Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [495,2,Mod(208,495)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(495, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([0, 3, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("495.208");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 495 = 3^{2} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 495.k (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.95259490005\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Relative dimension: | \(2\) over \(\Q(i)\) |
Coefficient field: | \(\Q(i, \sqrt{11})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} - 5x^{2} + 9 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 55) |
Sato-Tate group: | $\mathrm{U}(1)[D_{4}]$ |
Embedding invariants
Embedding label | 307.1 | ||
Root | \(1.65831 - 0.500000i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 495.307 |
Dual form | 495.2.k.a.208.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).
\(n\) | \(46\) | \(56\) | \(397\) |
\(\chi(n)\) | \(-1\) | \(1\) | \(e\left(\frac{1}{4}\right)\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 2.00000i | 1.00000i | ||||||||
\(5\) | −1.65831 | + | 1.50000i | −0.741620 | + | 0.670820i | ||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | −3.31662 | −1.00000 | ||||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | −4.00000 | −1.00000 | ||||||||
\(17\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(20\) | −3.00000 | − | 3.31662i | −0.670820 | − | 0.741620i | ||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | −2.84169 | + | 2.84169i | −0.592533 | + | 0.592533i | −0.938315 | − | 0.345782i | \(-0.887614\pi\) |
0.345782 | + | 0.938315i | \(0.387614\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0.500000 | − | 4.97494i | 0.100000 | − | 0.994987i | ||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | −9.94987 | −1.78705 | −0.893525 | − | 0.449013i | \(-0.851776\pi\) | ||||
−0.893525 | + | 0.449013i | \(0.851776\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 1.47494 | + | 1.47494i | 0.242478 | + | 0.242478i | 0.817875 | − | 0.575396i | \(-0.195152\pi\) |
−0.575396 | + | 0.817875i | \(0.695152\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(44\) | − | 6.63325i | − | 1.00000i | ||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 9.31662 | + | 9.31662i | 1.35897 | + | 1.35897i | 0.875190 | + | 0.483779i | \(0.160736\pi\) |
0.483779 | + | 0.875190i | \(0.339264\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 7.00000i | 1.00000i | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | −3.63325 | + | 3.63325i | −0.499065 | + | 0.499065i | −0.911147 | − | 0.412082i | \(-0.864802\pi\) |
0.412082 | + | 0.911147i | \(0.364802\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 5.50000 | − | 4.97494i | 0.741620 | − | 0.670820i | ||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 3.31662i | 0.431788i | 0.976417 | + | 0.215894i | \(0.0692665\pi\) | ||||
−0.976417 | + | 0.215894i | \(0.930733\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | − | 8.00000i | − | 1.00000i | ||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 11.4749 | + | 11.4749i | 1.40189 | + | 1.40189i | 0.794101 | + | 0.607785i | \(0.207942\pi\) |
0.607785 | + | 0.794101i | \(0.292058\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 3.00000 | 0.356034 | 0.178017 | − | 0.984027i | \(-0.443032\pi\) | ||||
0.178017 | + | 0.984027i | \(0.443032\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(80\) | 6.63325 | − | 6.00000i | 0.741620 | − | 0.670820i | ||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | − | 9.00000i | − | 0.953998i | −0.878904 | − | 0.476999i | \(-0.841725\pi\) | ||
0.878904 | − | 0.476999i | \(-0.158275\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 0 | 0 | ||||||||
\(92\) | −5.68338 | − | 5.68338i | −0.592533 | − | 0.592533i | ||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | −3.52506 | − | 3.52506i | −0.357916 | − | 0.357916i | 0.505128 | − | 0.863044i | \(-0.331445\pi\) |
−0.863044 | + | 0.505128i | \(0.831445\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 9.94987 | + | 1.00000i | 0.994987 | + | 0.100000i | ||||
\(101\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | −7.94987 | + | 7.94987i | −0.783324 | + | 0.783324i | −0.980390 | − | 0.197066i | \(-0.936859\pi\) |
0.197066 | + | 0.980390i | \(0.436859\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 12.1583 | − | 12.1583i | 1.14376 | − | 1.14376i | 0.156001 | − | 0.987757i | \(-0.450140\pi\) |
0.987757 | − | 0.156001i | \(-0.0498603\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0.449874 | − | 8.97494i | 0.0419510 | − | 0.836917i | ||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | 11.0000 | 1.00000 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | − | 19.8997i | − | 1.78705i | ||||||
