Properties

Label 495.2.c.e.199.2
Level $495$
Weight $2$
Character 495.199
Analytic conductor $3.953$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [495,2,Mod(199,495)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(495, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("495.199");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 495.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.95259490005\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 165)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.2
Root \(0.403032 - 0.403032i\) of defining polynomial
Character \(\chi\) \(=\) 495.199
Dual form 495.2.c.e.199.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.48119i q^{2} -0.193937 q^{4} +(1.48119 - 1.67513i) q^{5} -1.19394i q^{7} -2.67513i q^{8} +O(q^{10})\) \(q-1.48119i q^{2} -0.193937 q^{4} +(1.48119 - 1.67513i) q^{5} -1.19394i q^{7} -2.67513i q^{8} +(-2.48119 - 2.19394i) q^{10} -1.00000 q^{11} +0.806063i q^{13} -1.76845 q^{14} -4.35026 q^{16} +3.76845i q^{17} +5.35026 q^{19} +(-0.287258 + 0.324869i) q^{20} +1.48119i q^{22} -4.00000i q^{23} +(-0.612127 - 4.96239i) q^{25} +1.19394 q^{26} +0.231548i q^{28} -4.31265 q^{29} +0.962389 q^{31} +1.09332i q^{32} +5.58181 q^{34} +(-2.00000 - 1.76845i) q^{35} -1.61213i q^{37} -7.92478i q^{38} +(-4.48119 - 3.96239i) q^{40} -9.08840 q^{41} +4.41819i q^{43} +0.193937 q^{44} -5.92478 q^{46} +12.3127i q^{47} +5.57452 q^{49} +(-7.35026 + 0.906679i) q^{50} -0.156325i q^{52} -1.42548i q^{53} +(-1.48119 + 1.67513i) q^{55} -3.19394 q^{56} +6.38787i q^{58} +13.2750 q^{59} -0.0752228 q^{61} -1.42548i q^{62} -7.08110 q^{64} +(1.35026 + 1.19394i) q^{65} +2.70052i q^{67} -0.730841i q^{68} +(-2.61942 + 2.96239i) q^{70} +14.0508 q^{71} -10.7308i q^{73} -2.38787 q^{74} -1.03761 q^{76} +1.19394i q^{77} -13.9756 q^{79} +(-6.44358 + 7.28726i) q^{80} +13.4617i q^{82} +9.89446i q^{83} +(6.31265 + 5.58181i) q^{85} +6.54420 q^{86} +2.67513i q^{88} +16.8872 q^{89} +0.962389 q^{91} +0.775746i q^{92} +18.2374 q^{94} +(7.92478 - 8.96239i) q^{95} -11.4763i q^{97} -8.25694i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{4} - 2 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 2 q^{4} - 2 q^{5} - 4 q^{10} - 6 q^{11} + 12 q^{14} - 6 q^{16} + 12 q^{19} + 10 q^{20} - 2 q^{25} + 8 q^{26} + 16 q^{29} - 16 q^{31} + 36 q^{34} - 12 q^{35} - 16 q^{40} - 16 q^{41} + 2 q^{44} + 8 q^{46} + 10 q^{49} - 24 q^{50} + 2 q^{55} - 20 q^{56} + 16 q^{59} - 44 q^{61} + 22 q^{64} - 12 q^{65} - 40 q^{70} + 24 q^{71} - 16 q^{74} - 28 q^{76} + 20 q^{79} - 6 q^{80} - 4 q^{85} + 20 q^{86} + 36 q^{89} - 16 q^{91} + 24 q^{94} + 4 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(397\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.48119i 1.04736i −0.851914 0.523681i \(-0.824558\pi\)
0.851914 0.523681i \(-0.175442\pi\)
\(3\) 0 0
\(4\) −0.193937 −0.0969683
\(5\) 1.48119 1.67513i 0.662410 0.749141i
\(6\) 0 0
\(7\) 1.19394i 0.451266i −0.974212 0.225633i \(-0.927555\pi\)
0.974212 0.225633i \(-0.0724450\pi\)
\(8\) 2.67513i 0.945802i
\(9\) 0 0
\(10\) −2.48119 2.19394i −0.784623 0.693784i
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) 0.806063i 0.223562i 0.993733 + 0.111781i \(0.0356555\pi\)
−0.993733 + 0.111781i \(0.964345\pi\)
\(14\) −1.76845 −0.472639
\(15\) 0 0
\(16\) −4.35026 −1.08757
\(17\) 3.76845i 0.913984i 0.889471 + 0.456992i \(0.151073\pi\)
−0.889471 + 0.456992i \(0.848927\pi\)
\(18\) 0 0
\(19\) 5.35026 1.22743 0.613717 0.789526i \(-0.289674\pi\)
0.613717 + 0.789526i \(0.289674\pi\)
\(20\) −0.287258 + 0.324869i −0.0642328 + 0.0726429i
\(21\) 0 0
\(22\) 1.48119i 0.315792i
\(23\) 4.00000i 0.834058i −0.908893 0.417029i \(-0.863071\pi\)
0.908893 0.417029i \(-0.136929\pi\)
\(24\) 0 0
\(25\) −0.612127 4.96239i −0.122425 0.992478i
\(26\) 1.19394 0.234150
\(27\) 0 0
\(28\) 0.231548i 0.0437585i
\(29\) −4.31265 −0.800839 −0.400420 0.916332i \(-0.631136\pi\)
−0.400420 + 0.916332i \(0.631136\pi\)
\(30\) 0 0
