pi\)
−0.980145 + 0.198281i \(0.936464\pi\)
\(402\) 0 0
\(403\) 12.2733 + 8.91705i 0.611375 + 0.444190i
\(404\) −2.43131 + 1.76645i −0.120962 + 0.0878840i
\(405\) 0 0
\(406\) 66.6726 3.30891
\(407\) −3.77776 6.63253i −0.187256 0.328762i
\(408\) 0 0
\(409\) −5.87483 + 18.0809i −0.290492 + 0.894041i 0.694207 + 0.719775i \(0.255755\pi\)
−0.984699 + 0.174266i \(0.944245\pi\)
\(410\) −19.1921 + 13.9439i −0.947830 + 0.688639i
\(411\) 0 0
\(412\) −10.5274 32.3999i −0.518646 1.59623i
\(413\) 0.328627 + 1.01141i 0.0161707 + 0.0497682i
\(414\) 0 0
\(415\) 3.76575 2.73598i 0.184853 0.134304i
\(416\) −20.7237 + 63.7810i −1.01606 + 3.12712i
\(417\) 0 0
\(418\) −4.28263 + 38.5753i −0.209470 + 1.88678i
\(419\) −2.54104 −0.124138 −0.0620690 0.998072i \(-0.519770\pi\)
−0.0620690 + 0.998072i \(0.519770\pi\)
\(420\) 0 0
\(421\) −1.66151 + 1.20716i −0.0809770 + 0.0588333i −0.627537 0.778587i \(-0.715937\pi\)
0.546560 + 0.837420i \(0.315937\pi\)
\(422\) −36.9859 26.8718i −1.80045 1.30810i
\(423\) 0 0
\(424\) −1.65351 5.08899i −0.0803016 0.247143i
\(425\) 3.05904 + 2.22252i 0.148385 + 0.107808i
\(426\) 0 0
\(427\) −12.1069 + 37.2612i −0.585894 + 1.80320i
\(428\) 55.0654 2.66169
\(429\) 0 0
\(430\) 34.1231 1.64556
\(431\) 11.7090 36.0366i 0.564003 1.73582i −0.106892 0.994271i \(-0.534090\pi\)
0.670895 0.741552i \(-0.265910\pi\)
\(432\) 0 0
\(433\) −7.36735 5.35269i −0.354052 0.257234i 0.396515 0.918028i \(-0.370220\pi\)
−0.750567 + 0.660794i \(0.770220\pi\)
\(434\) 12.7029 + 39.0955i 0.609759 + 1.87664i
\(435\) 0 0
\(436\) 24.5670 + 17.8490i 1.17655 + 0.854812i
\(437\) −4.73521 + 3.44033i −0.226516 + 0.164573i
\(438\) 0 0
\(439\) 31.0675 1.48277 0.741385 0.671079i \(-0.234169\pi\)
0.741385 + 0.671079i \(0.234169\pi\)
\(440\) 16.1517 + 28.3572i 0.770002 + 1.35188i
\(441\) 0 0
\(442\) 8.92358 27.4640i 0.424452 1.30633i
\(443\) 12.0635 8.76465i 0.573155 0.416421i −0.263095 0.964770i \(-0.584743\pi\)
0.836250 + 0.548349i \(0.184743\pi\)
\(444\) 0 0
\(445\) 2.04667 + 6.29902i 0.0970217 + 0.298602i
\(446\) −7.62091 23.4547i −0.360861 1.11061i
\(447\) 0 0
\(448\) −76.5938 + 55.6487i −3.61872 + 2.62915i
\(449\) 7.91389 24.3565i 0.373480 1.14945i −0.571019 0.820937i \(-0.693452\pi\)
0.944499 0.328515i \(-0.106548\pi\)
\(450\) 0 0
\(451\) 27.9965 5.77995i 1.31830 0.272167i
\(452\) 4.33522 0.203911
\(453\) 0 0
\(454\) −2.36368 + 1.71732i −0.110933 + 0.0805976i
\(455\) 6.13272 + 4.45568i 0.287506 + 0.208886i
