Properties

Label 495.2.n.g.136.4
Level $495$
Weight $2$
Character 495.136
Analytic conductor $3.953$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 495.n (of order \(5\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.95259490005\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \( x^{16} - 2 x^{15} + 5 x^{14} - 8 x^{13} + 47 x^{12} + 32 x^{11} + 171 x^{10} + 26 x^{9} + 360 x^{8} - 172 x^{7} + 471 x^{6} - 430 x^{5} + 383 x^{4} + 70 x^{3} + 17 x^{2} + 4 x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 136.4
Root \(-0.659965 - 2.03116i\) of defining polynomial
Character \(\chi\) \(=\) 495.136
Dual form 495.2.n.g.91.4

$q$-expansion

\(f(q)\) \(=\) \(q+(0.918793 + 0.667542i) q^{2} +(-0.219466 - 0.675446i) q^{4} +(-0.809017 + 0.587785i) q^{5} +(1.26738 + 3.90059i) q^{7} +(0.951141 - 2.92731i) q^{8} +O(q^{10})\) \(q+(0.918793 + 0.667542i) q^{2} +(-0.219466 - 0.675446i) q^{4} +(-0.809017 + 0.587785i) q^{5} +(1.26738 + 3.90059i) q^{7} +(0.951141 - 2.92731i) q^{8} -1.13569 q^{10} +(3.26188 - 0.600124i) q^{11} +(1.83960 + 1.33655i) q^{13} +(-1.43935 + 4.42987i) q^{14} +(1.67887 - 1.21977i) q^{16} +(4.06036 - 2.95002i) q^{17} +(-2.34171 + 7.20705i) q^{19} +(0.574568 + 0.417448i) q^{20} +(3.39760 + 1.62605i) q^{22} -1.97494 q^{23} +(0.309017 - 0.951057i) q^{25} +(0.798012 + 2.45603i) q^{26} +(2.35649 - 1.71209i) q^{28} +(1.23649 + 3.80552i) q^{29} +(3.08632 + 2.24234i) q^{31} -3.79913 q^{32} +5.69990 q^{34} +(-3.31804 - 2.41070i) q^{35} +(-2.07996 - 6.40146i) q^{37} +(-6.96256 + 5.05859i) q^{38} +(0.951141 + 2.92731i) q^{40} +(1.24329 - 3.82644i) q^{41} +9.57903 q^{43} +(-1.12122 - 2.07152i) q^{44} +(-1.81456 - 1.31836i) q^{46} +(0.984753 - 3.03076i) q^{47} +(-7.94524 + 5.77255i) q^{49} +(0.918793 - 0.667542i) q^{50} +(0.499038 - 1.53588i) q^{52} +(-9.08454 - 6.60031i) q^{53} +(-2.28617 + 2.40279i) q^{55} +12.6237 q^{56} +(-1.40427 + 4.32189i) q^{58} +(-2.94731 - 9.07089i) q^{59} +(-2.92206 + 2.12300i) q^{61} +(1.33883 + 4.12050i) q^{62} +(-6.84835 - 4.97562i) q^{64} -2.27388 q^{65} -6.31504 q^{67} +(-2.88369 - 2.09512i) q^{68} +(-1.43935 - 4.42987i) q^{70} +(-9.94687 + 7.22682i) q^{71} +(-1.20217 - 3.69990i) q^{73} +(2.36219 - 7.27008i) q^{74} +5.38189 q^{76} +(6.47487 + 11.9627i) q^{77} +(-14.2183 - 10.3302i) q^{79} +(-0.641271 + 1.97363i) q^{80} +(3.69664 - 2.68577i) q^{82} +(-11.2029 + 8.13938i) q^{83} +(-1.55092 + 4.77324i) q^{85} +(8.80115 + 6.39441i) q^{86} +(1.34576 - 10.1193i) q^{88} +7.85399 q^{89} +(-2.88186 + 8.86946i) q^{91} +(0.433431 + 1.33396i) q^{92} +(2.92794 - 2.12728i) q^{94} +(-2.34171 - 7.20705i) q^{95} +(-4.18962 - 3.04394i) q^{97} -11.1535 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{2} - 8 q^{4} - 4 q^{5} - 4 q^{7} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 2 q^{2} - 8 q^{4} - 4 q^{5} - 4 q^{7} - 6 q^{8} + 8 q^{10} + 4 q^{11} + 2 q^{13} - 22 q^{14} + 8 q^{16} - 4 q^{17} - 4 q^{19} + 2 q^{20} - 28 q^{22} + 8 q^{23} - 4 q^{25} + 6 q^{26} - 2 q^{28} - 26 q^{29} - 10 q^{31} + 56 q^{32} - 4 q^{34} - 4 q^{35} + 22 q^{37} - 30 q^{38} - 6 q^{40} - 6 q^{41} + 28 q^{43} + 68 q^{44} + 16 q^{46} - 20 q^{47} + 10 q^{49} - 2 q^{50} + 30 q^{52} + 14 q^{53} - 6 q^{55} + 68 q^{56} - 6 q^{58} - 16 q^{59} - 38 q^{61} - 20 q^{62} + 10 q^{64} + 12 q^{65} + 20 q^{67} - 48 q^{68} - 22 q^{70} - 54 q^{71} + 2 q^{73} + 28 q^{74} - 44 q^{76} + 34 q^{77} - 12 q^{79} - 22 q^{80} + 30 q^{82} - 28 q^{83} - 4 q^{85} + 74 q^{86} + 46 q^{88} + 76 q^{89} - 34 q^{91} - 8 q^{92} - 10 q^{94} - 4 q^{95} - 18 q^{97} + 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(397\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.918793 + 0.667542i 0.649685 + 0.472024i 0.863164 0.504924i \(-0.168479\pi\)
−0.213479 + 0.976948i \(0.568479\pi\)
\(3\) 0 0
\(4\) −0.219466 0.675446i −0.109733 0.337723i
\(5\) −0.809017 + 0.587785i −0.361803 + 0.262866i
\(6\) 0 0
\(7\) 1.26738 + 3.90059i 0.479024 + 1.47428i 0.840453 + 0.541885i \(0.182289\pi\)
−0.361429 + 0.932400i \(0.617711\pi\)
\(8\) 0.951141 2.92731i 0.336279 1.03496i
\(9\) 0 0
\(10\) −1.13569 −0.359137
\(11\) 3.26188 0.600124i 0.983493 0.180944i
\(12\) 0 0
\(13\) 1.83960 + 1.33655i 0.510215 + 0.370693i 0.812905 0.582396i \(-0.197885\pi\)
−0.302690 + 0.953089i \(0.597885\pi\)
\(14\) −1.43935 + 4.42987i −0.384683 + 1.18393i
\(15\) 0 0
\(16\) 1.67887 1.21977i 0.419717 0.304942i
\(17\) 4.06036 2.95002i 0.984782 0.715486i 0.0260098 0.999662i \(-0.491720\pi\)
0.958772 + 0.284176i \(0.0917199\pi\)
\(18\) 0 0
\(19\) −2.34171 + 7.20705i −0.537225 + 1.65341i 0.201566 + 0.979475i \(0.435397\pi\)
−0.738791 + 0.673935i \(0.764603\pi\)
\(20\) 0.574568 + 0.417448i 0.128477 + 0.0933443i
\(21\) 0 0
\(22\) 3.39760 + 1.62605i 0.724371 + 0.346676i
\(23\) −1.97494 −0.411803 −0.205902 0.978573i \(-0.566013\pi\)
−0.205902 + 0.978573i \(0.566013\pi\)
\(24\) 0 0
\(25\) 0.309017 0.951057i 0.0618034 0.190211i
\(26\) 0.798012 + 2.45603i 0.156503 + 0.481667i
\(27\) 0 0
\(28\) 2.35649 1.71209i 0.445335 0.323555i