\(31\) 0.962389 0.172850 0.0864250 0.996258i \(-0.472456\pi\)
0.0864250 + 0.996258i \(0.472456\pi\)
\(32\) 1.09332i 0.193274i
\(33\) 0 0
\(34\) 5.58181 0.957272
\(35\) −2.00000 1.76845i −0.338062 0.298923i
\(36\) 0 0
\(37\) 1.61213i 0.265032i −0.991181 0.132516i \(-0.957694\pi\)
0.991181 0.132516i \(-0.0423056\pi\)
\(38\) 7.92478i 1.28557i
\(39\) 0 0
\(40\) −4.48119 3.96239i −0.708539 0.626509i
\(41\) −9.08840 −1.41937 −0.709685 0.704520i \(-0.751163\pi\)
−0.709685 + 0.704520i \(0.751163\pi\)
\(42\) 0 0
\(43\) 4.41819i 0.673768i 0.941546 + 0.336884i \(0.109373\pi\)
−0.941546 + 0.336884i \(0.890627\pi\)
\(44\) 0.193937 0.0292370
\(45\) 0 0
\(46\) −5.92478 −0.873561
\(47\) 12.3127i 1.79598i 0.440011 + 0.897992i \(0.354974\pi\)
−0.440011 + 0.897992i \(0.645026\pi\)
\(48\) 0 0
\(49\) 5.57452 0.796359
\(50\) −7.35026 + 0.906679i −1.03948 + 0.128224i
\(51\) 0 0
\(52\) 0.156325i 0.0216784i
\(53\) 1.42548i 0.195805i −0.995196 0.0979027i \(-0.968787\pi\)
0.995196 0.0979027i \(-0.0312134\pi\)
\(54\) 0 0
\(55\) −1.48119 + 1.67513i −0.199724 + 0.225875i
\(56\) −3.19394 −0.426808
\(57\) 0 0
\(58\) 6.38787i 0.838769i
\(59\) 13.2750 1.72826 0.864131 0.503266i \(-0.167868\pi\)
0.864131 + 0.503266i \(0.167868\pi\)
\(60\) 0 0
\(61\) −0.0752228 −0.00963129 −0.00481565 0.999988i \(-0.501533\pi\)
−0.00481565 + 0.999988i \(0.501533\pi\)
\(62\) 1.42548i 0.181037i
\(63\) 0 0
\(64\) −7.08110 −0.885138
\(65\) 1.35026 + 1.19394i 0.167479 + 0.148090i
\(66\) 0 0
\(67\) 2.70052i 0.329921i 0.986300 + 0.164961i \(0.0527497\pi\)
−0.986300 + 0.164961i \(0.947250\pi\)
\(68\) 0.730841i 0.0886274i
\(69\) 0 0
\(70\) −2.61942 + 2.96239i −0.313081 + 0.354073i
\(71\) 14.0508 1.66752 0.833761 0.552126i \(-0.186183\pi\)
0.833761 + 0.552126i \(0.186183\pi\)
\(72\) 0 0
\(73\) 10.7308i 1.25595i −0.778234 0.627975i \(-0.783884\pi\)
0.778234 0.627975i \(-0.216116\pi\)
\(74\) −2.38787 −0.277585
\(75\) 0 0
\(76\) −1.03761 −0.119022
\(77\) 1.19394i 0.136062i
\(78\) 0 0
\(79\) −13.9756 −1.57237 −0.786187 0.617989i \(-0.787948\pi\)
−0.786187 + 0.617989i \(0.787948\pi\)
\(80\) −6.44358 + 7.28726i −0.720414 + 0.814740i
\(81\) 0 0
\(82\) 13.4617i 1.48659i
\(83\) 9.89446i 1.08606i 0.839714 + 0.543029i \(0.182723\pi\)
−0.839714 + 0.543029i \(0.817277\pi\)
\(84\) 0 0
\(85\) 6.31265 + 5.58181i 0.684703 + 0.605432i
\(86\) 6.54420 0.705679
\(87\) 0 0
\(88\) 2.67513i 0.285170i
\(89\) 16.8872 1.79004 0.895018 0.446030i \(-0.147163\pi\)
0.895018 + 0.446030i \(0.147163\pi\)
\(90\) 0 0
\(91\) 0.962389 0.100886
\(92\) 0.775746i 0.0808771i
\(93\) 0 0
\(94\) 18.2374 1.88105
\(95\) 7.92478 8.96239i 0.813065 0.919522i
\(96\) 0 0
\(97\) 11.4763i 1.16524i −0.812745 0.582619i \(-0.802028\pi\)
0.812745 0.582619i \(-0.197972\pi\)
\(98\) 8.25694i 0.834077i
\(99\) 0 0
\(100\) 0.118714 + 0.962389i 0.0118714 + 0.0962389i
\(101\) −10.7612 −1.07078 −0.535388 0.844606i \(-0.679834\pi\)
−0.535388 + 0.844606i \(0.679834\pi\)
\(102\) 0 0
\(103\) 16.9380i 1.66895i 0.551049 + 0.834473i \(0.314228\pi\)
−0.551049 + 0.834473i \(0.685772\pi\)
\(104\) 2.15633 0.211445
\(105\) 0 0
\(106\) −2.11142 −0.205079
\(107\) 8.28233i 0.800683i 0.916366 + 0.400342i \(0.131109\pi\)
−0.916366 + 0.400342i \(0.868891\pi\)
\(108\) 0 0
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) 2.48119 + 2.19394i 0.236573 + 0.209184i
\(111\) 0 0
\(112\) 5.19394i 0.490781i
\(113\) 2.26187i 0.212778i −0.994325 0.106389i \(-0.966071\pi\)
0.994325 0.106389i \(-0.0339289\pi\)
\(114\) 0 0
\(115\) −6.70052 5.92478i −0.624827 0.552488i
\(116\) 0.836381 0.0776560
\(117\) 0 0
\(118\) 19.6629i 1.81012i
\(119\) 4.49929 0.412449
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0.111420i 0.0100875i
\(123\) 0 0
\(124\) −0.186642 −0.0167610
\(125\) −9.21933 6.32487i −0.824602 0.565713i
\(126\) 0 0
\(127\) 13.8192i 1.22626i 0.789982 + 0.613130i \(0.210090\pi\)
−0.789982 + 0.613130i \(0.789910\pi\)
\(128\) 12.6751i 1.12033i
\(129\) 0 0
\(130\) 1.76845 2.00000i 0.155104 0.175412i