\(125\) | 6.63325 | + | 9.00000i | 0.593296 | + | 0.804984i | ||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 0 | 0 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 10.1082 | + | 10.1082i | 0.863601 | + | 0.863601i | 0.991754 | − | 0.128154i | \(-0.0409051\pi\) |
−0.128154 | + | 0.991754i | \(0.540905\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | −2.94987 | + | 2.94987i | −0.242478 | + | 0.242478i | ||||
\(149\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 16.5000 | − | 14.9248i | 1.32531 | − | 1.19879i | ||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 16.4749 | + | 16.4749i | 1.31484 | + | 1.31484i | 0.917800 | + | 0.397043i | \(0.129964\pi\) |
0.397043 | + | 0.917800i | \(0.370036\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | −17.9499 | + | 17.9499i | −1.40594 | + | 1.40594i | −0.626608 | + | 0.779334i | \(0.715557\pi\) |
−0.779334 | + | 0.626608i | \(0.784443\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | − | 13.0000i | − | 1.00000i | ||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 13.2665 | 1.00000 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 21.0000i | 1.56961i | 0.619740 | + | 0.784807i | \(0.287238\pi\) | ||||
−0.619740 | + | 0.784807i | \(0.712762\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | −9.94987 | −0.739568 | −0.369784 | − | 0.929118i | \(-0.620568\pi\) | ||||
−0.369784 | + | 0.929118i | \(0.620568\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | −4.65831 | − | 0.233501i | −0.342486 | − | 0.0171673i | ||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | −18.6332 | + | 18.6332i | −1.35897 | + | 1.35897i | ||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | −23.2164 | −1.67988 | −0.839939 | − | 0.542681i | \(-0.817409\pi\) | ||||
−0.839939 | + | 0.542681i | \(0.817409\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | −14.0000 | −1.00000 | ||||||||
\(197\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | − | 19.8997i | − | 1.41066i | −0.708881 | − | 0.705328i | \(-0.750800\pi\) | ||
0.708881 | − | 0.705328i | \(-0.249200\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 0 | 0 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(212\) | −7.26650 | − | 7.26650i | −0.499065 | − | 0.499065i | ||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 0 | 0 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 9.94987 | + | 11.0000i | 0.670820 | + | 0.741620i | ||||
\(221\) | 0 | 0 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 14.4248 | − | 14.4248i | 0.965957 | − | 0.965957i | −0.0334825 | − | 0.999439i | \(-0.510660\pi\) |
0.999439 | + | 0.0334825i | \(0.0106598\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 29.8496i | 1.97252i | 0.165205 | + | 0.986259i | \(0.447172\pi\) | ||||
−0.165205 | + | 0.986259i | \(0.552828\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | −29.4248 | − | 1.47494i | −1.91946 | − | 0.0962143i | ||||
\(236\) | −6.63325 | −0.431788 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | −10.5000 | − | 11.6082i | −0.670820 | − | 0.741620i | ||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 0 | 0 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −27.0000 | −1.70422 | −0.852112 | − | 0.523359i | \(-0.824679\pi\) | ||||
−0.852112 | + | 0.523359i | \(0.824679\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 9.42481 | − | 9.42481i | 0.592533 | − | 0.592533i | ||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 16.0000 | 1.00000 | ||||||||
\(257\) | −22.2665 | − | 22.2665i | −1.38895 | − | 1.38895i | −0.827541 | − | 0.561405i | \(-0.810261\pi\) |
−0.561405 | − | 0.827541i | \(-0.689739\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 0 | 0 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0.575188 | − | 11.4749i | 0.0353335 | − | 0.704900i | ||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | −22.9499 | + | 22.9499i | −1.40189 | + | 1.40189i | ||||
\(269\) | − | 13.2665i | − | 0.808873i | −0.914566 | − | 0.404436i | \(-0.867468\pi\) | ||
0.914566 | − | 0.404436i | \(-0.132532\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | −1.65831 | + | 16.5000i | −0.100000 | + | 0.994987i | ||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(284\) | 6.00000i | 0.356034i | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 17.0000i | 1.00000i | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | −4.97494 | − | 5.50000i | −0.289652 | − | 0.320222i | ||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 0 | 0 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 0 | 0 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | −12.0000 | −0.680458 | −0.340229 | − | 0.940343i | \(-0.610505\pi\) | ||||
−0.340229 | + | 0.940343i | \(0.610505\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 24.4248 | − | 24.4248i | 1.38057 | − | 1.38057i | 0.536972 | − | 0.843600i | \(-0.319568\pi\) |