\(29\) 1.23649 + 3.80552i 0.229610 + 0.706667i 0.997791 + 0.0664339i \(0.0211622\pi\)
−0.768181 + 0.640233i \(0.778838\pi\)
\(30\) 0 0
\(31\) 3.08632 + 2.24234i 0.554319 + 0.402737i 0.829376 0.558692i \(-0.188696\pi\)
−0.275056 + 0.961428i \(0.588696\pi\)
\(32\) −3.79913 −0.671598
\(33\) 0 0
\(34\) 5.69990 0.977525
\(35\) −3.31804 2.41070i −0.560851 0.407482i
\(36\) 0 0
\(37\) −2.07996 6.40146i −0.341943 1.05239i −0.963200 0.268786i \(-0.913377\pi\)
0.621256 0.783607i \(-0.286623\pi\)
\(38\) −6.96256 + 5.05859i −1.12948 + 0.820612i
\(39\) 0 0
\(40\) 0.951141 + 2.92731i 0.150389 + 0.462848i
\(41\) 1.24329 3.82644i 0.194169 0.597590i −0.805816 0.592165i \(-0.798273\pi\)
0.999985 0.00542488i \(-0.00172680\pi\)
\(42\) 0 0
\(43\) 9.57903 1.46079 0.730394 0.683026i \(-0.239336\pi\)
0.730394 + 0.683026i \(0.239336\pi\)
\(44\) −1.12122 2.07152i −0.169030 0.312293i
\(45\) 0 0
\(46\) −1.81456 1.31836i −0.267542 0.194381i
\(47\) 0.984753 3.03076i 0.143641 0.442081i −0.853193 0.521596i \(-0.825337\pi\)
0.996834 + 0.0795143i \(0.0253369\pi\)
\(48\) 0 0
\(49\) −7.94524 + 5.77255i −1.13503 + 0.824651i
\(50\) 0.918793 0.667542i 0.129937 0.0944048i
\(51\) 0 0
\(52\) 0.499038 1.53588i 0.0692041 0.212988i
\(53\) −9.08454 6.60031i −1.24786 0.906622i −0.249762 0.968307i \(-0.580352\pi\)
−0.998096 + 0.0616854i \(0.980352\pi\)
\(54\) 0 0
\(55\) −2.28617 + 2.40279i −0.308267 + 0.323993i
\(56\) 12.6237 1.68691
\(57\) 0 0
\(58\) −1.40427 + 4.32189i −0.184389 + 0.567492i
\(59\) −2.94731 9.07089i −0.383707 1.18093i −0.937414 0.348217i \(-0.886787\pi\)
0.553707 0.832712i \(-0.313213\pi\)
\(60\) 0 0
\(61\) −2.92206 + 2.12300i −0.374131 + 0.271822i −0.758922 0.651182i \(-0.774274\pi\)
0.384791 + 0.923004i \(0.374274\pi\)
\(62\) 1.33883 + 4.12050i 0.170032 + 0.523304i
\(63\) 0 0
\(64\) −6.84835 4.97562i −0.856044 0.621953i
\(65\) −2.27388 −0.282040
\(66\) 0 0
\(67\) −6.31504 −0.771505 −0.385752 0.922602i \(-0.626058\pi\)
−0.385752 + 0.922602i \(0.626058\pi\)
\(68\) −2.88369 2.09512i −0.349699 0.254071i
\(69\) 0 0
\(70\) −1.43935 4.42987i −0.172035 0.529470i
\(71\) −9.94687 + 7.22682i −1.18048 + 0.857666i −0.992225 0.124455i \(-0.960282\pi\)
−0.188251 + 0.982121i \(0.560282\pi\)
\(72\) 0 0
\(73\) −1.20217 3.69990i −0.140703 0.433040i 0.855730 0.517422i \(-0.173108\pi\)
−0.996433 + 0.0843822i \(0.973108\pi\)
\(74\) 2.36219 7.27008i 0.274599 0.845130i
\(75\) 0 0
\(76\) 5.38189 0.617345
\(77\) 6.47487 + 11.9627i 0.737880 + 1.36327i
\(78\) 0 0
\(79\) −14.2183 10.3302i −1.59968 1.16224i −0.888123 0.459606i \(-0.847991\pi\)
−0.711557 0.702629i \(-0.752009\pi\)
\(80\) −0.641271 + 1.97363i −0.0716963 + 0.220658i
\(81\) 0 0
\(82\) 3.69664 2.68577i 0.408225 0.296593i
\(83\) −11.2029 + 8.13938i −1.22968 + 0.893413i −0.996866 0.0791092i \(-0.974792\pi\)
−0.232811 + 0.972522i \(0.574792\pi\)
\(84\) 0 0
\(85\) −1.55092 + 4.77324i −0.168221 + 0.517731i
\(86\) 8.80115 + 6.39441i 0.949053 + 0.689527i
\(87\) 0 0
\(88\) 1.34576 10.1193i 0.143458 1.07872i
\(89\) 7.85399 0.832522 0.416261 0.909245i \(-0.363340\pi\)
0.416261 + 0.909245i \(0.363340\pi\)
\(90\) 0 0
\(91\) −2.88186 + 8.86946i −0.302101 + 0.929772i
\(92\) 0.433431 + 1.33396i 0.0451883 + 0.139075i
\(93\) 0 0
\(94\) 2.92794 2.12728i 0.301994 0.219412i
\(95\) −2.34171 7.20705i −0.240254 0.739427i
\(96\) 0 0
\(97\) −4.18962 3.04394i −0.425392 0.309065i 0.354412 0.935089i \(-0.384681\pi\)
−0.779804 + 0.626024i \(0.784681\pi\)
\(98\) −11.1535 −1.12667
\(99\) 0 0
\(100\) −0.710206 −0.0710206
\(101\) 3.23012 + 2.34682i 0.321409 + 0.233518i 0.736777 0.676136i \(-0.236347\pi\)
−0.415367 + 0.909654i \(0.636347\pi\)
\(102\) 0 0
\(103\) −0.290775 0.894912i −0.0286509 0.0881783i 0.935709 0.352774i \(-0.114762\pi\)
−0.964359 + 0.264596i \(0.914762\pi\)
\(104\) 5.66222 4.11385i 0.555227 0.403396i
\(105\) 0 0
\(106\) −3.94083 12.1286i −0.382768 1.17804i
\(107\) 4.48985 13.8183i 0.434050 1.33587i −0.460006 0.887916i \(-0.652153\pi\)
0.894057 0.447954i \(-0.147847\pi\)
\(108\) 0 0
\(109\) 7.70193 0.737711 0.368855 0.929487i \(-0.379750\pi\)
0.368855 + 0.929487i \(0.379750\pi\)
\(110\) −3.70449 + 0.681555i −0.353209 + 0.0649837i
\(111\) 0 0
\(112\) 6.88559 + 5.00267i 0.650627 + 0.472708i
\(113\) −0.208742 + 0.642441i −0.0196368 + 0.0604357i −0.960395 0.278643i \(-0.910115\pi\)
0.940758 + 0.339079i \(0.110115\pi\)
\(114\) 0 0
\(115\) 1.59776 1.16084i 0.148992 0.108249i
\(116\) 2.29905 1.67036i 0.213462 0.155089i
\(117\) 0 0
\(118\) 3.34723 10.3017i 0.308138 0.948351i
\(119\) 16.6529 + 12.0990i 1.52656 + 1.10911i
\(120\) 0 0
\(121\) 10.2797 3.91506i 0.934518 0.355915i
\(122\) −4.10196 −0.371374
\(123\) 0 0
\(124\) 0.837240 2.57676i 0.0751863 0.231400i
\(125\) 0.309017 + 0.951057i 0.0276393 + 0.0850651i
\(126\) 0 0
\(127\) 3.56862 2.59275i 0.316664 0.230070i −0.418087 0.908407i \(-0.637299\pi\)
0.734750 + 0.678337i \(0.237299\pi\)
\(128\) −0.622793 1.91676i −0.0550476 0.169419i
\(129\) 0 0
\(130\) −2.08922 1.51791i −0.183237 0.133129i