\(131\) 5.92478 0.517650 0.258825 0.965924i \(-0.416665\pi\)
0.258825 + 0.965924i \(0.416665\pi\)
\(132\) 0 0
\(133\) 6.38787i 0.553899i
\(134\) 4.00000 0.345547
\(135\) 0 0
\(136\) 10.0811 0.864447
\(137\) 3.35026i 0.286232i 0.989706 + 0.143116i \(0.0457122\pi\)
−0.989706 + 0.143116i \(0.954288\pi\)
\(138\) 0 0
\(139\) 21.1998 1.79814 0.899072 0.437800i \(-0.144242\pi\)
0.899072 + 0.437800i \(0.144242\pi\)
\(140\) 0.387873 + 0.342968i 0.0327813 + 0.0289860i
\(141\) 0 0
\(142\) 20.8119i 1.74650i
\(143\) 0.806063i 0.0674064i
\(144\) 0 0
\(145\) −6.38787 + 7.22425i −0.530484 + 0.599942i
\(146\) −15.8945 −1.31543
\(147\) 0 0
\(148\) 0.312650i 0.0256997i
\(149\) 6.38787 0.523315 0.261657 0.965161i \(-0.415731\pi\)
0.261657 + 0.965161i \(0.415731\pi\)
\(150\) 0 0
\(151\) −2.64974 −0.215633 −0.107816 0.994171i \(-0.534386\pi\)
−0.107816 + 0.994171i \(0.534386\pi\)
\(152\) 14.3127i 1.16091i
\(153\) 0 0
\(154\) 1.76845 0.142506
\(155\) 1.42548 1.61213i 0.114498 0.129489i
\(156\) 0 0
\(157\) 1.61213i 0.128662i −0.997929 0.0643309i \(-0.979509\pi\)
0.997929 0.0643309i \(-0.0204913\pi\)
\(158\) 20.7005i 1.64685i
\(159\) 0 0
\(160\) 1.83146 + 1.61942i 0.144789 + 0.128026i
\(161\) −4.77575 −0.376382
\(162\) 0 0
\(163\) 0.312650i 0.0244887i −0.999925 0.0122443i \(-0.996102\pi\)
0.999925 0.0122443i \(-0.00389759\pi\)
\(164\) 1.76257 0.137634
\(165\) 0 0
\(166\) 14.6556 1.13750
\(167\) 0.493413i 0.0381815i 0.999818 + 0.0190907i \(0.00607714\pi\)
−0.999818 + 0.0190907i \(0.993923\pi\)
\(168\) 0 0
\(169\) 12.3503 0.950020
\(170\) 8.26774 9.35026i 0.634107 0.717132i
\(171\) 0 0
\(172\) 0.856849i 0.0653341i
\(173\) 23.3054i 1.77187i 0.463806 + 0.885937i \(0.346483\pi\)
−0.463806 + 0.885937i \(0.653517\pi\)
\(174\) 0 0
\(175\) −5.92478 + 0.730841i −0.447871 + 0.0552464i
\(176\) 4.35026 0.327913
\(177\) 0 0
\(178\) 25.0132i 1.87482i
\(179\) −10.7005 −0.799795 −0.399897 0.916560i \(-0.630954\pi\)
−0.399897 + 0.916560i \(0.630954\pi\)
\(180\) 0 0
\(181\) −7.79877 −0.579678 −0.289839 0.957075i \(-0.593602\pi\)
−0.289839 + 0.957075i \(0.593602\pi\)
\(182\) 1.42548i 0.105664i
\(183\) 0 0
\(184\) −10.7005 −0.788853
\(185\) −2.70052 2.38787i −0.198546 0.175560i
\(186\) 0 0
\(187\) 3.76845i 0.275577i
\(188\) 2.38787i 0.174154i
\(189\) 0 0
\(190\) −13.2750 11.7381i −0.963073 0.851574i
\(191\) −1.29948 −0.0940268 −0.0470134 0.998894i \(-0.514970\pi\)
−0.0470134 + 0.998894i \(0.514970\pi\)
\(192\) 0 0
\(193\) 8.59498i 0.618680i 0.950951 + 0.309340i \(0.100108\pi\)
−0.950951 + 0.309340i \(0.899892\pi\)
\(194\) −16.9986 −1.22043
\(195\) 0 0
\(196\) −1.08110 −0.0772216
\(197\) 20.7064i 1.47527i −0.675200 0.737635i \(-0.735943\pi\)
0.675200 0.737635i \(-0.264057\pi\)
\(198\) 0 0
\(199\) −5.55149 −0.393535 −0.196767 0.980450i \(-0.563044\pi\)
−0.196767 + 0.980450i \(0.563044\pi\)
\(200\) −13.2750 + 1.63752i −0.938687 + 0.115790i
\(201\) 0 0
\(202\) 15.9394i 1.12149i
\(203\) 5.14903i 0.361391i
\(204\) 0 0
\(205\) −13.4617 + 15.2243i −0.940205 + 1.06331i
\(206\) 25.0884 1.74799
\(207\) 0 0
\(208\) 3.50659i 0.243138i
\(209\) −5.35026 −0.370085
\(210\) 0 0
\(211\) −18.4993 −1.27354 −0.636772 0.771052i \(-0.719731\pi\)
−0.636772 + 0.771052i \(0.719731\pi\)
\(212\) 0.276454i 0.0189869i
\(213\) 0 0
\(214\) 12.2677 0.838606
\(215\) 7.40105 + 6.54420i 0.504747 + 0.446311i
\(216\) 0 0
\(217\) 1.14903i 0.0780013i
\(218\) 14.8119i 1.00319i
\(219\) 0 0
\(220\) 0.287258 0.324869i 0.0193669 0.0219027i
\(221\) −3.03761 −0.204332
\(222\) 0 0
\(223\) 17.6121i 1.17940i 0.807624 + 0.589698i \(0.200753\pi\)
−0.807624 + 0.589698i \(0.799247\pi\)
\(224\) 1.30536 0.0872178
\(225\) 0 0
\(226\) −3.35026 −0.222856
\(227\) 17.4314i 1.15696i −0.815696 0.578480i \(-0.803646\pi\)
0.815696 0.578480i \(-0.196354\pi\)
\(228\) 0 0
\(229\) −13.0738 −0.863942 −0.431971 0.901888i \(-0.642182\pi\)
−0.431971 + 0.901888i \(0.642182\pi\)
\(230\) −8.77575 + 9.92478i −0.578656 + 0.654420i
\(231\) 0 0
\(232\) 11.5369i 0.757435i