\(456\) 0 0
\(457\) 2.48022 + 7.63332i 0.116020 + 0.357072i 0.992158 0.124987i \(-0.0398891\pi\)
−0.876139 + 0.482059i \(0.839889\pi\)
\(458\) 13.0338 + 9.46958i 0.609028 + 0.442485i
\(459\) 0 0
\(460\) −2.37157 + 7.29895i −0.110575 + 0.340315i
\(461\) 16.8858 0.786449 0.393225 0.919442i \(-0.371360\pi\)
0.393225 + 0.919442i \(0.371360\pi\)
\(462\) 0 0
\(463\) −4.70959 −0.218873 −0.109437 0.993994i \(-0.534905\pi\)
−0.109437 + 0.993994i \(0.534905\pi\)
\(464\) 43.6547 134.355i 2.02662 6.23728i
\(465\) 0 0
\(466\) −4.17991 3.03688i −0.193630 0.140681i
\(467\) 4.76345 + 14.6604i 0.220426 + 0.678402i 0.998724 + 0.0505066i \(0.0160836\pi\)
−0.778297 + 0.627896i \(0.783916\pi\)
\(468\) 0 0
\(469\) −8.07700 5.86829i −0.372961 0.270972i
\(470\) 12.4540 9.04834i 0.574459 0.417369i
\(471\) 0 0
\(472\) 3.83037 0.176307
\(473\) −37.4664 16.9443i −1.72271 0.779100i
\(474\) 0 0
\(475\) −1.31390 + 4.04376i −0.0602857 + 0.185540i
\(476\) 46.5904 33.8499i 2.13547 1.55151i
\(477\) 0 0
\(478\) 1.73552 + 5.34138i 0.0793808 + 0.244309i
\(479\) −3.04251 9.36388i −0.139016 0.427847i 0.857177 0.515022i \(-0.172216\pi\)
−0.996193 + 0.0871750i \(0.972216\pi\)
\(480\) 0 0
\(481\) −5.16642 + 3.75362i −0.235568 + 0.171150i
\(482\) 13.0911 40.2904i 0.596285 1.83518i
\(483\) 0 0
\(484\) −5.69662 61.0608i −0.258937 2.77549i
\(485\) −16.5938 −0.753484
\(486\) 0 0
\(487\) 6.61144 4.80349i 0.299593 0.217667i −0.427825 0.903862i \(-0.640720\pi\)
0.727418 + 0.686194i \(0.240720\pi\)
\(488\) 114.164 + 82.9449i 5.16796 + 3.75474i
\(489\) 0 0
\(490\) 0.393875 + 1.21222i 0.0177934 + 0.0547626i
\(491\) −31.2098 22.6752i −1.40848 1.02332i −0.993542 0.113468i \(-0.963804\pi\)
−0.414936 0.909851i \(-0.636196\pi\)
\(492\) 0 0
\(493\) −10.3611 + 31.8880i −0.466638 + 1.43617i
\(494\) 32.4720 1.46098
\(495\) 0 0
\(496\) 87.1006 3.91093
\(497\) −7.73751 + 23.8136i −0.347075 + 1.06819i
\(498\) 0 0
\(499\) 1.90088 + 1.38107i 0.0850950 + 0.0618251i 0.629519 0.776985i \(-0.283252\pi\)
−0.544424 + 0.838810i \(0.683252\pi\)
\(500\) 1.72280 + 5.30222i 0.0770458 + 0.237123i
\(501\) 0 0
\(502\) −29.8755 21.7058i −1.33341 0.968777i
\(503\) −5.13915 + 3.73381i −0.229143 + 0.166482i −0.696433 0.717622i \(-0.745231\pi\)
0.467290 + 0.884104i \(0.345231\pi\)
\(504\) 0 0
\(505\) 0.539052 0.0239875
\(506\) 8.46267 9.28894i 0.376212 0.412944i
\(507\) 0 0
\(508\) 7.46075 22.9618i 0.331017 1.01877i
\(509\) −24.2744 + 17.6364i −1.07594 + 0.781719i −0.976971 0.213371i \(-0.931556\pi\)