\(131\) 21.4004 1.86976 0.934882 0.354959i \(-0.115505\pi\)
0.934882 + 0.354959i \(0.115505\pi\)
\(132\) 0 0
\(133\) −31.0796 −2.69494
\(134\) −5.80222 4.21556i −0.501235 0.364169i
\(135\) 0 0
\(136\) −4.77366 14.6918i −0.409338 1.25981i
\(137\) 3.09149 2.24610i 0.264124 0.191897i −0.447839 0.894114i \(-0.647806\pi\)
0.711963 + 0.702217i \(0.247806\pi\)
\(138\) 0 0
\(139\) 1.94595 + 5.98900i 0.165053 + 0.507981i 0.999040 0.0438031i \(-0.0139474\pi\)
−0.833987 + 0.551784i \(0.813947\pi\)
\(140\) −0.900100 + 2.77022i −0.0760723 + 0.234126i
\(141\) 0 0
\(142\) −13.9633 −1.17178
\(143\) 6.80266 + 3.25568i 0.568867 + 0.272253i
\(144\) 0 0
\(145\) −3.23717 2.35194i −0.268832 0.195318i
\(146\) 1.36529 4.20194i 0.112992 0.347755i
\(147\) 0 0
\(148\) −3.86736 + 2.80980i −0.317895 + 0.230964i
\(149\) −18.1995 + 13.2227i −1.49096 + 1.08325i −0.517153 + 0.855893i \(0.673008\pi\)
−0.973812 + 0.227356i \(0.926992\pi\)
\(150\) 0 0
\(151\) −0.926122 + 2.85031i −0.0753667 + 0.231955i −0.981642 0.190733i \(-0.938913\pi\)
0.906275 + 0.422688i \(0.138913\pi\)
\(152\) 18.8700 + 13.7098i 1.53056 + 1.11201i
\(153\) 0 0
\(154\) −2.03652 + 15.3135i −0.164107 + 1.23399i
\(155\) −3.81490 −0.306420
\(156\) 0 0
\(157\) −3.14886 + 9.69118i −0.251306 + 0.773441i 0.743229 + 0.669037i \(0.233293\pi\)
−0.994535 + 0.104403i \(0.966707\pi\)
\(158\) −6.16782 18.9826i −0.490685 1.51017i
\(159\) 0 0
\(160\) 3.07356 2.23307i 0.242986 0.176540i
\(161\) −2.50299 7.70343i −0.197264 0.607115i
\(162\) 0 0
\(163\) 16.0213 + 11.6401i 1.25488 + 0.911726i 0.998495 0.0548473i \(-0.0174672\pi\)
0.256389 + 0.966574i \(0.417467\pi\)
\(164\) −2.85741 −0.223127
\(165\) 0 0
\(166\) −15.7265 −1.22061
\(167\) −4.01870 2.91976i −0.310976 0.225937i 0.421339 0.906903i \(-0.361560\pi\)
−0.732315 + 0.680966i \(0.761560\pi\)
\(168\) 0 0
\(169\) −2.41944 7.44628i −0.186111 0.572791i
\(170\) −4.61132 + 3.35032i −0.353672 + 0.256958i
\(171\) 0 0
\(172\) −2.10227 6.47012i −0.160296 0.493342i
\(173\) 5.02182 15.4556i 0.381802 1.17507i −0.556972 0.830531i \(-0.688037\pi\)
0.938774 0.344534i \(-0.111963\pi\)
\(174\) 0 0
\(175\) 4.10132 0.310031
\(176\) 4.74425 4.98627i 0.357612 0.375854i
\(177\) 0 0
\(178\) 7.21620 + 5.24287i 0.540877 + 0.392970i
\(179\) 0.984058 3.02862i 0.0735520 0.226370i −0.907521 0.420006i \(-0.862028\pi\)
0.981073 + 0.193636i \(0.0620281\pi\)
\(180\) 0 0
\(181\) −1.21432 + 0.882258i −0.0902600 + 0.0655778i −0.632000 0.774968i \(-0.717766\pi\)
0.541740 + 0.840546i \(0.317766\pi\)
\(182\) −8.56858 + 6.22544i −0.635145 + 0.461460i
\(183\) 0 0
\(184\) −1.87844 + 5.78126i −0.138481 + 0.426200i
\(185\) 5.44541 + 3.95632i 0.400354 + 0.290874i
\(186\) 0 0
\(187\) 11.4740 12.0593i 0.839064 0.881866i
\(188\) −2.26323 −0.165063
\(189\) 0 0
\(190\) 2.65946 8.18498i 0.192938 0.593801i
\(191\) 3.22700 + 9.93168i 0.233497 + 0.718631i 0.997317 + 0.0732014i \(0.0233216\pi\)
−0.763820 + 0.645430i \(0.776678\pi\)
\(192\) 0 0
\(193\) −4.87635 + 3.54288i −0.351008 + 0.255022i −0.749292 0.662240i \(-0.769606\pi\)
0.398284 + 0.917262i \(0.369606\pi\)
\(194\) −1.81744 5.59350i −0.130485 0.401590i
\(195\) 0 0
\(196\) 5.64275 + 4.09970i 0.403054 + 0.292836i
\(197\) −9.07040 −0.646239 −0.323120 0.946358i \(-0.604732\pi\)
−0.323120 + 0.946358i \(0.604732\pi\)
\(198\) 0 0
\(199\) 17.3143 1.22738 0.613689 0.789548i \(-0.289685\pi\)
0.613689 + 0.789548i \(0.289685\pi\)
\(200\) −2.49012 1.80918i −0.176078 0.127928i
\(201\) 0 0
\(202\) 1.40121 + 4.31249i 0.0985890 + 0.303426i
\(203\) −13.2767 + 9.64606i −0.931839 + 0.677021i
\(204\) 0 0
\(205\) 1.24329 + 3.82644i 0.0868350 + 0.267251i
\(206\) 0.330230 1.01634i 0.0230082 0.0708120i
\(207\) 0 0
\(208\) 4.71874 0.327186
\(209\) −3.31326 + 24.9138i −0.229183 + 1.72333i
\(210\) 0 0
\(211\) 12.7140 + 9.23725i 0.875267 + 0.635918i 0.931995 0.362471i \(-0.118067\pi\)
−0.0567283 + 0.998390i \(0.518067\pi\)
\(212\) −2.46440 + 7.58466i −0.169256 + 0.520916i
\(213\) 0 0
\(214\) 13.3496 9.69903i 0.912558 0.663012i
\(215\) −7.74960 + 5.63041i −0.528518 + 0.383991i
\(216\) 0 0
\(217\) −4.83492 + 14.8804i −0.328216 + 1.01015i
\(218\) 7.07648 + 5.14136i 0.479280 + 0.348217i
\(219\) 0 0
\(220\) 2.12469 + 1.01685i 0.143247 + 0.0685563i
\(221\) 11.4123 0.767676
\(222\) 0 0
\(223\) 0.334918 1.03077i 0.0224278 0.0690256i −0.939216 0.343326i \(-0.888446\pi\)
0.961644 + 0.274301i \(0.0884464\pi\)
\(224\) −4.81494 14.8189i −0.321712 0.990126i
\(225\) 0 0
\(226\) −0.620647 + 0.450926i −0.0412848 + 0.0299952i
\(227\) −0.615474 1.89423i −0.0408504 0.125725i 0.928552 0.371204i \(-0.121055\pi\)
−0.969402 + 0.245479i \(0.921055\pi\)
\(228\) 0 0
\(229\) −6.58519 4.78442i −0.435161 0.316163i 0.348548 0.937291i \(-0.386675\pi\)
−0.783709 + 0.621128i \(0.786675\pi\)
\(230\) 2.24292 0.147894
\(231\) 0 0
\(232\) 12.3160 0.808585
\(233\) −19.7639 14.3593i −1.29478 0.940712i −0.294889 0.955532i \(-0.595283\pi\)
−0.999890 + 0.0148197i \(0.995283\pi\)
\(234\) 0 0