\(233\) 13.8437i 0.906929i 0.891274 + 0.453465i \(0.149812\pi\)
−0.891274 + 0.453465i \(0.850188\pi\)
\(234\) 0 0
\(235\) 20.6253 + 18.2374i 1.34545 + 1.18968i
\(236\) −2.57452 −0.167587
\(237\) 0 0
\(238\) 6.66433i 0.431984i
\(239\) −12.3733 −0.800361 −0.400181 0.916436i \(-0.631053\pi\)
−0.400181 + 0.916436i \(0.631053\pi\)
\(240\) 0 0
\(241\) −24.5501 −1.58141 −0.790705 0.612198i \(-0.790286\pi\)
−0.790705 + 0.612198i \(0.790286\pi\)
\(242\) 1.48119i 0.0952148i
\(243\) 0 0
\(244\) 0.0145884 0.000933930
\(245\) 8.25694 9.33804i 0.527517 0.596586i
\(246\) 0 0
\(247\) 4.31265i 0.274407i
\(248\) 2.57452i 0.163482i
\(249\) 0 0
\(250\) −9.36836 + 13.6556i −0.592507 + 0.863657i
\(251\) −13.9003 −0.877382 −0.438691 0.898638i \(-0.644558\pi\)
−0.438691 + 0.898638i \(0.644558\pi\)
\(252\) 0 0
\(253\) 4.00000i 0.251478i
\(254\) 20.4690 1.28434
\(255\) 0 0
\(256\) 4.61213 0.288258
\(257\) 18.8872i 1.17815i −0.808079 0.589075i \(-0.799492\pi\)
0.808079 0.589075i \(-0.200508\pi\)
\(258\) 0 0
\(259\) −1.92478 −0.119600
\(260\) −0.261865 0.231548i −0.0162402 0.0143600i
\(261\) 0 0
\(262\) 8.77575i 0.542167i
\(263\) 20.8061i 1.28296i −0.767141 0.641478i \(-0.778321\pi\)
0.767141 0.641478i \(-0.221679\pi\)
\(264\) 0 0
\(265\) −2.38787 2.11142i −0.146686 0.129703i
\(266\) −9.46168 −0.580133
\(267\) 0 0
\(268\) 0.523730i 0.0319919i
\(269\) −32.3996 −1.97544 −0.987720 0.156233i \(-0.950065\pi\)
−0.987720 + 0.156233i \(0.950065\pi\)
\(270\) 0 0
\(271\) −16.8265 −1.02214 −0.511069 0.859539i \(-0.670751\pi\)
−0.511069 + 0.859539i \(0.670751\pi\)
\(272\) 16.3938i 0.994017i
\(273\) 0 0
\(274\) 4.96239 0.299789
\(275\) 0.612127 + 4.96239i 0.0369126 + 0.299243i
\(276\) 0 0
\(277\) 16.9076i 1.01588i −0.861392 0.507941i \(-0.830407\pi\)
0.861392 0.507941i \(-0.169593\pi\)
\(278\) 31.4010i 1.88331i
\(279\) 0 0
\(280\) −4.73084 + 5.35026i −0.282722 + 0.319739i
\(281\) −5.61213 −0.334791 −0.167396 0.985890i \(-0.553536\pi\)
−0.167396 + 0.985890i \(0.553536\pi\)
\(282\) 0 0
\(283\) 5.81924i 0.345918i 0.984929 + 0.172959i \(0.0553328\pi\)
−0.984929 + 0.172959i \(0.944667\pi\)
\(284\) −2.72496 −0.161697
\(285\) 0 0
\(286\) −1.19394 −0.0705989
\(287\) 10.8510i 0.640512i
\(288\) 0 0
\(289\) 2.79877 0.164633
\(290\) 10.7005 + 9.46168i 0.628356 + 0.555609i
\(291\) 0 0
\(292\) 2.08110i 0.121787i
\(293\) 8.29218i 0.484434i 0.970222 + 0.242217i \(0.0778747\pi\)
−0.970222 + 0.242217i \(0.922125\pi\)
\(294\) 0 0
\(295\) 19.6629 22.2374i 1.14482 1.29471i
\(296\) −4.31265 −0.250668
\(297\) 0 0
\(298\) 9.46168i 0.548100i
\(299\) 3.22425 0.186463
\(300\) 0 0
\(301\) 5.27504 0.304048
\(302\) 3.92478i 0.225846i
\(303\) 0 0
\(304\) −23.2750 −1.33492
\(305\) −0.111420 + 0.126008i −0.00637987 + 0.00721520i
\(306\) 0 0
\(307\) 25.6688i 1.46500i −0.680770 0.732498i \(-0.738354\pi\)
0.680770 0.732498i \(-0.261646\pi\)
\(308\) 0.231548i 0.0131937i
\(309\) 0 0
\(310\) −2.38787 2.11142i −0.135622 0.119921i
\(311\) 15.7235 0.891601 0.445800 0.895132i \(-0.352919\pi\)
0.445800 + 0.895132i \(0.352919\pi\)
\(312\) 0 0
\(313\) 26.8627i 1.51837i −0.650874 0.759186i \(-0.725597\pi\)
0.650874 0.759186i \(-0.274403\pi\)
\(314\) −2.38787 −0.134755
\(315\) 0 0
\(316\) 2.71037 0.152470
\(317\) 0.710373i 0.0398985i 0.999801 + 0.0199492i \(0.00635046\pi\)
−0.999801 + 0.0199492i \(0.993650\pi\)
\(318\) 0 0
\(319\) 4.31265 0.241462
\(320\) −10.4885 + 11.8618i −0.586324 + 0.663093i
\(321\) 0 0
\(322\) 7.07381i 0.394208i
\(323\) 20.1622i 1.12186i
\(324\) 0 0
\(325\) 4.00000 0.493413i 0.221880 0.0273696i
\(326\) −0.463096 −0.0256485
\(327\) 0 0
\(328\) 24.3127i 1.34244i
\(329\) 14.7005 0.810466
\(330\) 0 0
\(331\) 0.962389 0.0528977 0.0264488 0.999650i \(-0.491580\pi\)
0.0264488 + 0.999650i \(0.491580\pi\)
\(332\) 1.91890i 0.105313i
\(333\) 0 0
\(334\) 0.730841 0.0399898
\(335\) 4.52373 + 4.00000i 0.247158 + 0.218543i
\(336\) 0 0
\(337\) 19.8192i 1.07962i −0.841786 0.539811i \(-0.818496\pi\)
0.841786 0.539811i \(-0.181504\pi\)