−0.0989727 + 0.995090i \(0.531556\pi\)
\(510\) 0 0
\(511\) 6.88883 + 21.2016i 0.304744 + 0.937906i
\(512\) 22.1005 + 68.0184i 0.976714 + 3.00602i
\(513\) 0 0
\(514\) −21.4060 + 15.5524i −0.944179 + 0.685986i
\(515\) −1.88829 + 5.81156i −0.0832079 + 0.256088i
\(516\) 0 0
\(517\) −18.1673 + 3.75068i −0.798995 + 0.164955i
\(518\) −17.3041 −0.760300
\(519\) 0 0
\(520\) 22.0889 16.0485i 0.968661 0.703773i
\(521\) 19.3706 + 14.0736i 0.848641 + 0.616574i 0.924771 0.380524i \(-0.124256\pi\)
−0.0761299 + 0.997098i \(0.524256\pi\)
\(522\) 0 0
\(523\) −5.25118 16.1615i −0.229618 0.706692i −0.997790 0.0664479i \(-0.978833\pi\)
0.768172 0.640244i \(-0.221167\pi\)
\(524\) 52.9115 + 38.4425i 2.31145 + 1.67937i
\(525\) 0 0
\(526\) −19.9169 + 61.2980i −0.868420 + 2.67272i
\(527\) −20.6726 −0.900511
\(528\) 0 0
\(529\) −21.1050 −0.917609
\(530\) −0.462510 + 1.42346i −0.0200901 + 0.0618311i
\(531\) 0 0
\(532\) 52.3900 + 38.0635i 2.27139 + 1.65026i
\(533\) −7.39076 22.7464i −0.320129 0.985257i
\(534\) 0 0
\(535\) −7.99070 5.80559i −0.345468 0.250997i
\(536\) −29.0918 + 21.1364i −1.25657 + 0.912955i
\(537\) 0 0
\(538\) 26.0424 1.12277
\(539\) 0.169480 1.52658i 0.00730003 0.0657542i
\(540\) 0 0
\(541\) 0.384841 1.18442i 0.0165456 0.0509221i −0.942443 0.334367i \(-0.891477\pi\)
0.958988 + 0.283445i \(0.0914774\pi\)
\(542\) −56.8818 + 41.3270i −2.44328 + 1.77515i
\(543\) 0 0
\(544\) −28.2397 86.9127i −1.21077 3.72635i
\(545\) −1.68316 5.18024i −0.0720988 0.221897i
\(546\) 0 0
\(547\) −6.24250 + 4.53544i −0.266910 + 0.193922i −0.713188 0.700973i \(-0.752749\pi\)
0.446278 + 0.894895i \(0.352749\pi\)
\(548\) 23.4027 72.0261i 0.999713 3.07680i
\(549\) 0 0
\(550\) 1.00724 9.07256i 0.0429487 0.386855i
\(551\) −37.7027 −1.60619
\(552\) 0 0
\(553\) 7.61848 5.53515i 0.323971 0.235379i
\(554\) 10.3546 + 7.52308i 0.439926 + 0.319625i
\(555\) 0 0
\(556\) −20.7290 63.7973i −0.879105 2.70561i
\(557\) −8.83599 6.41973i −0.374393 0.272013i 0.384637 0.923068i \(-0.374327\pi\)
−0.759030 + 0.651055i \(0.774327\pi\)
\(558\) 0 0
\(559\) −10.6310 + 32.7188i −0.449642 + 1.38386i
\(560\) 43.5225 1.83916
\(561\) 0 0
\(562\) 29.7366 1.25436
\(563\) 3.77104 11.6061i 0.158930 0.489137i −0.839608 0.543193i \(-0.817215\pi\)
0.998538 + 0.0540564i \(0.0172151\pi\)
\(564\) 0 0
\(565\) −0.629096 0.457065i −0.0264663 0.0192289i
\(566\) 1.70668 + 5.25262i 0.0717370 + 0.220784i
\(567\) 0 0