\(235\) 0.984753 + 3.03076i 0.0642382 + 0.197705i
\(236\) −5.48006 + 3.98150i −0.356721 + 0.259173i
\(237\) 0 0
\(238\) 7.22393 + 22.2330i 0.468258 + 1.44115i
\(239\) −0.0219354 + 0.0675103i −0.00141888 + 0.00436688i −0.951763 0.306833i \(-0.900731\pi\)
0.950345 + 0.311200i \(0.100731\pi\)
\(240\) 0 0
\(241\) −12.6653 −0.815842 −0.407921 0.913017i \(-0.633746\pi\)
−0.407921 + 0.913017i \(0.633746\pi\)
\(242\) 12.0584 + 3.26501i 0.775143 + 0.209883i
\(243\) 0 0
\(244\) 2.07526 + 1.50777i 0.132855 + 0.0965249i
\(245\) 3.03481 9.34019i 0.193887 0.596723i
\(246\) 0 0
\(247\) −13.9404 + 10.1283i −0.887007 + 0.644448i
\(248\) 9.49956 6.90183i 0.603223 0.438267i
\(249\) 0 0
\(250\) −0.350948 + 1.08011i −0.0221959 + 0.0683119i
\(251\) 6.19469 + 4.50070i 0.391005 + 0.284082i 0.765867 0.642999i \(-0.222310\pi\)
−0.374862 + 0.927081i \(0.622310\pi\)
\(252\) 0 0
\(253\) −6.44201 + 1.18521i −0.405006 + 0.0745133i
\(254\) 5.00959 0.314330
\(255\) 0 0
\(256\) −4.52438 + 13.9246i −0.282774 + 0.870288i
\(257\) −7.14141 21.9790i −0.445469 1.37101i −0.881968 0.471308i \(-0.843782\pi\)
0.436499 0.899705i \(-0.356218\pi\)
\(258\) 0 0
\(259\) 22.3334 16.2261i 1.38773 1.00824i
\(260\) 0.499038 + 1.53588i 0.0309490 + 0.0952513i
\(261\) 0 0
\(262\) 19.6626 + 14.2857i 1.21476 + 0.882573i
\(263\) −9.67819 −0.596783 −0.298391 0.954444i \(-0.596450\pi\)
−0.298391 + 0.954444i \(0.596450\pi\)
\(264\) 0 0
\(265\) 11.2291 0.689799
\(266\) −28.5557 20.7469i −1.75086 1.27208i
\(267\) 0 0
\(268\) 1.38593 + 4.26547i 0.0846594 + 0.260555i
\(269\) 1.47532 1.07188i 0.0899516 0.0653536i −0.541900 0.840443i \(-0.682295\pi\)
0.631852 + 0.775089i \(0.282295\pi\)
\(270\) 0 0
\(271\) −4.57141 14.0694i −0.277693 0.854653i −0.988494 0.151259i \(-0.951667\pi\)
0.710801 0.703394i \(-0.248333\pi\)
\(272\) 3.21846 9.90541i 0.195148 0.600604i
\(273\) 0 0
\(274\) 4.33981 0.262178
\(275\) 0.437224 3.28768i 0.0263656 0.198255i
\(276\) 0 0
\(277\) −13.7372 9.98067i −0.825389 0.599680i 0.0928620 0.995679i \(-0.470398\pi\)
−0.918251 + 0.395999i \(0.870398\pi\)
\(278\) −2.20999 + 6.80166i −0.132547 + 0.407936i
\(279\) 0 0
\(280\) −10.2128 + 7.42002i −0.610331 + 0.443431i
\(281\) −3.72271 + 2.70471i −0.222078 + 0.161349i −0.693262 0.720686i \(-0.743827\pi\)
0.471183 + 0.882035i \(0.343827\pi\)
\(282\) 0 0
\(283\) 4.26038 13.1121i 0.253253 0.779434i −0.740915 0.671598i \(-0.765608\pi\)
0.994169 0.107835i \(-0.0343919\pi\)
\(284\) 7.06432 + 5.13253i 0.419190 + 0.304560i
\(285\) 0 0
\(286\) 4.07694 + 7.53236i 0.241075 + 0.445398i
\(287\) 16.5011 0.974030
\(288\) 0 0
\(289\) 2.53059 7.78836i 0.148858 0.458139i
\(290\) −1.40427 4.32189i −0.0824614 0.253790i
\(291\) 0 0
\(292\) −2.23524 + 1.62400i −0.130808 + 0.0950374i
\(293\) 9.71070 + 29.8864i 0.567305 + 1.74598i 0.661002 + 0.750384i \(0.270131\pi\)
−0.0936970 + 0.995601i \(0.529869\pi\)
\(294\) 0 0
\(295\) 7.71616 + 5.60612i 0.449252 + 0.326401i
\(296\) −20.7174 −1.20417
\(297\) 0 0
\(298\) −25.5484 −1.47998
\(299\) −3.63311 2.63961i −0.210108 0.152652i
\(300\) 0 0
\(301\) 12.1403 + 37.3639i 0.699753 + 2.15362i
\(302\) −2.75362 + 2.00062i −0.158453 + 0.115123i
\(303\) 0 0
\(304\) 4.85951 + 14.9560i 0.278712 + 0.857787i
\(305\) 1.11613 3.43509i 0.0639093 0.196692i
\(306\) 0 0
\(307\) 20.1733 1.15135 0.575676 0.817678i \(-0.304739\pi\)
0.575676 + 0.817678i \(0.304739\pi\)
\(308\) 6.65912 6.99882i 0.379439 0.398795i
\(309\) 0 0
\(310\) −3.50511 2.54661i −0.199077 0.144638i
\(311\) −5.74185 + 17.6716i −0.325590 + 1.00206i 0.645583 + 0.763690i \(0.276614\pi\)
−0.971173 + 0.238374i \(0.923386\pi\)
\(312\) 0 0
\(313\) −9.22977 + 6.70582i −0.521698 + 0.379035i −0.817243 0.576293i \(-0.804499\pi\)
0.295545 + 0.955329i \(0.404499\pi\)
\(314\) −9.36242 + 6.80220i −0.528352 + 0.383870i
\(315\) 0 0
\(316\) −3.85705 + 11.8708i −0.216976 + 0.667784i
\(317\) −20.5984 14.9656i −1.15692 0.840554i −0.167537 0.985866i \(-0.553581\pi\)
−0.989386 + 0.145312i \(0.953581\pi\)
\(318\) 0 0
\(319\) 6.31705 + 11.6711i 0.353687 + 0.653456i
\(320\) 8.46503 0.473210
\(321\) 0 0
\(322\) 2.84263 8.74871i 0.158414 0.487547i
\(323\) 11.7528 + 36.1713i 0.653942 + 2.01263i
\(324\) 0 0
\(325\) 1.83960 1.33655i 0.102043 0.0741385i
\(326\) 6.94996 + 21.3898i 0.384923 + 1.18467i
\(327\) 0 0
\(328\) −10.0187 7.27898i −0.553187 0.401914i
\(329\) 13.0698 0.720561
\(330\) 0 0
\(331\) 31.1055 1.70971 0.854857 0.518864i \(-0.173645\pi\)
0.854857 + 0.518864i \(0.173645\pi\)
\(332\) 7.95636 + 5.78063i 0.436662 + 0.317253i
\(333\) 0 0
\(334\) −1.74329 5.36530i −0.0953888 0.293576i
\(335\) 5.10897 3.71189i 0.279133 0.202802i
\(336\) 0 0
\(337\) −8.24920 25.3884i −0.449363 1.38300i −0.877628 0.479343i \(-0.840875\pi\)
0.428265 0.903653i \(-0.359125\pi\)
\(338\) 2.74774 8.45668i 0.149457 0.459983i
\(339\) 0 0
\(340\) 3.56444 0.193309
\(341\) 11.4129 + 5.46208i 0.618042 + 0.295788i
\(342\) 0 0
\(343\) −9.35971 6.80023i −0.505377 0.367178i
\(344\) 9.11101 28.0408i 0.491233 1.51186i
\(345\) 0 0