\(338\) 18.2931i 0.995015i
\(339\) 0 0
\(340\) −1.22425 1.08252i −0.0663945 0.0587077i
\(341\) −0.962389 −0.0521163
\(342\) 0 0
\(343\) 15.0132i 0.810635i
\(344\) 11.8192 0.637251
\(345\) 0 0
\(346\) 34.5198 1.85579
\(347\) 6.20711i 0.333215i 0.986023 + 0.166608i \(0.0532813\pi\)
−0.986023 + 0.166608i \(0.946719\pi\)
\(348\) 0 0
\(349\) −4.44851 −0.238123 −0.119062 0.992887i \(-0.537989\pi\)
−0.119062 + 0.992887i \(0.537989\pi\)
\(350\) 1.08252 + 8.77575i 0.0578630 + 0.469083i
\(351\) 0 0
\(352\) 1.09332i 0.0582742i
\(353\) 6.57452i 0.349926i −0.984575 0.174963i \(-0.944019\pi\)
0.984575 0.174963i \(-0.0559806\pi\)
\(354\) 0 0
\(355\) 20.8119 23.5369i 1.10458 1.24921i
\(356\) −3.27504 −0.173577
\(357\) 0 0
\(358\) 15.8496i 0.837675i
\(359\) 8.62530 0.455226 0.227613 0.973752i \(-0.426908\pi\)
0.227613 + 0.973752i \(0.426908\pi\)
\(360\) 0 0
\(361\) 9.62530 0.506595
\(362\) 11.5515i 0.607133i
\(363\) 0 0
\(364\) −0.186642 −0.00978272
\(365\) −17.9756 15.8945i −0.940884 0.831954i
\(366\) 0 0
\(367\) 23.0132i 1.20128i −0.799520 0.600639i \(-0.794913\pi\)
0.799520 0.600639i \(-0.205087\pi\)
\(368\) 17.4010i 0.907092i
\(369\) 0 0
\(370\) −3.53690 + 4.00000i −0.183875 + 0.207950i
\(371\) −1.70194 −0.0883602
\(372\) 0 0
\(373\) 28.1925i 1.45975i 0.683579 + 0.729877i \(0.260423\pi\)
−0.683579 + 0.729877i \(0.739577\pi\)
\(374\) −5.58181 −0.288629
\(375\) 0 0
\(376\) 32.9380 1.69865
\(377\) 3.47627i 0.179037i
\(378\) 0 0
\(379\) −3.74798 −0.192521 −0.0962605 0.995356i \(-0.530688\pi\)
−0.0962605 + 0.995356i \(0.530688\pi\)
\(380\) −1.53690 + 1.73813i −0.0788415 + 0.0891644i
\(381\) 0 0
\(382\) 1.92478i 0.0984802i
\(383\) 1.76257i 0.0900632i −0.998986 0.0450316i \(-0.985661\pi\)
0.998986 0.0450316i \(-0.0143389\pi\)
\(384\) 0 0
\(385\) 2.00000 + 1.76845i 0.101929 + 0.0901287i
\(386\) 12.7308 0.647983
\(387\) 0 0
\(388\) 2.22567i 0.112991i
\(389\) 6.52373 0.330766 0.165383 0.986229i \(-0.447114\pi\)
0.165383 + 0.986229i \(0.447114\pi\)
\(390\) 0 0
\(391\) 15.0738 0.762315
\(392\) 14.9126i 0.753198i
\(393\) 0 0
\(394\) −30.6702 −1.54514
\(395\) −20.7005 + 23.4109i −1.04156 + 1.17793i
\(396\) 0 0
\(397\) 23.6991i 1.18942i 0.803939 + 0.594712i \(0.202734\pi\)
−0.803939 + 0.594712i \(0.797266\pi\)
\(398\) 8.22284i 0.412174i
\(399\) 0 0
\(400\) 2.66291 + 21.5877i 0.133146 + 1.07938i
\(401\) −8.88717 −0.443804 −0.221902 0.975069i \(-0.571226\pi\)
−0.221902 + 0.975069i \(0.571226\pi\)
\(402\) 0 0
\(403\) 0.775746i 0.0386427i
\(404\) 2.08698 0.103831
\(405\) 0 0
\(406\) 7.62672 0.378508
\(407\) 1.61213i 0.0799102i
\(408\) 0 0
\(409\) 4.85097 0.239865 0.119932 0.992782i \(-0.461732\pi\)
0.119932 + 0.992782i \(0.461732\pi\)
\(410\) 22.5501 + 19.9394i 1.11367 + 0.984735i
\(411\) 0 0
\(412\) 3.28489i 0.161835i
\(413\) 15.8496i 0.779906i
\(414\) 0 0
\(415\) 16.5745 + 14.6556i 0.813611 + 0.719416i
\(416\) −0.881286 −0.0432086
\(417\) 0 0
\(418\) 7.92478i 0.387614i
\(419\) −10.7005 −0.522755 −0.261377 0.965237i \(-0.584177\pi\)
−0.261377 + 0.965237i \(0.584177\pi\)
\(420\) 0 0
\(421\) −30.6009 −1.49139 −0.745697 0.666285i \(-0.767884\pi\)
−0.745697 + 0.666285i \(0.767884\pi\)
\(422\) 27.4010i 1.33386i
\(423\) 0 0
\(424\) −3.81336 −0.185193
\(425\) 18.7005 2.30677i 0.907109 0.111895i
\(426\) 0 0
\(427\) 0.0898112i 0.00434627i
\(428\) 1.60625i 0.0776409i
\(429\) 0 0
\(430\) 9.69323 10.9624i 0.467449 0.528653i
\(431\) 5.92478 0.285386 0.142693 0.989767i \(-0.454424\pi\)
0.142693 + 0.989767i \(0.454424\pi\)
\(432\) 0 0
\(433\) 16.0000i 0.768911i −0.923144 0.384455i \(-0.874389\pi\)
0.923144 0.384455i \(-0.125611\pi\)
\(434\) −1.70194 −0.0816956
\(435\) 0 0
\(436\) −1.93937 −0.0928788
\(437\) 21.4010i 1.02375i
\(438\) 0 0
\(439\) −5.35026 −0.255354 −0.127677 0.991816i \(-0.540752\pi\)
−0.127677 + 0.991816i \(0.540752\pi\)
\(440\) 4.48119 + 3.96239i 0.213633 + 0.188899i
\(441\) 0 0
\(442\) 4.49929i 0.214010i
\(443\) 19.6873i 0.935374i −0.883894 0.467687i \(-0.845087\pi\)