\(568\) 72.9620 + 53.0100i 3.06142 + 2.22425i
\(569\) −5.39492 + 3.91964i −0.226167 + 0.164320i −0.695098 0.718915i \(-0.744639\pi\)
0.468931 + 0.883235i \(0.344639\pi\)
\(570\) 0 0
\(571\) −9.35392 −0.391450 −0.195725 0.980659i \(-0.562706\pi\)
−0.195725 + 0.980659i \(0.562706\pi\)
\(572\) −50.2481 + 10.3739i −2.10098 + 0.433753i
\(573\) 0 0
\(574\) 20.0266 61.6355i 0.835894 2.57262i
\(575\) 1.11368 0.809136i 0.0464436 0.0337433i
\(576\) 0 0
\(577\) −3.38517 10.4185i −0.140927 0.433727i 0.855538 0.517740i \(-0.173226\pi\)
−0.996465 + 0.0840124i \(0.973226\pi\)
\(578\) −2.29862 7.07444i −0.0956102 0.294258i
\(579\) 0 0
\(580\) −39.9948 + 29.0579i −1.66069 + 1.20656i
\(581\) −3.92949 + 12.0937i −0.163023 + 0.501732i
\(582\) 0 0
\(583\) 1.21466 1.33326i 0.0503062 0.0552179i
\(584\) 80.2941 3.32259
\(585\) 0 0
\(586\) 1.34168 0.974789i 0.0554244 0.0402682i
\(587\) 19.3936 + 14.0902i 0.800458 + 0.581567i 0.911048 0.412299i \(-0.135274\pi\)
−0.110590 + 0.993866i \(0.535274\pi\)
\(588\) 0 0
\(589\) −7.18337 22.1081i −0.295986 0.910950i
\(590\) −0.866786 0.629757i −0.0356850 0.0259267i
\(591\) 0 0
\(592\) −11.3301 + 34.8704i −0.465663 + 1.43316i
\(593\) −2.17705 −0.0894006 −0.0447003 0.999000i \(-0.514233\pi\)
−0.0447003 + 0.999000i \(0.514233\pi\)
\(594\) 0 0
\(595\) −10.3297 −0.423476
\(596\) −23.7632 + 73.1356i −0.973378 + 2.99575i
\(597\) 0 0
\(598\) −8.50530 6.17946i −0.347808 0.252697i
\(599\) −8.89601 27.3791i −0.363481 1.11868i −0.950927 0.309416i \(-0.899867\pi\)
0.587446 0.809263i \(-0.300133\pi\)
\(600\) 0 0
\(601\) 8.44390 + 6.13486i 0.344434 + 0.250246i 0.746530 0.665351i \(-0.231718\pi\)
−0.402096 + 0.915597i \(0.631718\pi\)
\(602\) −75.4165 + 54.7933i −3.07375 + 2.23321i
\(603\) 0 0
\(604\) −94.8115 −3.85782
\(605\) −5.61103 + 9.46131i −0.228121 + 0.384657i
\(606\) 0 0
\(607\) 9.06265 27.8920i 0.367842 1.13210i −0.580341 0.814374i \(-0.697081\pi\)
0.948182 0.317727i \(-0.102919\pi\)
\(608\) 83.1355 60.4015i 3.37159 2.44960i
\(609\) 0 0
\(610\) −12.1974 37.5397i −0.493858 1.51994i
\(611\) 4.79595 + 14.7604i 0.194023 + 0.597142i
\(612\) 0 0
\(613\) 22.3217 16.2176i 0.901563 0.655024i −0.0373040 0.999304i \(-0.511877\pi\)
0.938867 + 0.344280i \(0.111877\pi\)
\(614\) 26.1713 80.5470i 1.05619 3.25061i
\(615\) 0 0
\(616\) −81.2320 36.7375i −3.27293 1.48019i
\(617\) 46.9079 1.88844 0.944220 0.329315i \(-0.106818\pi\)
0.944220 + 0.329315i \(0.106818\pi\)
\(618\) 0 0