\(346\) 14.9313 10.8482i 0.802710 0.583203i
\(347\) −5.49526 + 3.99254i −0.295001 + 0.214331i −0.725434 0.688292i \(-0.758361\pi\)
0.430433 + 0.902623i \(0.358361\pi\)
\(348\) 0 0
\(349\) −2.42463 + 7.46224i −0.129787 + 0.399445i −0.994743 0.102404i \(-0.967347\pi\)
0.864955 + 0.501849i \(0.167347\pi\)
\(350\) 3.76827 + 2.73781i 0.201422 + 0.146342i
\(351\) 0 0
\(352\) −12.3923 + 2.27995i −0.660512 + 0.121522i
\(353\) 18.4136 0.980056 0.490028 0.871707i \(-0.336986\pi\)
0.490028 + 0.871707i \(0.336986\pi\)
\(354\) 0 0
\(355\) 3.79937 11.6932i 0.201649 0.620613i
\(356\) −1.72368 5.30495i −0.0913549 0.281162i
\(357\) 0 0
\(358\) 2.92588 2.12578i 0.154638 0.112351i
\(359\) −7.85272 24.1682i −0.414451 1.27555i −0.912741 0.408538i \(-0.866039\pi\)
0.498290 0.867010i \(-0.333961\pi\)
\(360\) 0 0
\(361\) −31.0866 22.5857i −1.63614 1.18872i
\(362\) −1.70466 −0.0895949
\(363\) 0 0
\(364\) 6.62331 0.347156
\(365\) 3.14732 + 2.28666i 0.164738 + 0.119689i
\(366\) 0 0
\(367\) −1.07629 3.31247i −0.0561817 0.172909i 0.919028 0.394192i \(-0.128976\pi\)
−0.975210 + 0.221283i \(0.928976\pi\)
\(368\) −3.31566 + 2.40897i −0.172841 + 0.125576i
\(369\) 0 0
\(370\) 2.36219 + 7.27008i 0.122805 + 0.377954i
\(371\) 14.2315 43.8002i 0.738865 2.27399i
\(372\) 0 0
\(373\) 12.8348 0.664561 0.332281 0.943181i \(-0.392182\pi\)
0.332281 + 0.943181i \(0.392182\pi\)
\(374\) 18.5924 3.42064i 0.961389 0.176877i
\(375\) 0 0
\(376\) −7.93533 5.76535i −0.409233 0.297325i
\(377\) −2.81162 + 8.65328i −0.144806 + 0.445666i
\(378\) 0 0
\(379\) 19.4680 14.1444i 1.00001 0.726546i 0.0379161 0.999281i \(-0.487928\pi\)
0.962089 + 0.272734i \(0.0879280\pi\)
\(380\) −4.35404 + 3.16340i −0.223358 + 0.162279i
\(381\) 0 0
\(382\) −3.66487 + 11.2793i −0.187511 + 0.577100i
\(383\) −2.56959 1.86691i −0.131300 0.0953949i 0.520197 0.854046i \(-0.325859\pi\)
−0.651497 + 0.758651i \(0.725859\pi\)
\(384\) 0 0
\(385\) −12.2698 5.87217i −0.625325 0.299273i
\(386\) −6.84538 −0.348421
\(387\) 0 0
\(388\) −1.13654 + 3.49790i −0.0576989 + 0.177579i
\(389\) 4.60437 + 14.1708i 0.233451 + 0.718488i 0.997323 + 0.0731204i \(0.0232958\pi\)
−0.763872 + 0.645368i \(0.776704\pi\)
\(390\) 0 0
\(391\) −8.01896 + 5.82612i −0.405536 + 0.294639i
\(392\) 9.34102 + 28.7487i 0.471793 + 1.45203i
\(393\) 0 0
\(394\) −8.33382 6.05488i −0.419852 0.305040i
\(395\) 17.5747 0.884281
\(396\) 0 0
\(397\) 10.8837 0.546237 0.273119 0.961980i \(-0.411945\pi\)
0.273119 + 0.961980i \(0.411945\pi\)
\(398\) 15.9083 + 11.5580i 0.797409 + 0.579351i
\(399\) 0 0
\(400\) −0.641271 1.97363i −0.0320635 0.0986815i
\(401\) −26.9279 + 19.5643i −1.34472 + 0.976993i −0.345459 + 0.938434i \(0.612277\pi\)
−0.999256 + 0.0385596i \(0.987723\pi\)
\(402\) 0 0
\(403\) 2.68060 + 8.25005i 0.133530 + 0.410964i
\(404\) 0.876250 2.69682i 0.0435951 0.134172i
\(405\) 0 0
\(406\) −18.6377 −0.924972
\(407\) −10.6262 19.6326i −0.526723 0.973150i
\(408\) 0 0
\(409\) −2.24659 1.63224i −0.111087 0.0807092i 0.530855 0.847463i \(-0.321871\pi\)
−0.641942 + 0.766753i \(0.721871\pi\)
\(410\) −1.41199 + 4.34566i −0.0697332 + 0.214617i
\(411\) 0 0
\(412\) −0.540650 + 0.392805i −0.0266359 + 0.0193521i
\(413\) 31.6465 22.9925i 1.55722 1.13139i
\(414\) 0 0
\(415\) 4.27912 13.1698i 0.210054 0.646480i
\(416\) −6.98890 5.07773i −0.342659 0.248956i
\(417\) 0 0
\(418\) −19.6752 + 20.6789i −0.962347 + 1.01144i
\(419\) −29.5565 −1.44393 −0.721965 0.691930i \(-0.756761\pi\)
−0.721965 + 0.691930i \(0.756761\pi\)
\(420\) 0 0
\(421\) 0.0902032 0.277617i 0.00439623 0.0135302i −0.948834 0.315774i \(-0.897736\pi\)
0.953231 + 0.302244i \(0.0977358\pi\)
\(422\) 5.51527 + 16.9742i 0.268479 + 0.826293i
\(423\) 0 0
\(424\) −27.9618 + 20.3155i −1.35795 + 0.986606i
\(425\) −1.55092 4.77324i −0.0752307 0.231536i
\(426\) 0 0
\(427\) −11.9843 8.70711i −0.579961 0.421367i
\(428\) −10.3189 −0.498783
\(429\) 0 0
\(430\) −10.8788 −0.524623
\(431\) 3.63718 + 2.64256i 0.175197 + 0.127288i 0.671928 0.740617i \(-0.265466\pi\)
−0.496731 + 0.867904i \(0.665466\pi\)
\(432\) 0 0
\(433\) −2.02969 6.24675i −0.0975408 0.300200i 0.890367 0.455244i \(-0.150448\pi\)
−0.987908 + 0.155044i \(0.950448\pi\)
\(434\) −14.3756 + 10.4445i −0.690050 + 0.501350i
\(435\) 0 0
\(436\) −1.69031 5.20223i −0.0809511 0.249142i
\(437\) 4.62473 14.2335i 0.221231 0.680879i
\(438\) 0 0
\(439\) −26.7142 −1.27500 −0.637500 0.770451i \(-0.720031\pi\)
−0.637500 + 0.770451i \(0.720031\pi\)
\(440\) 4.85925 + 8.97773i 0.231656 + 0.427996i
\(441\) 0 0
\(442\) 10.4856 + 7.61821i 0.498747 + 0.362361i
\(443\) −7.15900 + 22.0331i −0.340135 + 1.04683i 0.624003 + 0.781422i \(0.285505\pi\)
−0.964137 + 0.265404i \(0.914495\pi\)
\(444\) 0 0
\(445\) −6.35401 + 4.61646i −0.301209 + 0.218841i
\(446\) 0.995804 0.723494i 0.0471527 0.0342584i
\(447\) 0 0
\(448\) 10.7284 33.0186i 0.506869 1.55998i
\(449\) 23.5094 + 17.0806i 1.10948 + 0.806084i 0.982582 0.185832i \(-0.0594980\pi\)
0.126898 + 0.991916i \(0.459498\pi\)
\(450\) 0 0