0.883894 0.467687i \(-0.154913\pi\)
\(444\) 0 0
\(445\) 25.0132 28.2882i 1.18574 1.34099i
\(446\) 26.0870 1.23525
\(447\) 0 0
\(448\) 8.45439i 0.399432i
\(449\) −31.3357 −1.47882 −0.739411 0.673254i \(-0.764896\pi\)
−0.739411 + 0.673254i \(0.764896\pi\)
\(450\) 0 0
\(451\) 9.08840 0.427956
\(452\) 0.438658i 0.0206328i
\(453\) 0 0
\(454\) −25.8192 −1.21176
\(455\) 1.42548 1.61213i 0.0668277 0.0755777i
\(456\) 0 0
\(457\) 37.5936i 1.75855i 0.476312 + 0.879276i \(0.341973\pi\)
−0.476312 + 0.879276i \(0.658027\pi\)
\(458\) 19.3649i 0.904860i
\(459\) 0 0
\(460\) 1.29948 + 1.14903i 0.0605884 + 0.0535738i
\(461\) −17.9854 −0.837664 −0.418832 0.908064i \(-0.637560\pi\)
−0.418832 + 0.908064i \(0.637560\pi\)
\(462\) 0 0
\(463\) 39.0132i 1.81310i 0.422103 + 0.906548i \(0.361292\pi\)
−0.422103 + 0.906548i \(0.638708\pi\)
\(464\) 18.7612 0.870965
\(465\) 0 0
\(466\) 20.5052 0.949884
\(467\) 14.5501i 0.673297i 0.941630 + 0.336649i \(0.109293\pi\)
−0.941630 + 0.336649i \(0.890707\pi\)
\(468\) 0 0
\(469\) 3.22425 0.148882
\(470\) 27.0132 30.5501i 1.24602 1.40917i
\(471\) 0 0
\(472\) 35.5125i 1.63459i
\(473\) 4.41819i 0.203149i
\(474\) 0 0
\(475\) −3.27504 26.5501i −0.150269 1.21820i
\(476\) −0.872577 −0.0399945
\(477\) 0 0
\(478\) 18.3272i 0.838268i
\(479\) 28.6253 1.30792 0.653962 0.756528i \(-0.273106\pi\)
0.653962 + 0.756528i \(0.273106\pi\)
\(480\) 0 0
\(481\) 1.29948 0.0592510
\(482\) 36.3634i 1.65631i
\(483\) 0 0
\(484\) −0.193937 −0.00881530
\(485\) −19.2243 16.9986i −0.872928 0.771866i
\(486\) 0 0
\(487\) 1.44992i 0.0657022i −0.999460 0.0328511i \(-0.989541\pi\)
0.999460 0.0328511i \(-0.0104587\pi\)
\(488\) 0.201231i 0.00910929i
\(489\) 0 0
\(490\) −13.8315 12.2301i −0.624841 0.552501i
\(491\) 8.00000 0.361035 0.180517 0.983572i \(-0.442223\pi\)
0.180517 + 0.983572i \(0.442223\pi\)
\(492\) 0 0
\(493\) 16.2520i 0.731954i
\(494\) 6.38787 0.287404
\(495\) 0 0
\(496\) −4.18664 −0.187986
\(497\) 16.7757i 0.752495i
\(498\) 0 0
\(499\) −30.7005 −1.37434 −0.687172 0.726495i \(-0.741148\pi\)
−0.687172 + 0.726495i \(0.741148\pi\)
\(500\) 1.78797 + 1.22662i 0.0799602 + 0.0548563i
\(501\) 0 0
\(502\) 20.5891i 0.918937i
\(503\) 19.7586i 0.880993i 0.897754 + 0.440496i \(0.145198\pi\)
−0.897754 + 0.440496i \(0.854802\pi\)
\(504\) 0 0
\(505\) −15.9394 + 18.0263i −0.709292 + 0.802162i
\(506\) 5.92478 0.263388
\(507\) 0 0
\(508\) 2.68006i 0.118908i
\(509\) 22.1016 0.979635 0.489817 0.871825i \(-0.337063\pi\)
0.489817 + 0.871825i \(0.337063\pi\)
\(510\) 0 0
\(511\) −12.8119 −0.566767
\(512\) 18.5188i 0.818423i
\(513\) 0 0
\(514\) −27.9756 −1.23395
\(515\) 28.3733 + 25.0884i 1.25028 + 1.10553i
\(516\) 0 0
\(517\) 12.3127i 0.541510i
\(518\) 2.85097i 0.125264i
\(519\) 0 0
\(520\) 3.19394 3.61213i 0.140063 0.158402i
\(521\) 22.8119 0.999409 0.499705 0.866196i \(-0.333442\pi\)
0.499705 + 0.866196i \(0.333442\pi\)
\(522\) 0 0
\(523\) 12.2677i 0.536431i −0.963359 0.268216i \(-0.913566\pi\)
0.963359 0.268216i \(-0.0864339\pi\)
\(524\) −1.14903 −0.0501957
\(525\) 0 0
\(526\) −30.8178 −1.34372
\(527\) 3.62672i 0.157982i
\(528\) 0 0
\(529\) 7.00000 0.304348
\(530\) −3.12742 + 3.53690i −0.135847 + 0.153633i
\(531\) 0 0
\(532\) 1.23884i 0.0537106i
\(533\) 7.32582i 0.317317i
\(534\) 0 0
\(535\) 13.8740 + 12.2677i 0.599825 + 0.530381i
\(536\) 7.22425 0.312040
\(537\) 0 0
\(538\) 47.9902i 2.06900i
\(539\) −5.57452 −0.240111
\(540\) 0 0
\(541\) −5.22425 −0.224608 −0.112304 0.993674i \(-0.535823\pi\)
−0.112304 + 0.993674i \(0.535823\pi\)
\(542\) 24.9234i 1.07055i
\(543\) 0 0
\(544\) −4.12013 −0.176649
\(545\) 14.8119 16.7513i 0.634474 0.717547i
\(546\) 0 0
\(547\) 17.9697i 0.768328i 0.923265 + 0.384164i \(0.125510\pi\)
−0.923265 + 0.384164i \(0.874490\pi\)
\(548\) 0.649738i 0.0277554i
\(549\) 0 0
\(550\) 7.35026 0.906679i 0.313416 0.0386609i
\(551\) −23.0738 −0.982977
\(552\) 0 0
\(553\) 16.6859i 0.709558i
\(554\) −25.0435 −1.06400
\(555\) 0 0
\(556\) −4.11142 −0.174363
