Properties

Label 495.2.n.a
Level $495$
Weight $2$
Character orbit 495.n
Analytic conductor $3.953$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 495.n (of order \(5\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.95259490005\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.13140625.1
Defining polynomial: \(x^{8} - 3 x^{7} + 5 x^{6} - 3 x^{5} + 4 x^{4} + 3 x^{3} + 5 x^{2} + 3 x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 165)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -1 - \beta_{1} - \beta_{2} + \beta_{3} - \beta_{4} + \beta_{5} + \beta_{6} - \beta_{7} ) q^{2} + ( 2 \beta_{1} - \beta_{5} - \beta_{6} ) q^{4} -\beta_{4} q^{5} + ( \beta_{1} + 2 \beta_{3} - \beta_{5} - \beta_{6} ) q^{7} + ( -2 \beta_{1} - \beta_{2} + \beta_{3} - \beta_{4} + 2 \beta_{6} - \beta_{7} ) q^{8} +O(q^{10})\) \( q + ( -1 - \beta_{1} - \beta_{2} + \beta_{3} - \beta_{4} + \beta_{5} + \beta_{6} - \beta_{7} ) q^{2} + ( 2 \beta_{1} - \beta_{5} - \beta_{6} ) q^{4} -\beta_{4} q^{5} + ( \beta_{1} + 2 \beta_{3} - \beta_{5} - \beta_{6} ) q^{7} + ( -2 \beta_{1} - \beta_{2} + \beta_{3} - \beta_{4} + 2 \beta_{6} - \beta_{7} ) q^{8} + ( -1 + \beta_{5} ) q^{10} + ( \beta_{1} + \beta_{3} + \beta_{4} - 3 \beta_{5} - \beta_{6} - \beta_{7} ) q^{11} + ( 1 - \beta_{1} - \beta_{2} - \beta_{3} + 2 \beta_{4} + \beta_{5} + \beta_{6} + 2 \beta_{7} ) q^{13} + ( -\beta_{1} - \beta_{2} + \beta_{3} - \beta_{4} + \beta_{6} - 2 \beta_{7} ) q^{14} + ( -3 - 2 \beta_{4} + \beta_{6} - 3 \beta_{7} ) q^{16} + ( -2 \beta_{2} + \beta_{4} + 2 \beta_{5} + 2 \beta_{6} ) q^{17} + ( \beta_{1} - \beta_{2} - \beta_{6} - 2 \beta_{7} ) q^{19} + ( 2 \beta_{1} + \beta_{2} - 2 \beta_{5} - \beta_{6} ) q^{20} + ( -1 - 3 \beta_{1} + 3 \beta_{3} - 4 \beta_{4} + \beta_{5} + 2 \beta_{6} - 3 \beta_{7} ) q^{22} + ( -2 + 4 \beta_{1} + 4 \beta_{2} + \beta_{3} - 3 \beta_{5} - \beta_{7} ) q^{23} + \beta_{7} q^{25} + ( 1 + \beta_{4} - 2 \beta_{5} - 2 \beta_{6} ) q^{26} + ( -2 + \beta_{2} + \beta_{4} - \beta_{5} + \beta_{6} - 2 \beta_{7} ) q^{28} + ( -3 + 6 \beta_{1} - 3 \beta_{3} - 3 \beta_{4} - \beta_{5} - \beta_{6} ) q^{29} + ( 4 - 4 \beta_{1} - 5 \beta_{2} - 4 \beta_{3} - \beta_{4} + 4 \beta_{5} + 5 \beta_{6} - \beta_{7} ) q^{31} + ( -2 \beta_{1} - 2 \beta_{2} - \beta_{3} + 2 \beta_{5} + \beta_{7} ) q^{32} + ( 1 - 2 \beta_{3} - 3 \beta_{5} + 2 \beta_{7} ) q^{34} + ( -2 + \beta_{1} + 2 \beta_{3} - 2 \beta_{4} - \beta_{5} - 2 \beta_{7} ) q^{35} + ( 1 + 3 \beta_{1} + 4 \beta_{3} + \beta_{4} - 6 \beta_{5} - 6 \beta_{6} ) q^{37} + ( 1 + 2 \beta_{2} - 3 \beta_{4} - 2 \beta_{5} + 3 \beta_{6} + \beta_{7} ) q^{38} + ( -1 - \beta_{1} - \beta_{4} + 2 \beta_{5} + 2 \beta_{6} ) q^{40} + ( \beta_{1} + 4 \beta_{3} - 4 \beta_{4} - \beta_{6} + 4 \beta_{7} ) q^{41} + ( -4 + 5 \beta_{1} + 5 \beta_{2} + 3 \beta_{3} - 5 \beta_{5} - 3 \beta_{7} ) q^{43} + ( -\beta_{1} - 2 \beta_{2} - 4 \beta_{3} + 3 \beta_{4} + 2 \beta_{5} - \beta_{6} - 2 \beta_{7} ) q^{44} + ( -1 - 5 \beta_{1} - 3 \beta_{2} + \beta_{3} + 2 \beta_{4} + 5 \beta_{5} + 3 \beta_{6} + 2 \beta_{7} ) q^{46} + ( -\beta_{1} + 4 \beta_{2} + 2 \beta_{3} - 2 \beta_{4} + \beta_{6} ) q^{47} + ( -1 + 3 \beta_{2} - 2 \beta_{4} - 3 \beta_{5} - \beta_{7} ) q^{49} + ( \beta_{4} - \beta_{6} ) q^{50} + ( -\beta_{1} - \beta_{2} + \beta_{3} - \beta_{4} + \beta_{6} + \beta_{7} ) q^{52} + ( 1 - 3 \beta_{1} - \beta_{3} + 7 \beta_{4} + 3 \beta_{5} + 7 \beta_{7} ) q^{53} + ( -1 + \beta_{1} - \beta_{4} - \beta_{5} + 2 \beta_{6} - 2 \beta_{7} ) q^{55} + ( 3 - 2 \beta_{1} - 2 \beta_{2} + \beta_{3} - \beta_{7} ) q^{56} + ( -3 \beta_{1} + 7 \beta_{2} - 2 \beta_{3} + 2 \beta_{4} + 3 \beta_{6} + 11 \beta_{7} ) q^{58} + ( -2 + 5 \beta_{1} - 4 \beta_{3} - 2 \beta_{4} - 2 \beta_{5} - 2 \beta_{6} ) q^{59} + ( 5 + \beta_{2} + 2 \beta_{4} - \beta_{5} - 7 \beta_{6} + 5 \beta_{7} ) q^{61} + ( -6 - \beta_{1} - 6 \beta_{4} + \beta_{5} + \beta_{6} ) q^{62} + ( 4 + 2 \beta_{1} + \beta_{2} - 4 \beta_{3} - 3 \beta_{4} - 2 \beta_{5} - \beta_{6} - 3 \beta_{7} ) q^{64} + ( 1 + \beta_{3} + \beta_{5} - \beta_{7} ) q^{65} + ( 3 - 7 \beta_{3} + 3 \beta_{5} + 7 \beta_{7} ) q^{67} + ( -2 - 4 \beta_{1} - 3 \beta_{2} + 2 \beta_{3} + 4 \beta_{5} + 3 \beta_{6} ) q^{68} + ( -1 - \beta_{3} - \beta_{4} + \beta_{5} + \beta_{6} ) q^{70} + ( 5 + 5 \beta_{2} + 9 \beta_{4} - 5 \beta_{5} - 3 \beta_{6} + 5 \beta_{7} ) q^{71} + ( -4 + 5 \beta_{1} + \beta_{3} - 4 \beta_{4} ) q^{73} + ( -4 \beta_{1} + \beta_{2} + 7 \beta_{3} - 7 \beta_{4} + 4 \beta_{6} - 8 \beta_{7} ) q^{74} + ( -5 - 4 \beta_{1} - 4 \beta_{2} + 3 \beta_{3} + 7 \beta_{5} - 3 \beta_{7} ) q^{76} + ( 5 - 4 \beta_{1} + \beta_{2} - 4 \beta_{3} + 7 \beta_{4} + \beta_{7} ) q^{77} + ( -1 - 2 \beta_{1} + 2 \beta_{2} + \beta_{3} + 4 \beta_{4} + 2 \beta_{5} - 2 \beta_{6} + 4 \beta_{7} ) q^{79} + ( \beta_{2} - 3 \beta_{3} + 3 \beta_{4} + 2 \beta_{7} ) q^{80} + ( -3 - 3 \beta_{2} + 4 \beta_{4} + 3 \beta_{5} - 3 \beta_{6} - 3 \beta_{7} ) q^{82} + ( 5 + 3 \beta_{2} + 5 \beta_{4} - 3 \beta_{5} - \beta_{6} + 5 \beta_{7} ) q^{83} + ( 2 \beta_{1} + 2 \beta_{2} - 2 \beta_{6} - \beta_{7} ) q^{85} + ( -1 - 6 \beta_{1} - 4 \beta_{2} + \beta_{3} + \beta_{4} + 6 \beta_{5} + 4 \beta_{6} + \beta_{7} ) q^{86} + ( 4 + 2 \beta_{1} + 3 \beta_{2} + 4 \beta_{3} - 4 \beta_{4} - 4 \beta_{5} - \beta_{6} - 3 \beta_{7} ) q^{88} + ( 5 - 4 \beta_{1} - 4 \beta_{2} - 3 \beta_{3} + 8 \beta_{5} + 3 \beta_{7} ) q^{89} + ( \beta_{1} - \beta_{3} + \beta_{4} - \beta_{6} + 4 \beta_{7} ) q^{91} + ( 7 + 2 \beta_{1} - 10 \beta_{3} + 7 \beta_{4} ) q^{92} + ( -3 - 7 \beta_{2} + 4 \beta_{4} + 7 \beta_{5} - \beta_{6} - 3 \beta_{7} ) q^{94} + ( 2 \beta_{1} - 2 \beta_{3} - \beta_{5} - \beta_{6} ) q^{95} + ( 7 + 5 \beta_{1} + 4 \beta_{2} - 7 \beta_{3} + 5 \beta_{4} - 5 \beta_{5} - 4 \beta_{6} + 5 \beta_{7} ) q^{97} + ( -4 - 2 \beta_{1} - 2 \beta_{2} + 2 \beta_{3} + 7 \beta_{5} - 2 \beta_{7} ) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q - 4q^{2} + 2q^{4} + 2q^{5} + 3q^{7} + q^{8} + O(q^{10}) \) \( 8q - 4q^{2} + 2q^{4} + 2q^{5} + 3q^{7} + q^{8} - 6q^{10} - 3q^{11} - 4q^{13} + 4q^{14} - 12q^{16} + 2q^{19} + 3q^{20} + 9q^{22} + 6q^{23} - 2q^{25} - 2q^{26} - 11q^{28} - 10q^{29} + 19q^{31} - 12q^{32} - 6q^{34} - 3q^{35} - q^{37} + 20q^{38} - q^{40} + 9q^{41} - 17q^{44} - 22q^{46} + 19q^{47} + q^{49} - 4q^{50} - 2q^{52} - 25q^{53} + 3q^{55} + 16q^{56} - 12q^{58} - 13q^{59} + 13q^{61} - 35q^{62} + 39q^{64} + 14q^{65} + 2q^{67} - 19q^{68} - 4q^{70} + 11q^{71} - 7q^{73} + 43q^{74} - 38q^{76} + 7q^{77} - 22q^{79} - 13q^{80} - 35q^{82} + 21q^{83} + 10q^{85} - 20q^{86} + 59q^{88} + 20q^{89} - 11q^{91} + 28q^{92} - 35q^{94} - 2q^{95} + 31q^{97} - 22q^{98} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{8} - 3 x^{7} + 5 x^{6} - 3 x^{5} + 4 x^{4} + 3 x^{3} + 5 x^{2} + 3 x + 1\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\((\)\( -\nu^{7} + 2 \nu^{6} - 3 \nu^{5} - 4 \nu^{3} - 7 \nu^{2} - 12 \nu - 7 \)\()/8\)
\(\beta_{3}\)\(=\)\((\)\( \nu^{7} - 7 \nu^{5} + 20 \nu^{4} - 16 \nu^{3} + 19 \nu^{2} + 6 \nu + 9 \)\()/8\)
\(\beta_{4}\)\(=\)\((\)\( -\nu^{7} + 4 \nu^{6} - 9 \nu^{5} + 12 \nu^{4} - 16 \nu^{3} + 13 \nu^{2} - 10 \nu - 1 \)\()/8\)
\(\beta_{5}\)\(=\)\((\)\( -3 \nu^{7} + 10 \nu^{6} - 17 \nu^{5} + 8 \nu^{4} - 4 \nu^{3} - 13 \nu^{2} - 8 \nu - 5 \)\()/8\)
\(\beta_{6}\)\(=\)\((\)\( 3 \nu^{7} - 12 \nu^{6} + 23 \nu^{5} - 20 \nu^{4} + 16 \nu^{3} + \nu^{2} + 6 \nu - 1 \)\()/8\)
\(\beta_{7}\)\(=\)\((\)\( -5 \nu^{7} + 18 \nu^{6} - 35 \nu^{5} + 32 \nu^{4} - 28 \nu^{3} - 11 \nu^{2} - 12 \nu - 7 \)\()/8\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{6} + \beta_{5} + \beta_{4} - \beta_{2}\)
\(\nu^{3}\)\(=\)\(\beta_{7} + 3 \beta_{6} + 2 \beta_{5} + \beta_{4} - 3 \beta_{2} - 2 \beta_{1}\)