\(451\) 1.75911 13.2275i 0.0828334 0.622860i
\(452\) 0.479745 0.0225653
\(453\) 0 0
\(454\) 0.698988 2.15126i 0.0328051 0.100964i
\(455\) −2.88186 8.86946i −0.135104 0.415807i
\(456\) 0 0
\(457\) −6.17070 + 4.48328i −0.288653 + 0.209719i −0.722683 0.691180i \(-0.757091\pi\)
0.434030 + 0.900899i \(0.357091\pi\)
\(458\) −2.85662 8.79178i −0.133481 0.410813i
\(459\) 0 0
\(460\) −1.13474 0.824435i −0.0529074 0.0384395i
\(461\) −34.0138 −1.58418 −0.792091 0.610404i \(-0.791007\pi\)
−0.792091 + 0.610404i \(0.791007\pi\)
\(462\) 0 0
\(463\) 15.7564 0.732263 0.366131 0.930563i \(-0.380682\pi\)
0.366131 + 0.930563i \(0.380682\pi\)
\(464\) 6.71776 + 4.88074i 0.311864 + 0.226582i
\(465\) 0 0
\(466\) −8.57351 26.3865i −0.397160 1.22233i
\(467\) −8.21219 + 5.96651i −0.380015 + 0.276097i −0.761352 0.648339i \(-0.775464\pi\)
0.381337 + 0.924436i \(0.375464\pi\)
\(468\) 0 0
\(469\) −8.00354 24.6324i −0.369569 1.13742i
\(470\) −1.11838 + 3.44200i −0.0515868 + 0.158768i
\(471\) 0 0
\(472\) −29.3566 −1.35125
\(473\) 31.2456 5.74860i 1.43668 0.264321i
\(474\) 0 0
\(475\) 6.13068 + 4.45420i 0.281295 + 0.204373i
\(476\) 4.51749 13.9034i 0.207059 0.637262i
\(477\) 0 0
\(478\) −0.0652201 + 0.0473852i −0.00298310 + 0.00216735i
\(479\) −3.27098 + 2.37650i −0.149455 + 0.108585i −0.660000 0.751266i \(-0.729444\pi\)
0.510545 + 0.859851i \(0.329444\pi\)
\(480\) 0 0
\(481\) 4.72957 14.5561i 0.215650 0.663703i
\(482\) −11.6368 8.45461i −0.530040 0.385097i
\(483\) 0 0
\(484\) −4.90045 6.08416i −0.222748 0.276553i
\(485\) 5.17866 0.235151
\(486\) 0 0
\(487\) 2.27928 7.01490i 0.103284 0.317876i −0.886040 0.463609i \(-0.846554\pi\)
0.989324 + 0.145733i \(0.0465542\pi\)
\(488\) 3.43539 + 10.5730i 0.155513 + 0.478619i
\(489\) 0 0
\(490\) 9.02334 6.55584i 0.407633 0.296163i
\(491\) −0.678379 2.08784i −0.0306148 0.0942228i 0.934582 0.355749i \(-0.115774\pi\)
−0.965196 + 0.261526i \(0.915774\pi\)
\(492\) 0 0
\(493\) 16.2470 + 11.8041i 0.731726 + 0.531630i
\(494\) −19.5694 −0.880470
\(495\) 0 0
\(496\) 7.91667 0.355469
\(497\) −40.7953 29.6395i −1.82992 1.32952i
\(498\) 0 0
\(499\) 2.49123 + 7.66723i 0.111523 + 0.343232i 0.991206 0.132328i \(-0.0422453\pi\)
−0.879683 + 0.475560i \(0.842245\pi\)
\(500\) 0.574568 0.417448i 0.0256955 0.0186689i
\(501\) 0 0
\(502\) 2.68723 + 8.27043i 0.119937 + 0.369127i
\(503\) 10.3077 31.7237i 0.459596 1.41449i −0.406058 0.913847i \(-0.633097\pi\)
0.865654 0.500643i \(-0.166903\pi\)
\(504\) 0 0
\(505\) −3.99265 −0.177671
\(506\) −6.71005 3.21135i −0.298298 0.142762i
\(507\) 0 0
\(508\) −2.53445 1.84139i −0.112448 0.0816984i
\(509\) −5.18767 + 15.9660i −0.229939 + 0.707681i 0.767813 + 0.640674i \(0.221345\pi\)
−0.997753 + 0.0670068i \(0.978655\pi\)
\(510\) 0 0
\(511\) 12.9082 9.37834i 0.571024 0.414873i
\(512\) −16.7132 + 12.1429i −0.738627 + 0.536644i
\(513\) 0 0
\(514\) 8.11044 24.9614i 0.357736 1.10100i
\(515\) 0.761258 + 0.553086i 0.0335450 + 0.0243719i
\(516\) 0 0
\(517\) 1.39331 10.4769i 0.0612779 0.460775i
\(518\) 31.3514 1.37750
\(519\) 0 0
\(520\) −2.16278 + 6.65634i −0.0948441 + 0.291900i
\(521\) −4.57050 14.0665i −0.200237 0.616267i −0.999875 0.0157846i \(-0.994975\pi\)
0.799638 0.600482i \(-0.205025\pi\)
\(522\) 0 0
\(523\) 1.14467 0.831651i 0.0500529 0.0363656i −0.562477 0.826813i \(-0.690152\pi\)
0.612530 + 0.790447i \(0.290152\pi\)
\(524\) −4.69666 14.4548i −0.205174 0.631462i
\(525\) 0 0
\(526\) −8.89225 6.46060i −0.387721 0.281696i
\(527\) 19.1465 0.834036
\(528\) 0 0
\(529\) −19.0996 −0.830418
\(530\) 10.3172 + 7.49591i 0.448152 + 0.325602i
\(531\) 0 0
\(532\) 6.82090 + 20.9926i 0.295723 + 0.910143i
\(533\) 7.40140 5.37743i 0.320590 0.232922i
\(534\) 0 0
\(535\) 4.48985 + 13.8183i 0.194113 + 0.597419i
\(536\) −6.00649 + 18.4861i −0.259441 + 0.798477i
\(537\) 0 0
\(538\) 2.07103 0.0892887
\(539\) −22.4522 + 23.5975i −0.967083 + 1.01642i
\(540\) 0 0
\(541\) −2.04419 1.48519i −0.0878866 0.0638534i 0.542974 0.839749i \(-0.317298\pi\)
−0.630861 + 0.775896i \(0.717298\pi\)
\(542\) 5.19171 15.9784i 0.223003 0.686333i
\(543\) 0 0
\(544\) −15.4258 + 11.2075i −0.661377 + 0.480519i
\(545\) −6.23099 + 4.52708i −0.266906 + 0.193919i
\(546\) 0 0
\(547\) 0.160414 0.493703i 0.00685881 0.0211092i −0.947569 0.319553i \(-0.896467\pi\)
0.954427 + 0.298443i \(0.0964674\pi\)
\(548\) −2.19560 1.59519i −0.0937913 0.0681433i
\(549\) 0 0
\(550\) 2.59638 2.72883i 0.110710 0.116358i
\(551\) −30.3220 −1.29176
\(552\) 0 0
\(553\) 22.2738 68.5519i 0.947180 2.91512i
\(554\) −5.95914 18.3403i −0.253180 0.779207i
\(555\) 0 0
\(556\) 3.61818 2.62876i 0.153445 0.111484i
\(557\) −3.64719 11.2249i −0.154537 0.475615i 0.843577 0.537008i \(-0.180446\pi\)
−0.998114 + 0.0613935i \(0.980446\pi\)
\(558\) 0 0
\(559\) 17.6216 + 12.8029i 0.745316 + 0.541504i
\(560\) −8.51105 −0.359658
\(561\) 0 0
\(562\) −5.22591 −0.220442
\(563\) 5.44689 + 3.95740i 0.229559 + 0.166784i 0.696619 0.717441i \(-0.254687\pi\)
−0.467060 + 0.884226i \(0.654687\pi\)
\(564\) 0 0
