Properties

Label 495.2.n.f
Level $495$
Weight $2$
Character orbit 495.n
Analytic conductor $3.953$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 495.n (of order \(5\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.95259490005\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.159390625.1
Defining polynomial: \( x^{8} - x^{7} + 6x^{6} - 11x^{5} + 21x^{4} - 5x^{3} + 10x^{2} + 25x + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{4} + \beta_{2} + \beta_1) q^{2} + (\beta_{7} + 2 \beta_{6} + \beta_{5} + \beta_{3} + \beta_{2} - 2) q^{4} + \beta_{6} q^{5} + (2 \beta_{6} - \beta_{5} + 3 \beta_{3} + 3 \beta_{2} - 2) q^{7} + (\beta_{7} + \beta_{4} + 2 \beta_{3}) q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta_{4} + \beta_{2} + \beta_1) q^{2} + (\beta_{7} + 2 \beta_{6} + \beta_{5} + \beta_{3} + \beta_{2} - 2) q^{4} + \beta_{6} q^{5} + (2 \beta_{6} - \beta_{5} + 3 \beta_{3} + 3 \beta_{2} - 2) q^{7} + (\beta_{7} + \beta_{4} + 2 \beta_{3}) q^{8} + (\beta_{7} - \beta_1 + 1) q^{10} + (2 \beta_{6} + \beta_{4} + \beta_{3} + \beta_{2} - 2 \beta_1) q^{11} + (2 \beta_{6} + \beta_{4} + 2 \beta_{3} - \beta_{2} - \beta_1) q^{13} + (2 \beta_{7} + 2 \beta_{4} + \beta_{3} + 2 \beta_{2} - 2 \beta_1 - 2) q^{14} + ( - \beta_{5} + 3 \beta_{3} + \beta_1 - 3) q^{16} + (\beta_{6} - \beta_{5} + \beta_{4} + \beta_1) q^{17} + ( - 4 \beta_{3} - \beta_{2} + \beta_1 + 1) q^{19} + (\beta_{7} - \beta_{6} + \beta_{5} - \beta_{4} - \beta_{3} + \beta_{2}) q^{20} + (\beta_{7} - 4 \beta_{6} + \beta_{5} - \beta_{4} - 3 \beta_{3} - \beta_{2} - 2 \beta_1 + 6) q^{22} + ( - \beta_{7} - 3 \beta_{6} - 3 \beta_{5} + 3 \beta_{4} - 3 \beta_{2} + \beta_1 + 5) q^{23} - \beta_{3} q^{25} + (\beta_{7} - 6 \beta_{6} - 3 \beta_{5} - 3 \beta_{3} - 3 \beta_{2} + 6) q^{26} + ( - \beta_{6} - \beta_{5} + 4 \beta_{4} - 2 \beta_{3} + \beta_1 + 2) q^{28} + (\beta_{7} + 3 \beta_{6} - 3) q^{29} + (2 \beta_{7} + 2 \beta_{6} + 2 \beta_{5} + \beta_{4} + 2 \beta_{3} - \beta_{2} - 3 \beta_1) q^{31} + (2 \beta_{7} - 2 \beta_{6} - 2 \beta_{5} + 2 \beta_{4} - 2 \beta_{2} - 2 \beta_1 + 1) q^{32} + ( - \beta_{6} - 2 \beta_{5} + 2 \beta_{4} - \beta_{2} - 1) q^{34} + (\beta_{6} + \beta_{4} + \beta_{3} + 3 \beta_{2} - \beta_1) q^{35} + (\beta_{7} - 3 \beta_{6} - 3 \beta_{5} - \beta_{3} - \beta_{2} + 3) q^{37} + (4 \beta_{6} + 2 \beta_{5} + \beta_{3} - 2 \beta_1 - 1) q^{38} + (\beta_{7} + 2 \beta_{6} + \beta_{5} + 2 \beta_{3} + 2 \beta_{2} - 2) q^{40} + ( - 3 \beta_{7} - 3 \beta_{4} - 3 \beta_{3} + 4 \beta_1) q^{41} + ( - \beta_{7} - 2 \beta_{6} + 2 \beta_{5} - 2 \beta_{4} - 2 \beta_{2} + \beta_1 + 5) q^{43} + (2 \beta_{6} + 3 \beta_{5} - 4 \beta_{4} - 4 \beta_{3} + 4 \beta_{2} + 3 \beta_1 + 1) q^{44} + ( - 7 \beta_{7} - 8 \beta_{6} - 7 \beta_{5} - 2 \beta_{4} - 8 \beta_{3} - 3 \beta_{2} + 9 \beta_1) q^{46} + ( - \beta_{7} - \beta_{4} + \beta_{3} + \beta_{2} - 2 \beta_1 - 1) q^{47} + ( - \beta_{6} + 5 \beta_{5} - \beta_{4} + 4 \beta_{3} - 5 \beta_1 - 4) q^{49} + (\beta_{6} + \beta_{5} - \beta_1) q^{50} + ( - 3 \beta_{7} - 3 \beta_{4} - 6 \beta_{3} + 4 \beta_{2} + 4 \beta_1 - 