0.843600 | − | 0.536972i | \(-0.180432\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 25.1082 | + | 25.1082i | 1.41022 | + | 1.41022i | 0.758236 | + | 0.651981i | \(0.226062\pi\) |
0.651981 | + | 0.758236i | \(0.273938\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 0 | 0 | ||||||||
\(320\) | 12.0000 | + | 13.2665i | 0.670820 | + | 0.741620i | ||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 0 | 0 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −9.94987 | −0.546895 | −0.273447 | − | 0.961887i | \(-0.588164\pi\) | ||||
−0.273447 | + | 0.961887i | \(0.588164\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | −36.2414 | − | 1.81662i | −1.98008 | − | 0.0992528i | ||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 33.0000 | 1.78705 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 0 | 0 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 13.7414 | − | 13.7414i | 0.731383 | − | 0.731383i | −0.239511 | − | 0.970894i | \(-0.576987\pi\) |
0.970894 | + | 0.239511i | \(0.0769871\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | −4.97494 | + | 4.50000i | −0.264042 | + | 0.238835i | ||||
\(356\) | 18.0000 | 0.953998 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −19.0000 | −1.00000 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | −13.5251 | − | 13.5251i | −0.706003 | − | 0.706003i | 0.259690 | − | 0.965692i | \(-0.416380\pi\) |
−0.965692 | + | 0.259690i | \(0.916380\pi\) | |||||||
\(368\) | 11.3668 | − | 11.3668i | 0.592533 | − | 0.592533i | ||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 0 | 0 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 0 | 0 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 29.8496i | 1.53327i | 0.642082 | + | 0.766636i | \(0.278071\pi\) | ||||
−0.642082 | + | 0.766636i | \(0.721929\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | −17.8417 | + | 17.8417i | −0.911668 | + | 0.911668i | −0.996403 | − | 0.0847358i | \(-0.972995\pi\) |
0.0847358 | + | 0.996403i | \(0.472995\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 7.05013 | − | 7.05013i | 0.357916 | − | 0.357916i | ||||
\(389\) | 36.4829i | 1.84976i | 0.380265 | + | 0.924878i | \(0.375833\pi\) | ||||
−0.380265 | + | 0.924878i | \(0.624167\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 0 | 0 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | −20.8997 | − | 20.8997i | −1.04893 | − | 1.04893i | −0.998740 | − | 0.0501886i | \(-0.984018\pi\) |
−0.0501886 | − | 0.998740i | \(-0.515982\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | −2.00000 | + | 19.8997i | −0.100000 | + | 0.994987i | ||||
\(401\) | 26.5330 | 1.32499 | 0.662497 | − | 0.749064i | \(-0.269497\pi\) | ||||
0.662497 | + | 0.749064i | \(0.269497\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 0 | 0 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | −4.89181 | − | 4.89181i | −0.242478 | − | 0.242478i | ||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | −15.8997 | − | 15.8997i | −0.783324 | − | 0.783324i | ||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | − | 24.0000i | − | 1.17248i | −0.810139 | − | 0.586238i | \(-0.800608\pi\) | ||
0.810139 | − | 0.586238i | \(-0.199392\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 39.7995 | 1.93971 | 0.969854 | − | 0.243685i | \(-0.0783563\pi\) | ||||
0.969854 | + | 0.243685i | \(0.0783563\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 0 | 0 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 29.4248 | − | 29.4248i | 1.41407 | − | 1.41407i | 0.696826 | − | 0.717241i | \(-0.254595\pi\) |
0.717241 | − | 0.696826i | \(-0.245405\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 0 | 0 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 28.7414 | − | 28.7414i | 1.36555 | − | 1.36555i | 0.498870 | − | 0.866677i | \(-0.333748\pi\) |
0.866677 | − | 0.498870i | \(-0.166252\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 13.5000 | + | 14.9248i | 0.639961 | + | 0.707504i | ||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | − | 39.0000i | − | 1.84052i | −0.391303 | − | 0.920262i | \(-0.627976\pi\) | ||
0.391303 | − | 0.920262i | \(-0.372024\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 0 | 0 | ||||||||
\(452\) | 24.3166 | + | 24.3166i | 1.14376 | + | 1.14376i | ||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 17.9499 | + | 0.899749i | 0.836917 | + | 0.0419510i | ||||
\(461\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | −0.575188 | + | 0.575188i | −0.0267313 | + | 0.0267313i | −0.720346 | − | 0.693615i | \(-0.756017\pi\) |
0.693615 | + | 0.720346i | \(0.256017\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | −23.0581 | − | 23.0581i | −1.06700 | − | 1.06700i | −0.997588 | − | 0.0694117i | \(-0.977888\pi\) |