\(557\) 15.8700i 0.672434i 0.941784 + 0.336217i \(0.109148\pi\)
−0.941784 + 0.336217i \(0.890852\pi\)
\(558\) 0 0
\(559\) −3.56134 −0.150629
\(560\) 8.70052 + 7.69323i 0.367664 + 0.325098i
\(561\) 0 0
\(562\) 8.31265i 0.350648i
\(563\) 31.6688i 1.33468i −0.744753 0.667340i \(-0.767433\pi\)
0.744753 0.667340i \(-0.232567\pi\)
\(564\) 0 0
\(565\) −3.78892 3.35026i −0.159401 0.140947i
\(566\) 8.61942 0.362301
\(567\) 0 0
\(568\) 37.5877i 1.57714i
\(569\) −24.3127 −1.01924 −0.509620 0.860400i \(-0.670214\pi\)
−0.509620 + 0.860400i \(0.670214\pi\)
\(570\) 0 0
\(571\) 8.05079 0.336915 0.168457 0.985709i \(-0.446121\pi\)
0.168457 + 0.985709i \(0.446121\pi\)
\(572\) 0.156325i 0.00653628i
\(573\) 0 0
\(574\) 16.0724 0.670849
\(575\) −19.8496 + 2.44851i −0.827784 + 0.102110i
\(576\) 0 0
\(577\) 44.5355i 1.85404i 0.375016 + 0.927018i \(0.377637\pi\)
−0.375016 + 0.927018i \(0.622363\pi\)
\(578\) 4.14552i 0.172431i
\(579\) 0 0
\(580\) 1.23884 1.40105i 0.0514401 0.0581753i
\(581\) 11.8134 0.490101
\(582\) 0 0
\(583\) 1.42548i 0.0590375i
\(584\) −28.7064 −1.18788
\(585\) 0 0
\(586\) 12.2823 0.507379
\(587\) 15.4763i 0.638774i −0.947624 0.319387i \(-0.896523\pi\)
0.947624 0.319387i \(-0.103477\pi\)
\(588\) 0 0
\(589\) 5.14903 0.212162
\(590\) −32.9380 29.1246i −1.35603 1.19904i
\(591\) 0 0
\(592\) 7.01317i 0.288240i
\(593\) 9.53102i 0.391392i 0.980665 + 0.195696i \(0.0626966\pi\)
−0.980665 + 0.195696i \(0.937303\pi\)
\(594\) 0 0
\(595\) 6.66433 7.53690i 0.273211 0.308983i
\(596\) −1.23884 −0.0507450
\(597\) 0 0
\(598\) 4.77575i 0.195295i
\(599\) −25.5515 −1.04401 −0.522003 0.852944i \(-0.674815\pi\)
−0.522003 + 0.852944i \(0.674815\pi\)
\(600\) 0 0
\(601\) 12.0263 0.490565 0.245282 0.969452i \(-0.421119\pi\)
0.245282 + 0.969452i \(0.421119\pi\)
\(602\) 7.81336i 0.318449i
\(603\) 0 0
\(604\) 0.513881 0.0209095
\(605\) 1.48119 1.67513i 0.0602191 0.0681038i
\(606\) 0 0
\(607\) 6.86670i 0.278711i 0.990242 + 0.139355i \(0.0445030\pi\)
−0.990242 + 0.139355i \(0.955497\pi\)
\(608\) 5.84955i 0.237231i
\(609\) 0 0
\(610\) 0.186642 + 0.165034i 0.00755693 + 0.00668203i
\(611\) −9.92478 −0.401514
\(612\) 0 0
\(613\) 7.25457i 0.293009i −0.989210 0.146505i \(-0.953198\pi\)
0.989210 0.146505i \(-0.0468023\pi\)
\(614\) −38.0205 −1.53438
\(615\) 0 0
\(616\) 3.19394 0.128687
\(617\) 38.3634i 1.54445i 0.635347 + 0.772227i \(0.280857\pi\)
−0.635347 + 0.772227i \(0.719143\pi\)
\(618\) 0 0
\(619\) 29.6893 1.19331 0.596656 0.802497i \(-0.296496\pi\)
0.596656 + 0.802497i \(0.296496\pi\)
\(620\) −0.276454 + 0.312650i −0.0111026 + 0.0125563i
\(621\) 0 0
\(622\) 23.2896i 0.933829i
\(623\) 20.1622i 0.807782i
\(624\) 0 0
\(625\) −24.2506 + 6.07522i −0.970024 + 0.243009i
\(626\) −39.7889 −1.59029
\(627\) 0 0
\(628\) 0.312650i 0.0124761i
\(629\) 6.07522 0.242235
\(630\) 0 0
\(631\) −19.6991 −0.784209 −0.392105 0.919921i \(-0.628253\pi\)
−0.392105 + 0.919921i \(0.628253\pi\)
\(632\) 37.3865i 1.48715i
\(633\) 0 0
\(634\) 1.05220 0.0417882
\(635\) 23.1490 + 20.4690i 0.918641 + 0.812287i
\(636\) 0 0
\(637\) 4.49341i 0.178036i
\(638\) 6.38787i 0.252898i
\(639\) 0 0
\(640\) 21.2325 + 18.7743i 0.839288 + 0.742121i
\(641\) 31.4372 1.24170 0.620848 0.783931i \(-0.286788\pi\)
0.620848 + 0.783931i \(0.286788\pi\)
\(642\) 0 0
\(643\) 34.4894i 1.36013i −0.733151 0.680065i \(-0.761951\pi\)
0.733151 0.680065i \(-0.238049\pi\)
\(644\) 0.926192 0.0364971
\(645\) 0 0
\(646\) 29.8641 1.17499
\(647\) 5.61213i 0.220635i −0.993896 0.110318i \(-0.964813\pi\)
0.993896 0.110318i \(-0.0351868\pi\)
\(648\) 0 0
\(649\) −13.2750 −0.521091
\(650\) −0.730841 5.92478i −0.0286659 0.232389i
\(651\) 0 0
\(652\) 0.0606343i 0.00237462i
\(653\) 4.06537i 0.159090i −0.996831 0.0795452i \(-0.974653\pi\)
0.996831 0.0795452i \(-0.0253468\pi\)
\(654\) 0 0
\(655\) 8.77575 9.92478i 0.342897 0.387793i
\(656\) 39.5369 1.54366
\(657\) 0 0
\(658\) 21.7743i 0.848852i
\(659\) 11.3747 0.443095 0.221548 0.975150i \(-0.428889\pi\)
0.221548 + 0.975150i \(0.428889\pi\)