\(619\) 15.4577 11.2307i 0.621296 0.451398i −0.232078 0.972697i \(-0.574552\pi\)
0.853374 + 0.521299i \(0.174552\pi\)
\(620\) −24.6590 17.9158i −0.990331 0.719517i
\(621\) 0 0
\(622\) −1.22716 3.77682i −0.0492048 0.151437i
\(623\) −14.6381 10.6352i −0.586462 0.426090i
\(624\) 0 0
\(625\) 0.309017 0.951057i 0.0123607 0.0380423i
\(626\) 64.6767 2.58500
\(627\) 0 0
\(628\) −20.1306 −0.803298
\(629\) 2.68909 8.27618i 0.107221 0.329993i
\(630\) 0 0
\(631\) 24.9280 + 18.1112i 0.992368 + 0.720997i 0.960438 0.278493i \(-0.0898348\pi\)
0.0319295 + 0.999490i \(0.489835\pi\)
\(632\) −10.4813 32.2580i −0.416922 1.28316i
\(633\) 0 0
\(634\) 31.8814 + 23.1632i 1.26617 + 0.919927i
\(635\) −3.50353 + 2.54547i −0.139034 + 0.101014i
\(636\) 0 0
\(637\) −1.28504 −0.0509152
\(638\) 79.2721 16.3659i 3.13841 0.647933i
\(639\) 0 0
\(640\) 14.5379 44.7432i 0.574663 1.76863i
\(641\) 4.27097 3.10304i 0.168693 0.122563i −0.500235 0.865889i \(-0.666753\pi\)
0.668929 + 0.743327i \(0.266753\pi\)
\(642\) 0 0
\(643\) −13.5247 41.6249i −0.533364 1.64152i −0.747158 0.664646i \(-0.768582\pi\)
0.213795 0.976879i \(-0.431418\pi\)
\(644\) −6.47883 19.9398i −0.255302 0.785737i
\(645\) 0 0
\(646\) −35.7979 + 26.0087i −1.40845 + 1.02330i
\(647\) 9.70364 29.8647i 0.381489 1.17410i −0.557506 0.830173i \(-0.688242\pi\)
0.938995 0.343930i \(-0.111758\pi\)
\(648\) 0 0
\(649\) 0.638996 + 1.12187i 0.0250828 + 0.0440374i
\(650\) −7.63712 −0.299552
\(651\) 0 0
\(652\) 16.3431 11.8739i 0.640044 0.465019i
\(653\) −26.0527 18.9284i −1.01952 0.740726i −0.0533374 0.998577i \(-0.516986\pi\)
−0.966185 + 0.257850i \(0.916986\pi\)
\(654\) 0 0
\(655\) −3.62513 11.1570i −0.141646 0.435940i
\(656\) −111.092 80.7131i −4.33742 3.15132i
\(657\) 0 0
\(658\) −12.9955 + 39.9960i −0.506617 + 1.55921i
\(659\) 20.7286 0.807472 0.403736 0.914875i \(-0.367711\pi\)
0.403736 + 0.914875i \(0.367711\pi\)
\(660\) 0 0
\(661\) −43.6387 −1.69735 −0.848673 0.528917i \(-0.822598\pi\)
−0.848673 + 0.528917i \(0.822598\pi\)
\(662\) −4.19538 + 12.9121i −0.163058 + 0.501842i
\(663\) 0 0
\(664\) 37.0537 + 26.9211i 1.43796 + 1.04474i
\(665\) −3.58940 11.0470i −0.139191 0.428385i
\(666\) 0 0
\(667\) 9.87539 + 7.17489i 0.382377 + 0.277813i
\(668\) −10.2460 + 7.44419i −0.396431 + 0.288024i
\(669\) 0 0
\(670\) 10.0583 0.388588
\(671\) −5.24841 + 47.2745i −0.202613 + 1.82501i
\(672\) 0 0
\(673\) −8.88682 + 27.3508i −0.342562 + 1.05430i 0.620314 + 0.784353i \(0.287005\pi\)
−0.962876 + 0.269944i \(0.912995\pi\)