−0.0694117 | − | 0.997588i | \(-0.522112\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 0 | 0 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 0 | 0 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 0 | 0 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 22.0000i | 1.00000i | ||||||||
\(485\) | 11.1332 | + | 0.558061i | 0.505535 | + | 0.0253403i | ||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 26.4749 | + | 26.4749i | 1.19969 | + | 1.19969i | 0.974258 | + | 0.225436i | \(0.0723806\pi\) |
0.225436 | + | 0.974258i | \(0.427619\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 0 | 0 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 39.7995 | 1.78705 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | − | 19.8997i | − | 0.890835i | −0.895323 | − | 0.445418i | \(-0.853055\pi\) | ||
0.895323 | − | 0.445418i | \(-0.146945\pi\) | |||||||
\(500\) | −18.0000 | + | 13.2665i | −0.804984 | + | 0.593296i | ||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 3.31662i | 0.147007i | 0.997295 | + | 0.0735034i | \(0.0234180\pi\) | ||||
−0.997295 | + | 0.0735034i | \(0.976582\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 0 | 0 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 1.25856 | − | 25.1082i | 0.0554589 | − | 1.10640i | ||||
\(516\) | 0 | 0 | ||||||||
\(517\) | −30.8997 | − | 30.8997i | −1.35897 | − | 1.35897i | ||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 43.1161 | 1.88895 | 0.944476 | − | 0.328581i | \(-0.106570\pi\) | ||||
0.944476 | + | 0.328581i | \(0.106570\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 0 | 0 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 6.84962i | 0.297810i | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 0 | 0 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | − | 23.2164i | − | 1.00000i | ||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(548\) | −20.2164 | + | 20.2164i | −0.863601 | + | 0.863601i | ||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 0 | 0 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 0 | 0 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 0 | 0 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | −1.92481 | + | 38.3997i | −0.0809774 | + | 1.61549i | ||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 12.7164 | + | 15.5581i | 0.530309 | + | 0.648816i | ||||
\(576\) | 0 | 0 | ||||||||
\(577\) | −18.5251 | − | 18.5251i | −0.771208 | − | 0.771208i | 0.207109 | − | 0.978318i | \(-0.433594\pi\) |
−0.978318 | + | 0.207109i | \(0.933594\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0 | 0 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 12.0501 | − | 12.0501i | 0.499065 | − | 0.499065i | ||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | −20.6834 | − | 20.6834i | −0.853694 | − | 0.853694i | 0.136892 | − | 0.990586i | \(-0.456289\pi\) |
−0.990586 | + | 0.136892i | \(0.956289\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 0 | 0 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | −5.89975 | − | 5.89975i | −0.242478 | − | 0.242478i | ||||
\(593\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 36.0000i | 1.47092i | 0.677568 | + | 0.735460i | \(0.263034\pi\) | ||||
−0.677568 | + | 0.735460i | \(0.736966\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | −18.2414 | + | 16.5000i | −0.741620 | + | 0.670820i | ||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 0 | 0 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 7.73350 | + | 7.73350i | 0.311339 | + | 0.311339i | 0.845428 | − | 0.534089i | \(-0.179345\pi\) |
−0.534089 | + | 0.845428i | \(0.679345\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | − | 1.00000i | − | 0.0401934i | −0.999798 | − | 0.0200967i | \(-0.993603\pi\) | ||
0.999798 | − | 0.0200967i | \(-0.00639741\pi\) | |||||||
\(620\) | 29.8496 | + | 33.0000i | 1.19879 | + | 1.32531i | ||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | −24.5000 | − | 4.97494i | −0.980000 | − | 0.198997i | ||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | −32.9499 | + | 32.9499i | −1.31484 | + | 1.31484i | ||||
\(629\) | 0 | 0 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 7.00000 | 0.278666 | 0.139333 | − | 0.990246i | \(-0.455504\pi\) | ||||
0.139333 | + | 0.990246i | \(0.455504\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 0 | 0 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −23.2164 | −0.916992 | −0.458496 | − | 0.888697i | \(-0.651612\pi\) | ||||
−0.458496 | + | 0.888697i | \(0.651612\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | −5.57519 | + | 5.57519i | −0.219864 | + | 0.219864i | −0.808441 | − | 0.588577i | \(-0.799688\pi\) |
0.588577 | + | 0.808441i | \(0.299688\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | −8.05806 | − | 8.05806i | −0.316795 | − | 0.316795i | 0.530740 | − | 0.847535i | \(-0.321914\pi\) |