\(\nu^{4}\)\(=\)\(3 \beta_{7} + 4 \beta_{6} + \beta_{4} - \beta_{3} - 5 \beta_{2} - 4 \beta_{1}\)
\(\nu^{5}\)\(=\)\(4 \beta_{7} - 6 \beta_{5} - 4 \beta_{3} - 6 \beta_{2} - 6 \beta_{1} - 1\)
\(\nu^{6}\)\(=\)\(-16 \beta_{6} - 16 \beta_{5} - 6 \beta_{4} - 6 \beta_{3} - 7 \beta_{1} - 6\)
\(\nu^{7}\)\(=\)\(-16 \beta_{7} - 51 \beta_{6} - 29 \beta_{5} - 23 \beta_{4} + 29 \beta_{2} - 16\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(397\)
\(\chi(n)\) \(-\beta_{3}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
91.1
0.418926 1.28932i
−0.227943 + 0.701538i
0.418926 + 1.28932i
−0.227943 0.701538i
1.69513 1.23158i
−0.386111 + 0.280526i
1.69513 + 1.23158i
−0.386111 0.280526i
−1.90578 + 1.38463i 0 1.09676 3.37549i 0.809017 + 0.587785i 0 0.0598032 0.184055i 1.12773 + 3.47080i 0 −2.35567
91.2 −0.212253 + 0.154211i 0 −0.596764 + 1.83665i 0.809017 + 0.587785i 0 −0.986854 + 3.03722i −0.318714 0.980901i 0 −0.262360
136.1 −1.90578 1.38463i 0 1.09676 + 3.37549i 0.809017 0.587785i 0 0.0598032 + 0.184055i 1.12773 3.47080i 0 −2.35567
136.2 −0.212253 0.154211i 0 −0.596764 1.83665i 0.809017 0.587785i 0 −0.986854 3.03722i −0.318714 + 0.980901i 0 −0.262360
181.1 −0.338464 1.04169i 0 0.647481 0.470423i −0.309017 + 0.951057i 0 0.570387 0.414410i −2.48141 1.80285i 0 1.09529
181.2 0.456498 + 1.40496i 0 −0.147481 + 0.107152i −0.309017 + 0.951057i 0 1.85666 1.34895i 2.17239 + 1.57833i 0 −1.47726
361.1 −0.338464 + 1.04169i 0 0.647481 + 0.470423i −0.309017 0.951057i 0 0.570387 + 0.414410i −2.48141 + 1.80285i 0 1.09529
361.2 0.456498 1.40496i 0 −0.147481 0.107152i −0.309017 0.951057i 0 1.85666 + 1.34895i 2.17239 1.57833i 0 −1.47726
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 361.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.c even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 495.2.n.a 8
3.b odd 2 1 165.2.m.d 8
11.c even 5 1 inner 495.2.n.a 8
11.c even 5 1 5445.2.a.bt 4
11.d odd 10 1 5445.2.a.bf 4
15.d odd 2 1 825.2.n.g 8
15.e even 4 2 825.2.bx.f 16
33.f even 10 1 1815.2.a.w 4
33.h odd 10 1 165.2.m.d 8
33.h odd 10 1 1815.2.a.p 4
165.o odd 10 1 825.2.n.g 8
165.o odd 10 1 9075.2.a.di 4
165.r even 10 1 9075.2.a.cm 4
165.v even 20 2 825.2.bx.f 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
165.2.m.d 8 3.b odd 2 1
165.2.m.d 8 33.h odd 10 1
495.2.n.a 8 1.a even 1 1 trivial
495.2.n.a 8 11.c even 5 1 inner
825.2.n.g 8 15.d odd 2 1
825.2.n.g 8 165.o odd 10 1
825.2.bx.f 16 15.e even 4 2
825.2.bx.f 16 165.v even 20 2
1815.2.a.p 4 33.h odd 10 1
1815.2.a.w 4 33.f even 10 1
5445.2.a.bf 4 11.d odd 10 1
5445.2.a.bt 4 11.c even 5 1
9075.2.a.cm 4 165.r even 10 1