\(674\) −17.1287 + 12.4447i −0.659772 + 0.479352i
\(675\) 0 0
\(676\) −9.13142 28.1036i −0.351208 1.08091i
\(677\) −4.31414 13.2776i −0.165806 0.510298i 0.833289 0.552838i \(-0.186455\pi\)
−0.999095 + 0.0425397i \(0.986455\pi\)
\(678\) 0 0
\(679\) 36.6743 26.6455i 1.40743 1.02256i
\(680\) −11.4971 + 35.3846i −0.440896 + 1.35694i
\(681\) 0 0
\(682\) 24.7001 + 43.3655i 0.945815 + 1.66055i
\(683\) 12.1334 0.464272 0.232136 0.972683i \(-0.425429\pi\)
0.232136 + 0.972683i \(0.425429\pi\)
\(684\) 0 0
\(685\) −10.9898 + 7.98455i −0.419898 + 0.305074i
\(686\) 39.7633 + 28.8897i 1.51817 + 1.10302i
\(687\) 0 0
\(688\) 61.0368 + 187.852i 2.32700 + 7.16178i
\(689\) −1.22078 0.886950i −0.0465081 0.0337901i
\(690\) 0 0
\(691\) −7.41129 + 22.8096i −0.281939 + 0.867719i 0.705361 + 0.708849i \(0.250785\pi\)
−0.987300 + 0.158870i \(0.949215\pi\)
\(692\) −107.435 −4.08405
\(693\) 0 0
\(694\) 47.2459 1.79343
\(695\) −3.71815 + 11.4433i −0.141037 + 0.434068i
\(696\) 0 0
\(697\) 26.3667 + 19.1565i 0.998711 + 0.725606i
\(698\) 20.6507 + 63.5562i 0.781639 + 2.40564i
\(699\) 0 0
\(700\) −12.3217 8.95221i −0.465715 0.338362i
\(701\) 34.5576 25.1075i 1.30522 0.948298i 0.305229 0.952279i \(-0.401267\pi\)
0.999992 + 0.00398054i \(0.00126705\pi\)
\(702\) 0 0
\(703\) 9.78532 0.369060
\(704\) −77.4083 + 84.9661i −2.91743 + 3.20228i
\(705\) 0 0
\(706\) −4.97206 + 15.3024i −0.187126 + 0.575914i
\(707\) −1.19137 + 0.865583i −0.0448062 + 0.0325536i
\(708\) 0 0
\(709\) −1.28091 3.94224i −0.0481057 0.148054i 0.924118 0.382106i \(-0.124801\pi\)
−0.972224 + 0.234052i \(0.924801\pi\)
\(710\) −7.79534 23.9916i −0.292554 0.900388i
\(711\) 0 0
\(712\) −52.7235 + 38.3059i −1.97590 + 1.43557i
\(713\) −2.32569 + 7.15774i −0.0870978 + 0.268059i
\(714\) 0 0
\(715\) 8.38538 + 3.79232i 0.313595 + 0.141825i
\(716\) −40.5244 −1.51447
\(717\) 0 0
\(718\) −18.1347 + 13.1756i −0.676781 + 0.491710i
\(719\) −21.3040 15.4783i −0.794505 0.577241i 0.114792 0.993390i \(-0.463380\pi\)
−0.909297 + 0.416148i \(0.863380\pi\)
\(720\) 0 0
\(721\) −5.15856 15.8764i −0.192115 0.591268i
\(722\) 2.05224 + 1.49104i 0.0763766 + 0.0554909i
\(723\) 0 0
\(724\) −13.9871 + 43.0480i −0.519828 + 1.59987i
\(725\) 8.86735 0.329325
\(726\) 0 0
\(727\) 14.3772 0.533220 0.266610 0.963804i \(-0.414096\pi\)
0.266610 + 0.963804i \(0.414096\pi\)
\(728\) −23.0493 + 70.9385i −0.854265 + 2.62916i
\(729\) 0 0
\(730\) −18.1700 13.2013i −0.672502 0.488601i