−0.847535 | + | 0.530740i | \(0.821914\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | − | 11.0000i | − | 0.431788i | ||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | −35.8997 | − | 35.8997i | −1.40594 | − | 1.40594i | ||||
\(653\) | 27.1583 | − | 27.1583i | 1.06279 | − | 1.06279i | 0.0648948 | − | 0.997892i | \(-0.479329\pi\) |
0.997892 | − | 0.0648948i | \(-0.0206712\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −13.0000 | −0.505641 | −0.252821 | − | 0.967513i | \(-0.581358\pi\) | ||||
−0.252821 | + | 0.967513i | \(0.581358\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 0 | 0 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 0 | 0 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 26.0000 | 1.00000 | ||||||||
\(677\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 0 | 0 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | −35.2164 | + | 35.2164i | −1.34752 | + | 1.34752i | −0.459167 | + | 0.888350i | \(0.651852\pi\) |
−0.888350 | + | 0.459167i | \(0.848148\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | −31.9248 | − | 1.60025i | −1.21978 | − | 0.0611425i | ||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 0 | 0 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 17.0000 | 0.646710 | 0.323355 | − | 0.946278i | \(-0.395189\pi\) | ||||
0.323355 | + | 0.946278i | \(0.395189\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 0 | 0 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 0 | 0 | ||||||||
\(704\) | 26.5330i | 1.00000i | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 19.0000i | 0.713560i | 0.934188 | + | 0.356780i | \(0.116125\pi\) | ||||
−0.934188 | + | 0.356780i | \(0.883875\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 28.2744 | − | 28.2744i | 1.05889 | − | 1.05889i | ||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | −42.0000 | −1.56961 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 51.0000i | 1.90198i | 0.309223 | + | 0.950990i | \(0.399931\pi\) | ||||
−0.309223 | + | 0.950990i | \(0.600069\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 0 | 0 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | − | 19.8997i | − | 0.739568i | ||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 31.4749 | + | 31.4749i | 1.16734 | + | 1.16734i | 0.982831 | + | 0.184510i | \(0.0590699\pi\) |
0.184510 | + | 0.982831i | \(0.440930\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 0 | 0 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | −38.0581 | − | 38.0581i | −1.40189 | − | 1.40189i | ||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(740\) | 0.467002 | − | 9.31662i | 0.0171673 | − | 0.342486i | ||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 0 | 0 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | −23.0000 | −0.839282 | −0.419641 | − | 0.907690i | \(-0.637844\pi\) | ||||
−0.419641 | + | 0.907690i | \(0.637844\pi\) | |||||||
\(752\) | −37.2665 | − | 37.2665i | −1.35897 | − | 1.35897i | ||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | −0.899749 | − | 0.899749i | −0.0327019 | − | 0.0327019i | 0.690567 | − | 0.723269i | \(-0.257361\pi\) |
−0.723269 | + | 0.690567i | \(0.757361\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 0 | 0 | ||||||||
\(764\) | − | 46.4327i | − | 1.67988i | ||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 0 | 0 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | −33.6332 | + | 33.6332i | −1.20970 | + | 1.20970i | −0.238581 | + | 0.971123i | \(0.576682\pi\) |
−0.971123 | + | 0.238581i | \(0.923318\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | −4.97494 | + | 49.5000i | −0.178705 | + | 1.77809i | ||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 0 | 0 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | −9.94987 | −0.356034 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | − | 28.0000i | − | 1.00000i | ||||||
\(785\) | −52.0330 | − | 2.60819i | −1.85714 | − | 0.0930902i | ||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 0 | 0 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 39.7995 | 1.41066 | ||||||||
\(797\) | 26.6913 | + | 26.6913i | 0.945455 | + | 0.945455i | 0.998587 | − | 0.0531327i | \(-0.0169206\pi\) |
−0.0531327 | + | 0.998587i | \(0.516921\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 0 | 0 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 0 | 0 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 2.84169 | − | 56.6913i | 0.0995400 | − | 1.98581i | ||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 0 | 0 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 39.4248 | − | 39.4248i | 1.37426 | − | 1.37426i | 0.520246 | − | 0.854016i | \(-0.325840\pi\) |
0.854016 | − | 0.520246i | \(-0.174160\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 29.0000i | 1.00721i | 0.863934 | + | 0.503606i | \(0.167994\pi\) | ||||