9075.2.a.di 4 165.o odd 10 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \(T_{2}^{8} + \cdots\) acting on \(S_{2}^{\mathrm{new}}(495, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + 7 T + 21 T^{2} + 21 T^{3} + 24 T^{4} + 13 T^{5} + 9 T^{6} + 4 T^{7} + T^{8} \)
$3$ \( T^{8} \)
$5$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2} \)
$7$ \( 1 - 6 T + 39 T^{2} - 87 T^{3} + 94 T^{4} - 39 T^{5} + 11 T^{6} - 3 T^{7} + T^{8} \)
$11$ \( 14641 + 3993 T - 2662 T^{2} - 209 T^{3} + 335 T^{4} - 19 T^{5} - 22 T^{6} + 3 T^{7} + T^{8} \)
$13$ \( 121 + 77 T - 19 T^{2} - 39 T^{3} + 74 T^{4} + 33 T^{5} + 29 T^{6} + 4 T^{7} + T^{8} \)
$17$ \( 1 + 20 T + 163 T^{2} + 290 T^{3} + 559 T^{4} + 250 T^{5} + 47 T^{6} + T^{8} \)
$19$ \( 1 + 7 T + 195 T^{2} - 403 T^{3} + 354 T^{4} - 137 T^{5} + 25 T^{6} - 2 T^{7} + T^{8} \)
$23$ \( ( 449 + 129 T - 55 T^{2} - 3 T^{3} + T^{4} )^{2} \)
$29$ \( 249001 - 237025 T + 84767 T^{2} + 10335 T^{3} + 11144 T^{4} + 1125 T^{5} + 113 T^{6} + 10 T^{7} + T^{8} \)
$31$ \( 1560001 - 1287719 T + 498345 T^{2} - 97231 T^{3} + 17274 T^{4} - 2071 T^{5} + 235 T^{6} - 19 T^{7} + T^{8} \)
$37$ \( 12538681 - 322231 T + 356977 T^{2} + 14947 T^{3} + 4080 T^{4} - 157 T^{5} + 37 T^{6} + T^{7} + T^{8} \)
$41$ \( 1681 + 12956 T + 40225 T^{2} + 26019 T^{3} + 6434 T^{4} - 441 T^{5} + 205 T^{6} - 9 T^{7} + T^{8} \)
$43$ \( ( 275 + 375 T - 110 T^{2} + T^{4} )^{2} \)
$47$ \( 961 + 4526 T + 9525 T^{2} + 7039 T^{3} + 6104 T^{4} - 1751 T^{5} + 255 T^{6} - 19 T^{7} + T^{8} \)
$53$ \( 410881 - 631385 T + 326418 T^{2} + 121925 T^{3} + 31229 T^{4} + 4415 T^{5} + 432 T^{6} + 25 T^{7} + T^{8} \)
$59$ \( 346921 + 325717 T + 228195 T^{2} + 86697 T^{3} + 18894 T^{4} + 2053 T^{5} + 165 T^{6} + 13 T^{7} + T^{8} \)
$61$ \( 1324801 + 1545793 T + 639460 T^{2} - 110177 T^{3} + 22389 T^{4} - 2123 T^{5} + 210 T^{6} - 13 T^{7} + T^{8} \)
$67$ \( ( 619 + 112 T - 100 T^{2} - T^{3} + T^{4} )^{2} \)
$71$ \( 78961 + 75589 T + 176745 T^{2} + 4771 T^{3} - 3276 T^{4} - 189 T^{5} + 225 T^{6} - 11 T^{7} + T^{8} \)
$73$ \( 866761 - 188993 T + 83398 T^{2} - 2471 T^{3} + 555 T^{4} - 31 T^{5} + 48 T^{6} + 7 T^{7} + T^{8} \)
$79$ \( 28561 + 57122 T + 47658 T^{2} + 8554 T^{3} + 9780 T^{4} + 2044 T^{5} + 283 T^{6} + 22 T^{7} + T^{8} \)
$83$ \( 1681 - 11931 T + 34155 T^{2} - 19059 T^{3} + 10144 T^{4} - 2109 T^{5} + 275 T^{6} - 21 T^{7} + T^{8} \)
$89$ \( ( 209 + 310 T - 89 T^{2} - 10 T^{3} + T^{4} )^{2} \)
$97$ \( 1343281 - 763781 T + 326730 T^{2} - 84259 T^{3} + 17109 T^{4} - 2629 T^{5} + 430 T^{6} - 31 T^{7} + T^{8} \)
show more
show less