\(731\) −14.4865 44.5850i −0.535804 1.64904i
\(732\) 0 0
\(733\) −27.8882 20.2620i −1.03007 0.748393i −0.0617509 0.998092i \(-0.519668\pi\)
−0.968324 + 0.249699i \(0.919668\pi\)
\(734\) −50.4886 + 36.6821i −1.86357 + 1.35396i
\(735\) 0 0
\(736\) −33.2700 −1.22635
\(737\) −11.0438 4.99461i −0.406805 0.183979i
\(738\) 0 0
\(739\) −1.55016 + 4.77090i −0.0570235 + 0.175500i −0.975511 0.219949i \(-0.929411\pi\)
0.918488 + 0.395449i \(0.129411\pi\)
\(740\) 10.3802 7.54165i 0.381583 0.277237i
\(741\) 0 0
\(742\) −1.26352 3.88870i −0.0463851 0.142759i
\(743\) 11.9473 + 36.7700i 0.438303 + 1.34896i 0.889663 + 0.456617i \(0.150939\pi\)
−0.451360 + 0.892342i \(0.649061\pi\)
\(744\) 0 0
\(745\) 11.1591 8.10754i 0.408837 0.297037i
\(746\) −11.9552 + 36.7944i −0.437712 + 1.34714i
\(747\) 0 0
\(748\) 47.0858 51.6831i 1.72163 1.88972i
\(749\) 26.9828 0.985930
\(750\) 0 0
\(751\) 4.20753 3.05695i 0.153535 0.111550i −0.508365 0.861141i \(-0.669750\pi\)
0.661901 + 0.749592i \(0.269750\pi\)
\(752\) 72.0889 + 52.3757i 2.62881 + 1.90994i
\(753\) 0 0
\(754\) −20.9269 64.4065i −0.762114 2.34555i
\(755\) 13.7584 + 9.99604i 0.500718 + 0.363793i
\(756\) 0 0
\(757\) 1.91394 5.89049i 0.0695632 0.214093i −0.910231 0.414100i \(-0.864096\pi\)
0.979795 + 0.200007i \(0.0640964\pi\)
\(758\) −69.4048 −2.52090
\(759\) 0 0
\(760\) −41.8369 −1.51758
\(761\) −3.65297 + 11.2427i −0.132420 + 0.407547i −0.995180 0.0980670i \(-0.968734\pi\)
0.862760 + 0.505614i \(0.168734\pi\)
\(762\) 0 0
\(763\) 12.0382 + 8.74626i 0.435812 + 0.316636i
\(764\) −34.4923 106.156i −1.24789 3.84061i
\(765\) 0 0
\(766\) 54.6230 + 39.6859i 1.97361 + 1.43391i
\(767\) 0.873884 0.634914i 0.0315541 0.0229254i
\(768\) 0 0
\(769\) 2.73424 0.0985992 0.0492996 0.998784i \(-0.484301\pi\)
0.0492996 + 0.998784i \(0.484301\pi\)
\(770\) 12.3422 + 21.6689i 0.444781 + 0.780893i
\(771\) 0 0
\(772\) −33.7192 + 103.777i −1.21358 + 3.73502i
\(773\) 1.24618 0.905406i 0.0448221 0.0325652i −0.565149 0.824989i \(-0.691181\pi\)
0.609971 + 0.792424i \(0.291181\pi\)
\(774\) 0 0
\(775\) 1.68946 + 5.19964i 0.0606874 + 0.186777i
\(776\) −50.4554 155.286i −1.81124 5.57443i
\(777\) 0 0
\(778\) −53.7974 + 39.0861i −1.92873 + 1.40131i
\(779\) −11.3249 + 34.8543i −0.405755 + 1.24879i
\(780\) 0 0
\(781\) −3.35426 + 30.2131i −0.120025 + 1.08111i
\(782\) 14.3260 0.512296
\(783\) 0 0
\(784\) −5.96889 + 4.33665i −0.213175 + 0.154881i
\(785\) 2.92121 + 2.12238i 0.104262 + 0.0757511i