4) q^{52} + ( - \beta_{7} - \beta_{5} - \beta_{4} - 2 \beta_{2} + 2 \beta_1) q^{53} + ( - 2 \beta_{7} + \beta_{6} - \beta_{3} + \beta_{2} + \beta_1) q^{55} + ( - \beta_{7} - \beta_{6} - 3 \beta_{5} + 3 \beta_{4} - \beta_{2} + \beta_1 - 2) q^{56} + (4 \beta_{7} + 4 \beta_{4} + \beta_{3} - \beta_{2} - 6 \beta_1 + 1) q^{58} + ( - 2 \beta_{7} + 2 \beta_{6} + 3 \beta_{5} + 5 \beta_{3} + 5 \beta_{2} - 2) q^{59} + ( - 3 \beta_{6} - 2 \beta_{5} - 2 \beta_{4} - \beta_{3} + 2 \beta_1 + 1) q^{61} + (3 \beta_{7} - 8 \beta_{6} - \beta_{5} - \beta_{3} - \beta_{2} + 8) q^{62} + ( - 2 \beta_{7} - 2 \beta_{6} - 2 \beta_{5} - \beta_{4} - 2 \beta_{3} + 7 \beta_{2} + 3 \beta_1) q^{64} + ( - \beta_{7} + 2 \beta_{6} + 2 \beta_{2} + \beta_1 - 3) q^{65} + ( - 3 \beta_{7} - 2 \beta_{6} - 2 \beta_{2} + 3 \beta_1) q^{67} + ( - \beta_{7} - 5 \beta_{6} - \beta_{5} + \beta_{4} - 5 \beta_{3} - 6 \beta_{2}) q^{68} + ( - \beta_{6} + 2 \beta_{5} + \beta_{3} + \beta_{2} + 1) q^{70} + (2 \beta_{6} + 3 \beta_{5} + 2 \beta_{4} + 8 \beta_{3} - 3 \beta_1 - 8) q^{71} + ( - 2 \beta_{7} + 2 \beta_{6} + \beta_{5} - 4 \beta_{3} - 4 \beta_{2} - 2) q^{73} + ( - 2 \beta_{7} - 2 \beta_{4} - 6 \beta_{3} + 7 \beta_{2} + 2 \beta_1 - 7) q^{74} + (4 \beta_{7} - 5 \beta_{6} + 3 \beta_{5} - 3 \beta_{4} - 5 \beta_{2} - 4 \beta_1 + 4) q^{76} + ( - 3 \beta_{7} - \beta_{6} + 3 \beta_{5} - 5 \beta_{4} + 7 \beta_{3} + 3 \beta_{2} + \cdots - 1) q^{77}+ \cdots + ( - 7 \beta_{6} + 2 \beta_{5} - 2 \beta_{4} - 7 \beta_{2} + 13) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} - 6 q^{4} + 2 q^{5} - 3 q^{7} + 2 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 4 q^{2} - 6 q^{4} + 2 q^{5} - 3 q^{7} + 2 q^{8} + 6 q^{10} + 5 q^{11} + 4 q^{13} - 16 q^{14} - 20 q^{16} - q^{17} - q^{19} + q^{20} + 33 q^{22} + 18 q^{23} - 2 q^{25} + 14 q^{26} + 4 q^{28} - 19 q^{29} + 6 q^{31} - 12 q^{32} - 20 q^{34} + 8 q^{35} + 4 q^{37} + 6 q^{38} - 2 q^{40} + 4 q^{41} + 42 q^{43} + 28 q^{44} - 41 q^{46} - 4 q^{47} - 15 q^{49} + 4 q^{50} - 26 q^{52} - 3 q^{53} + 5 q^{55} - 30 q^{56} - 6 q^{58} + 19 q^{59} - 2 q^{61} + 38 q^{62} + 6 q^{64} - 14 q^{65} - 2 q^{67} - 35 q^{68} + 16 q^{70} - 40 q^{71} - 23 q^{73} - 48 q^{74} + 16 q^{76} + 28 q^{77} + 17 q^{79} - 15 q^{80} + 2 q^{82} + 25 q^{83} - 4 q^{85} + 31 q^{86} + 22 q^{88} - 12 q^{91} - 81 q^{92} + 33 q^{94} + q^{95} + 12 q^{97} + 84 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - x^{7} + 6x^{6} - 11x^{5} + 21x^{4} - 5x^{3} + 10x^{2} + 25x + 25 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 555\nu^{7} - 2159\nu^{6} + 7489\nu^{5} - 18164\nu^{4} + 40069\nu^{3} - 84434\nu^{2} + 43855\nu + 375 ) / 94655 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -970\nu^{7} - 1002\nu^{6} - 6608\nu^{5} + 9063\nu^{4} - 14943\nu^{3} + 27673\nu^{2} - 68120\nu + 35160 ) / 94655 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -1604\nu^{7} + 4159\nu^{6} - 12059\nu^{5} + 28414\nu^{4} - 81659\nu^{3} + 38305\nu^{2} - 13500\nu - 13875 ) / 94655 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -2052\nu^{7} + 2252\nu^{6} - 19912\nu^{5} + 21007\nu^{4} - 82042\nu^{3} + 35785\nu^{2} - 19395\nu - 90925 ) / 94655 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -2667\nu^{7} + 6691\nu^{6} - 17466\nu^{5} + 50856\nu^{4} - 82441\nu^{3} + 72554\nu^{2} - 4035\nu - 12035 ) / 94655 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 4024\nu^{7} - 1464\nu^{6} + 21519\nu^{5} - 26434\nu^{4} + 59219\nu^{3} + 22635\nu^{2} + 54640\nu + 66675 ) / 94655 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{7} - \beta_{6} - \beta_{5} - \beta_{3} - 3\beta_{2} + \beta_1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{6} + \beta_{5} - 4\beta_{4} - \beta_{3} - \beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 7\beta_{7} + 7\beta_{6} + 2\beta_{5} + 13\beta_{3} + 13\beta_{2} - 7 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -8\beta_{7} - 11\beta_{6} - 20\beta_{5} + 20\beta_{4} - 11\beta_{2} + 8\beta _1 - 12 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -19\beta_{7} - 19\beta_{4} - 68\beta_{3} - 36\beta_{2} - 24\beta _1 + 36 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 111\beta_{7} + 81\beta_{6} + 111\beta_{5} - 55\beta_{4} + 81\beta_{3} + 148\beta_{2} - 56\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(397\)
\(\chi(n)\) \(-1 + \beta_{2} + \beta_{3} + \beta_{6}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
91.1
0.453245 + 1.39494i
−0.762262 2.34600i
0.453245 1.39494i
−0.762262 + 2.34600i
−0.628998 0.456994i
1.43801 + 1.04478i
−0.628998 + 0.456994i
1.43801 1.04478i
0.0756511 0.0549637i 0 −0.615332 + 1.89380i 0.809017 + 0.587785i 0 1.39815 4.30308i 0.115332 + 0.354955i 0 0.0935099
91.2 2.04238 1.48388i 0 1.35140 4.15918i 0.809017 + 0.587785i 0 0.646930 1.99105i −1.85140 5.69802i 0 2.52452
136.1 0.0756511 + 0.0549637i 0 −0.615332 1.89380i 0.809017 0.587785i 0 1.39815 + 4.30308i 0.115332 0.354955i 0 0.0935099
136.2 2.04238 + 1.48388i 0 1.35140 + 4.15918i 0.809017 0.587785i 0 0.646930 + 1.99105i −1.85140 + 5.69802i 0 2.52452
181.1 −0.697759 2.14748i 0 −2.50678 + 1.82128i −0.309017 + 0.951057i 0 −0.100294 + 0.0728678i 2.00678 + 1.45801i 0 2.25800
181.2 0.579725 + 1.78421i 0 −1.22929 + 0.893133i −0.309017 + 0.951057i 0 −3.44479 + 2.50279i 0.729292 + 0.529862i 0 −1.87603
361.1 −0.697759 + 2.14748i 0 −2.50678 1.82128i −0.309017 0.951057i 0 −0.100294 0.0728678i 2.00678 1.45801i 0 2.25800
361.2 0.579725 1.78421i 0 −1.22929 0.893133i −0.309017 0.951057i 0 −3.44479 2.50279i 0.729292 0.529862i 0 −1.87603
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 361.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.c even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 495.2.n.f 8
3.b odd 2 1 55.2.g.a 8
11.c even 5 1 inner 495.2.n.f 8
11.c even 5 1 5445.2.a.bg 4
11.d odd 10 1 5445.2.a.bu 4
12.b even 2 1 880.2.bo.e 8
15.d odd 2 1 275.2.h.b 8
15.e even 4 2 275.2.z.b 16
33.d even 2 1 605.2.g.n 8
33.f even 10 1 605.2.a.i 4
33.f even 10 2 605.2.g.g 8
33.f even 10 1 605.2.g.n 8
33.h odd 10 1 55.2.g.a 8
33.h odd 10 1 605.2.a.l 4
33.h odd 10 2 605.2.g.j 8
132.n odd 10 1 9680.2.a.cv 4
132.o even 10 1 880.2.bo.e 8
132.o even 10 1 9680.2.a.cs 4
165.o odd 10 1 275.2.h.b 8
165.o odd 10 1 3025.2.a.v 4
165.r even 10 1 3025.2.a.be 4