\(565\) −0.208742 0.642441i −0.00878183 0.0270277i
\(566\) 12.6673 9.20333i 0.532446 0.386845i
\(567\) 0 0
\(568\) 11.6943 + 35.9913i 0.490681 + 1.51016i
\(569\) −9.73140 + 29.9502i −0.407962 + 1.25558i 0.510435 + 0.859916i \(0.329484\pi\)
−0.918397 + 0.395661i \(0.870516\pi\)
\(570\) 0 0
\(571\) −24.1049 −1.00876 −0.504380 0.863482i \(-0.668279\pi\)
−0.504380 + 0.863482i \(0.668279\pi\)
\(572\) 0.706083 5.30934i 0.0295228 0.221995i
\(573\) 0 0
\(574\) 15.1611 + 11.0152i 0.632813 + 0.459765i
\(575\) −0.610290 + 1.87828i −0.0254508 + 0.0783296i
\(576\) 0 0
\(577\) 27.6772 20.1087i 1.15222 0.837136i 0.163444 0.986553i \(-0.447740\pi\)
0.988774 + 0.149417i \(0.0477397\pi\)
\(578\) 7.52415 5.46662i 0.312964 0.227381i
\(579\) 0 0
\(580\) −0.878160 + 2.70270i −0.0364636 + 0.112224i
\(581\) −45.9467 33.3822i −1.90619 1.38493i
\(582\) 0 0
\(583\) −33.5937 16.0775i −1.39131 0.665864i
\(584\) −11.9742 −0.495495
\(585\) 0 0
\(586\) −11.0284 + 33.9418i −0.455577 + 1.40212i
\(587\) −5.43890 16.7392i −0.224487 0.690901i −0.998343 0.0575394i \(-0.981675\pi\)
0.773856 0.633362i \(-0.218325\pi\)
\(588\) 0 0
\(589\) −23.3879 + 16.9923i −0.963683 + 0.700157i
\(590\) 3.34723 + 10.3017i 0.137803 + 0.424115i
\(591\) 0 0
\(592\) −11.3003 8.21014i −0.464439 0.337435i
\(593\) 33.9143 1.39269 0.696347 0.717705i \(-0.254807\pi\)
0.696347 + 0.717705i \(0.254807\pi\)
\(594\) 0 0
\(595\) −20.5841 −0.843864
\(596\) 12.9254 + 9.39087i 0.529446 + 0.384665i
\(597\) 0 0
\(598\) −1.57602 4.85051i −0.0644485 0.198352i
\(599\) 24.3793 17.7126i 0.996111 0.723717i 0.0348602 0.999392i \(-0.488901\pi\)
0.961251 + 0.275675i \(0.0889014\pi\)
\(600\) 0 0
\(601\) −8.57870 26.4025i −0.349932 1.07698i −0.958890 0.283778i \(-0.908412\pi\)
0.608958 0.793203i \(-0.291588\pi\)
\(602\) −13.7876 + 42.4338i −0.561940 + 1.72947i
\(603\) 0 0
\(604\) 2.12848 0.0866067
\(605\) −6.01524 + 9.20961i −0.244554 + 0.374424i
\(606\) 0 0
\(607\) 20.6258 + 14.9855i 0.837177 + 0.608244i 0.921581 0.388187i \(-0.126899\pi\)
−0.0844040 + 0.996432i \(0.526899\pi\)
\(608\) 8.89647 27.3805i 0.360799 1.11043i
\(609\) 0 0
\(610\) 3.31856 2.41107i 0.134364 0.0976215i
\(611\) 5.86232 4.25922i 0.237164 0.172310i
\(612\) 0 0
\(613\) 0.638825 1.96610i 0.0258019 0.0794101i −0.937326 0.348453i \(-0.886707\pi\)
0.963128 + 0.269043i \(0.0867072\pi\)
\(614\) 18.5351 + 13.4665i 0.748016 + 0.543466i
\(615\) 0 0
\(616\) 41.1770 7.57578i 1.65907 0.305237i
\(617\) 16.7249 0.673321 0.336660 0.941626i \(-0.390703\pi\)
0.336660 + 0.941626i \(0.390703\pi\)
\(618\) 0 0
\(619\) −13.0549 + 40.1788i −0.524720 + 1.61492i 0.240149 + 0.970736i \(0.422804\pi\)
−0.764869 + 0.644186i \(0.777196\pi\)
\(620\) 0.837240 + 2.57676i 0.0336244 + 0.103485i
\(621\) 0 0
\(622\) −17.0721 + 12.4036i −0.684529 + 0.497340i
\(623\) 9.95398 + 30.6352i 0.398798 + 1.22737i
\(624\) 0 0
\(625\) −0.809017 0.587785i −0.0323607 0.0235114i
\(626\) −12.9567 −0.517853
\(627\) 0 0
\(628\) 7.23693 0.288785
\(629\) −27.3299 19.8563i −1.08971 0.791723i
\(630\) 0 0
\(631\) 12.0090 + 36.9599i 0.478071 + 1.47135i 0.841770 + 0.539836i \(0.181514\pi\)
−0.363699 + 0.931516i \(0.618486\pi\)
\(632\) −43.7632 + 31.7958i −1.74081 + 1.26477i
\(633\) 0 0
\(634\) −8.93551 27.5007i −0.354874 1.09219i
\(635\) −1.36309 + 4.19516i −0.0540926 + 0.166480i
\(636\) 0 0
\(637\) −22.3314 −0.884803
\(638\) −1.98688 + 14.9402i −0.0786614 + 0.591489i
\(639\) 0 0
\(640\) 1.63049 + 1.18462i 0.0644509 + 0.0468263i
\(641\) −5.42159 + 16.6859i −0.214140 + 0.659055i 0.785074 + 0.619402i \(0.212625\pi\)
−0.999214 + 0.0396524i \(0.987375\pi\)
\(642\) 0 0
\(643\) −29.6485 + 21.5409i −1.16922 + 0.849490i −0.990916 0.134485i \(-0.957062\pi\)
−0.178307 + 0.983975i \(0.557062\pi\)
\(644\) −4.65392 + 3.38127i −0.183390 + 0.133241i
\(645\) 0 0
\(646\) −13.3475 + 41.0794i −0.525151 + 1.61625i
\(647\) 18.2985 + 13.2947i 0.719389 + 0.522667i 0.886189 0.463324i \(-0.153343\pi\)
−0.166800 + 0.985991i \(0.553343\pi\)
\(648\) 0 0
\(649\) −15.0574 27.8194i −0.591055 1.09201i
\(650\) 2.58242 0.101291
\(651\) 0 0
\(652\) 4.34616 13.3761i 0.170209 0.523849i
\(653\) 1.96124 + 6.03608i 0.0767493 + 0.236210i 0.982069 0.188520i \(-0.0603690\pi\)
−0.905320 + 0.424730i \(0.860369\pi\)
\(654\) 0 0
\(655\) −17.3133 + 12.5789i −0.676487 + 0.491497i
\(656\) −2.58007 7.94063i −0.100735 0.310029i
\(657\) 0 0
\(658\) 12.0084 + 8.72465i 0.468138 + 0.340122i
\(659\) 45.8649 1.78664 0.893321 0.449420i \(-0.148369\pi\)
0.893321 + 0.449420i \(0.148369\pi\)
\(660\) 0 0
\(661\) 46.4730 1.80759 0.903796 0.427964i \(-0.140769\pi\)
0.903796 + 0.427964i \(0.140769\pi\)
\(662\) 28.5795 + 20.7643i 1.11078 + 0.807026i
\(663\) 0 0
\(664\) 13.1710 + 40.5360i 0.511132 + 1.57310i
\(665\) 25.1439 18.2681i 0.975039 0.708407i
\(666\) 0 0
\(667\) −2.44199 7.51566i −0.0945541 0.291008i
\(668\) −1.09017 + 3.35520i −0.0421800 + 0.129817i
\(669\) 0 0
\(670\) 7.17193 0.277076
\(671\) −8.25734 + 8.67856i −0.318771 + 0.335032i
\(672\) 0 0