−0.863934 | + | 0.503606i | \(0.832006\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 0 | 0 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 36.4829i | 1.25953i | 0.776786 | + | 0.629764i | \(0.216849\pi\) | ||||
−0.776786 | + | 0.629764i | \(0.783151\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −29.0000 | −1.00000 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 19.5000 | + | 21.5581i | 0.670820 | + | 0.741620i | ||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 0 | 0 | ||||||||
\(848\) | 14.5330 | − | 14.5330i | 0.499065 | − | 0.499065i | ||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | −8.38262 | −0.287353 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | − | 31.0000i | − | 1.05771i | −0.848713 | − | 0.528853i | \(-0.822622\pi\) | ||
0.848713 | − | 0.528853i | \(-0.177378\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | −5.21637 | + | 5.21637i | −0.177567 | + | 0.177567i | −0.790295 | − | 0.612727i | \(-0.790072\pi\) |
0.612727 | + | 0.790295i | \(0.290072\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 0 | 0 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 0 | 0 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | −22.0000 | + | 19.8997i | −0.741620 | + | 0.670820i | ||||
\(881\) | −57.0000 | −1.92038 | −0.960189 | − | 0.279350i | \(-0.909881\pi\) | ||||
−0.960189 | + | 0.279350i | \(0.909881\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | −37.9499 | + | 37.9499i | −1.27711 | + | 1.27711i | −0.334840 | + | 0.942275i | \(0.608682\pi\) |
−0.942275 | + | 0.334840i | \(0.891318\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 0 | 0 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 28.8496 | + | 28.8496i | 0.965957 | + | 0.965957i | ||||
\(893\) | 0 | 0 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | −31.5000 | − | 34.8246i | −1.05293 | − | 1.16406i | ||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 0 | 0 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 0 | 0 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 16.5000 | − | 14.9248i | 0.548479 | − | 0.496118i | ||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 33.8496 | + | 33.8496i | 1.12396 | + | 1.12396i | 0.991140 | + | 0.132818i | \(0.0424025\pi\) |
0.132818 | + | 0.991140i | \(0.457597\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | −6.63325 | −0.219769 | −0.109885 | − | 0.993944i | \(-0.535048\pi\) | ||||
−0.109885 | + | 0.993944i | \(0.535048\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 0 | 0 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | −59.6992 | −1.97252 | ||||||||
\(917\) | 0 | 0 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 0 | 0 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 8.07519 | − | 6.60025i | 0.265511 | − | 0.217015i | ||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 53.0660i | 1.74104i | 0.492134 | + | 0.870519i | \(0.336217\pi\) | ||||
−0.492134 | + | 0.870519i | \(0.663783\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 0 | 0 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 2.94987 | − | 58.8496i | 0.0962143 | − | 1.91946i | ||||
\(941\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 0 | 0 | ||||||||
\(944\) | − | 13.2665i | − | 0.431788i | ||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 40.1082 | + | 40.1082i | 1.30334 | + | 1.30334i | 0.926126 | + | 0.377215i | \(0.123118\pi\) |
0.377215 | + | 0.926126i | \(0.376882\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 0 | 0 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 38.5000 | − | 34.8246i | 1.24583 | − | 1.12690i | ||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 0 | 0 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | 68.0000 | 2.19355 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 43.1161 | 1.38366 | 0.691831 | − | 0.722059i | \(-0.256804\pi\) | ||||
0.691831 | + | 0.722059i | \(0.256804\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 0 | 0 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 41.6913 | + | 41.6913i | 1.33382 | + | 1.33382i | 0.901920 | + | 0.431903i | \(0.142158\pi\) |
0.431903 | + | 0.901920i | \(0.357842\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 29.8496i | 0.953998i | ||||||||
\(980\) | 23.2164 | − | 21.0000i | 0.741620 | − | 0.670820i | ||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 43.7414 | − | 43.7414i | 1.39514 | − | 1.39514i | 0.581811 | − | 0.813324i | \(-0.302344\pi\) |
0.813324 | − | 0.581811i | \(-0.197656\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 0 | 0 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −59.6992 | −1.89641 | −0.948205 | − | 0.317660i | \(-0.897103\pi\) | ||||
−0.948205 | + | 0.317660i | \(0.897103\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 29.8496 | + | 33.0000i | 0.946297 | + | 1.04617i | ||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))