165.v even 20 2 275.2.z.b 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
55.2.g.a 8 3.b odd 2 1
55.2.g.a 8 33.h odd 10 1
275.2.h.b 8 15.d odd 2 1
275.2.h.b 8 165.o odd 10 1
275.2.z.b 16 15.e even 4 2
275.2.z.b 16 165.v even 20 2
495.2.n.f 8 1.a even 1 1 trivial
495.2.n.f 8 11.c even 5 1 inner
605.2.a.i 4 33.f even 10 1
605.2.a.l 4 33.h odd 10 1
605.2.g.g 8 33.f even 10 2
605.2.g.j 8 33.h odd 10 2
605.2.g.n 8 33.d even 2 1
605.2.g.n 8 33.f even 10 1
880.2.bo.e 8 12.b even 2 1
880.2.bo.e 8 132.o even 10 1
3025.2.a.v 4 165.o odd 10 1
3025.2.a.be 4 165.r even 10 1
5445.2.a.bg 4 11.c even 5 1
5445.2.a.bu 4 11.d odd 10 1
9680.2.a.cs 4 132.o even 10 1
9680.2.a.cv 4 132.n odd 10 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{8} - 4T_{2}^{7} + 13T_{2}^{6} - 30T_{2}^{5} + 71T_{2}^{4} - 90T_{2}^{3} + 127T_{2}^{2} - 18T_{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(495, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} - 4 T^{7} + 13 T^{6} - 30 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( (T^{4} - T^{3} + T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{8} + 3 T^{7} + 19 T^{6} + 87 T^{5} + \cdots + 25 \) Copy content Toggle raw display
$11$ \( T^{8} - 5 T^{7} + 26 T^{6} + \cdots + 14641 \) Copy content Toggle raw display
$13$ \( T^{8} - 4 T^{7} + 33 T^{6} - 20 T^{5} + \cdots + 121 \) Copy content Toggle raw display
$17$ \( T^{8} + T^{7} - 2 T^{6} - 5 T^{5} + \cdots + 121 \) Copy content Toggle raw display
$19$ \( T^{8} + T^{7} + 31 T^{6} + 151 T^{5} + \cdots + 625 \) Copy content Toggle raw display
$23$ \( (T^{4} - 9 T^{3} - 54 T^{2} + 706 T - 1669)^{2} \) Copy content Toggle raw display
$29$ \( T^{8} + 19 T^{7} + 171 T^{6} + \cdots + 3025 \) Copy content Toggle raw display
$31$ \( T^{8} - 6 T^{7} + 57 T^{6} + \cdots + 10201 \) Copy content Toggle raw display
$37$ \( T^{8} - 4 T^{7} - 23 T^{6} + \cdots + 22801 \) Copy content Toggle raw display
$41$ \( T^{8} - 4 T^{7} - 3 T^{6} + \cdots + 249001 \) Copy content Toggle raw display
$43$ \( (T^{4} - 21 T^{3} + 121 T^{2} - 191 T - 59)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} + 4 T^{7} + 87 T^{6} + \cdots + 5041 \) Copy content Toggle raw display
$53$ \( T^{8} + 3 T^{7} + 37 T^{6} + 255 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$59$ \( T^{8} - 19 T^{7} + 201 T^{6} + \cdots + 9150625 \) Copy content Toggle raw display
$61$ \( T^{8} + 2 T^{7} + 74 T^{6} + \cdots + 3025 \) Copy content Toggle raw display
$67$ \( (T^{4} + T^{3} - 82 T^{2} - 238 T - 101)^{2} \) Copy content Toggle raw display
$71$ \( T^{8} + 40 T^{7} + 869 T^{6} + \cdots + 60824401 \) Copy content Toggle raw display
$73$ \( T^{8} + 23 T^{7} + 368 T^{6} + \cdots + 151321 \) Copy content Toggle raw display
$79$ \( T^{8} - 17 T^{7} + 154 T^{6} + \cdots + 4644025 \) Copy content Toggle raw display
$83$ \( T^{8} - 25 T^{7} + 271 T^{6} + \cdots + 841 \) Copy content Toggle raw display
$89$ \( (T^{4} - 150 T^{2} + 400 T + 725)^{2} \) Copy content Toggle raw display
$97$ \( T^{8} - 12 T^{7} + 179 T^{6} + \cdots + 625 \) Copy content Toggle raw display
show more
show less