\(673\) 8.98019 + 6.52449i 0.346161 + 0.251501i 0.747257 0.664535i \(-0.231371\pi\)
−0.401096 + 0.916036i \(0.631371\pi\)
\(674\) 9.36855 28.8334i 0.360863 1.11062i
\(675\) 0 0
\(676\) −4.49857 + 3.26841i −0.173022 + 0.125708i
\(677\) 12.8919 9.36649i 0.495475 0.359984i −0.311811 0.950144i \(-0.600936\pi\)
0.807286 + 0.590161i \(0.200936\pi\)
\(678\) 0 0
\(679\) 6.56332 20.1998i 0.251877 0.775198i
\(680\) 12.4976 + 9.08005i 0.479262 + 0.348204i
\(681\) 0 0
\(682\) 6.83991 + 12.6371i 0.261914 + 0.483900i
\(683\) −21.8344 −0.835468 −0.417734 0.908569i \(-0.637176\pi\)
−0.417734 + 0.908569i \(0.637176\pi\)
\(684\) 0 0
\(685\) −1.18085 + 3.63427i −0.0451178 + 0.138858i
\(686\) −4.06020 12.4960i −0.155019 0.477100i
\(687\) 0 0
\(688\) 16.0819 11.6842i 0.613118 0.445457i
\(689\) −7.89032 24.2839i −0.300597 0.925143i
\(690\) 0 0
\(691\) 21.8380 + 15.8662i 0.830756 + 0.603579i 0.919773 0.392451i \(-0.128373\pi\)
−0.0890174 + 0.996030i \(0.528373\pi\)
\(692\) −11.5415 −0.438743
\(693\) 0 0
\(694\) −7.71420 −0.292827
\(695\) −5.09455 3.70141i −0.193247 0.140402i
\(696\) 0 0
\(697\) −6.23991 19.2045i −0.236353 0.727421i
\(698\) −7.20909 + 5.23771i −0.272868 + 0.198250i
\(699\) 0 0
\(700\) −0.900100 2.77022i −0.0340206 0.104705i
\(701\) −9.22000 + 28.3762i −0.348235 + 1.07176i 0.611595 + 0.791171i \(0.290528\pi\)
−0.959829 + 0.280585i \(0.909472\pi\)
\(702\) 0 0
\(703\) 51.0063 1.92374
\(704\) −25.3245 12.1200i −0.954453 0.456790i
\(705\) 0 0
\(706\) 16.9183 + 12.2919i 0.636728 + 0.462610i
\(707\) −5.06020 + 15.5737i −0.190309 + 0.585710i
\(708\) 0 0
\(709\) −27.0393 + 19.6452i −1.01548 + 0.737792i −0.965352 0.260950i \(-0.915964\pi\)
−0.0501317 + 0.998743i \(0.515964\pi\)
\(710\) 11.2966 8.20744i 0.423953 0.308020i
\(711\) 0 0
\(712\) 7.47025 22.9911i 0.279960 0.861627i
\(713\) −6.09529 4.42849i −0.228270 0.165848i
\(714\) 0 0
\(715\) −7.41711 + 1.36461i −0.277384 + 0.0510334i
\(716\) −2.26164 −0.0845213
\(717\) 0 0
\(718\) 8.91827 27.4476i 0.332827 1.02434i
\(719\) −3.48661 10.7307i −0.130029 0.400187i 0.864755 0.502194i \(-0.167474\pi\)
−0.994784 + 0.102007i \(0.967474\pi\)
\(720\) 0 0
\(721\) 3.12217 2.26839i 0.116276 0.0844791i
\(722\) −13.4852 41.5032i −0.501868 1.54459i
\(723\) 0 0
\(724\) 0.862420 + 0.626585i 0.0320516 + 0.0232868i
\(725\) 4.00136 0.148607
\(726\) 0 0
\(727\) 43.3381 1.60732 0.803661 0.595087i \(-0.202882\pi\)
0.803661 + 0.595087i \(0.202882\pi\)
\(728\) 23.2226 + 16.8722i 0.860687 + 0.625326i
\(729\) 0 0
\(730\) 1.36529 + 4.20194i 0.0505318 + 0.155521i
\(731\) 38.8943 28.2584i 1.43856 1.04517i
\(732\) 0 0
\(733\) 16.1196 + 49.6111i 0.595392 + 1.83243i 0.552765 + 0.833337i \(0.313573\pi\)
0.0426271 + 0.999091i \(0.486427\pi\)
\(734\) 1.22233 3.76194i 0.0451170 0.138856i
\(735\) 0 0
\(736\) 7.50305 0.276566
\(737\) −20.5989 + 3.78980i −0.758770 + 0.139599i
\(738\) 0 0
\(739\) 11.9005 + 8.64621i 0.437767 + 0.318056i 0.784747 0.619816i \(-0.212793\pi\)
−0.346980 + 0.937872i \(0.612793\pi\)
\(740\) 1.47720 4.54635i 0.0543029 0.167127i
\(741\) 0 0
\(742\) 42.3143 30.7432i 1.55341 1.12862i
\(743\) 2.20658 1.60317i 0.0809516 0.0588148i −0.546573 0.837411i \(-0.684068\pi\)
0.627525 + 0.778596i \(0.284068\pi\)
\(744\) 0 0
\(745\) 6.95161 21.3948i 0.254687 0.783846i
\(746\) 11.7925 + 8.56778i 0.431756 + 0.313689i
\(747\) 0 0
\(748\) −10.6636 5.10347i −0.389899 0.186601i
\(749\) 59.5900 2.17737
\(750\) 0 0
\(751\) 5.18737 15.9651i 0.189290 0.582574i −0.810706 0.585454i \(-0.800916\pi\)
0.999996 + 0.00287913i \(0.000916457\pi\)
\(752\) −2.04356 6.28942i −0.0745208 0.229351i
\(753\) 0 0
\(754\) −8.35973 + 6.07370i −0.304443 + 0.221191i
\(755\) −0.926122 2.85031i −0.0337050 0.103733i
\(756\) 0 0
\(757\) 18.5516 + 13.4785i 0.674269 + 0.489885i 0.871451 0.490482i \(-0.163179\pi\)
−0.197183 + 0.980367i \(0.563179\pi\)
\(758\) 27.3291 0.992636
\(759\) 0 0
\(760\) −23.3246 −0.846071
\(761\) 6.32263 + 4.59366i 0.229195 + 0.166520i 0.696456 0.717599i \(-0.254759\pi\)
−0.467261 + 0.884120i \(0.654759\pi\)
\(762\) 0 0
\(763\) 9.76126 + 30.0421i 0.353381 + 1.08760i
\(764\) 6.00009 4.35932i 0.217076 0.157715i
\(765\) 0 0
\(766\) −1.11468 3.43062i −0.0402748 0.123953i
\(767\) 6.70182 20.6261i 0.241989 0.744764i
\(768\) 0 0
\(769\) 38.6765 1.39471 0.697355 0.716726i \(-0.254360\pi\)
0.697355 + 0.716726i \(0.254360\pi\)
\(770\) −7.35345 13.5859i −0.265000 0.489602i
\(771\) 0 0
\(772\) 3.46321 + 2.51617i 0.124644 + 0.0905590i
\(773\) −5.21660 + 16.0551i −0.187628 + 0.577460i −0.999984 0.00570222i \(-0.998185\pi\)
0.812356 + 0.583163i \(0.198185\pi\)
\(774\) 0 0
\(775\) 3.08632 2.24234i 0.110864 0.0805473i
\(776\) −12.8955 + 9.36911i −0.462921 + 0.336331i
\(777\) 0 0
\(778\) −5.22914 + 16.0936i −0.187474 + 0.576985i
\(779\) 24.6659 + 17.9209i 0.883749 + 0.642081i
\(780\) 0 0
\(781\) −28.1085 + 29.5424i −1.00580 + 1.05711i
\(782\) −11.2569 −0.402548
\(783\) 0 0
\(784\) −6.29783 + 19.3827i −0.224922 + 0.692240i
\(785\) −3.14886 9.69118i −0.112387 0.345893i
\(786\)