\(660\) 0 0
\(661\) −42.4749 −1.65208 −0.826040 0.563611i \(-0.809412\pi\)
−0.826040 + 0.563611i \(0.809412\pi\)
\(662\) 1.42548i 0.0554030i
\(663\) 0 0
\(664\) 26.4690 1.02720
\(665\) −10.7005 9.46168i −0.414949 0.366908i
\(666\) 0 0
\(667\) 17.2506i 0.667946i
\(668\) 0.0956908i 0.00370239i
\(669\) 0 0
\(670\) 5.92478 6.70052i 0.228894 0.258864i
\(671\) 0.0752228 0.00290394
\(672\) 0 0
\(673\) 14.8813i 0.573631i −0.957986 0.286816i \(-0.907403\pi\)
0.957986 0.286816i \(-0.0925967\pi\)
\(674\) −29.3561 −1.13076
\(675\) 0 0
\(676\) −2.39517 −0.0921218
\(677\) 27.7685i 1.06723i −0.845728 0.533614i \(-0.820833\pi\)
0.845728 0.533614i \(-0.179167\pi\)
\(678\) 0 0
\(679\) −13.7019 −0.525832
\(680\) 14.9321 16.8872i 0.572619 0.647593i
\(681\) 0 0
\(682\) 1.42548i 0.0545846i
\(683\) 25.4617i 0.974264i 0.873328 + 0.487132i \(0.161957\pi\)
−0.873328 + 0.487132i \(0.838043\pi\)
\(684\) 0 0
\(685\) 5.61213 + 4.96239i 0.214428 + 0.189603i
\(686\) −22.2374 −0.849029
\(687\) 0 0
\(688\) 19.2203i 0.732766i
\(689\) 1.14903 0.0437746
\(690\) 0 0
\(691\) 43.6991 1.66239 0.831196 0.555979i \(-0.187657\pi\)
0.831196 + 0.555979i \(0.187657\pi\)
\(692\) 4.51976i 0.171816i
\(693\) 0 0
\(694\) 9.19394 0.348997
\(695\) 31.4010 35.5125i 1.19111 1.34706i
\(696\) 0 0
\(697\) 34.2492i 1.29728i
\(698\) 6.58910i 0.249401i
\(699\) 0 0
\(700\) 1.14903 0.141737i 0.0434293 0.00535714i
\(701\) −7.01317 −0.264884 −0.132442 0.991191i \(-0.542282\pi\)
−0.132442 + 0.991191i \(0.542282\pi\)
\(702\) 0 0
\(703\) 8.62530i 0.325309i
\(704\) 7.08110 0.266879
\(705\) 0 0
\(706\) −9.73813 −0.366500
\(707\) 12.8481i 0.483204i
\(708\) 0 0
\(709\) −45.6747 −1.71535 −0.857674 0.514194i \(-0.828091\pi\)
−0.857674 + 0.514194i \(0.828091\pi\)
\(710\) −34.8627 30.8265i −1.30837 1.15690i
\(711\) 0 0
\(712\) 45.1754i 1.69302i
\(713\) 3.84955i 0.144167i
\(714\) 0 0
\(715\) −1.35026 1.19394i −0.0504969 0.0446507i
\(716\) 2.07522 0.0775547
\(717\) 0 0
\(718\) 12.7757i 0.476787i
\(719\) 16.2520 0.606098 0.303049 0.952975i \(-0.401995\pi\)
0.303049 + 0.952975i \(0.401995\pi\)
\(720\) 0 0
\(721\) 20.2228 0.753138
\(722\) 14.2569i 0.530588i
\(723\) 0 0
\(724\) 1.51247 0.0562104
\(725\) 2.63989 + 21.4010i 0.0980430 + 0.794815i
\(726\) 0 0
\(727\) 15.2243i 0.564636i −0.959321 0.282318i \(-0.908897\pi\)
0.959321 0.282318i \(-0.0911034\pi\)
\(728\) 2.57452i 0.0954179i
\(729\) 0 0
\(730\) −23.5428 + 26.6253i −0.871358 + 0.985447i
\(731\) −16.6497 −0.615813
\(732\) 0 0
\(733\) 43.5066i 1.60695i −0.595337 0.803476i \(-0.702981\pi\)
0.595337 0.803476i \(-0.297019\pi\)
\(734\) −34.0870 −1.25817
\(735\) 0 0
\(736\) 4.37328 0.161201
\(737\) 2.70052i 0.0994751i
\(738\) 0 0
\(739\) 7.02302 0.258346 0.129173 0.991622i \(-0.458768\pi\)
0.129173 + 0.991622i \(0.458768\pi\)
\(740\) 0.523730 + 0.463096i 0.0192527 + 0.0170237i
\(741\) 0 0
\(742\) 2.52090i 0.0925452i
\(743\) 2.94192i 0.107929i 0.998543 + 0.0539643i \(0.0171857\pi\)
−0.998543 + 0.0539643i \(0.982814\pi\)
\(744\) 0 0
\(745\) 9.46168 10.7005i 0.346649 0.392037i
\(746\) 41.7586 1.52889
\(747\) 0 0
\(748\) 0.730841i 0.0267222i
\(749\) 9.88858 0.361321
\(750\) 0 0
\(751\) 24.1016 0.879479 0.439739 0.898125i \(-0.355071\pi\)
0.439739 + 0.898125i \(0.355071\pi\)
\(752\) 53.5633i 1.95325i
\(753\) 0 0
\(754\) −5.14903 −0.187517
\(755\) −3.92478 + 4.43866i −0.142837 + 0.161539i
\(756\) 0 0
\(757\) 16.3127i 0.592893i 0.955049 + 0.296447i \(0.0958017\pi\)
−0.955049 + 0.296447i \(0.904198\pi\)
\(758\) 5.55149i 0.201639i
\(759\) 0 0
\(760\) −23.9756 21.1998i −0.869685 0.768998i
\(761\) 5.08840 0.184454 0.0922271 0.995738i \(-0.470601\pi\)
0.0922271 + 0.995738i \(0.470601\pi\)
\(762\) 0 0
\(763\) 11.9394i 0.432234i
\(764\) 0.252016 0.00911762
\(765\) 0 0
\(766\) −2.61071 −0.0943289
\(767\) 10.7005i 0.386374i
\(768\) 0 0
\(769\) −2.10157 −0.0757846 −0.0378923 0.999282i \(-0.512064\pi\)
−0.0378923 + 0.999282i \(0.512064\pi\)
\(770\) 2.61942 2.96239i 0.0943974 0.106757i
\(771\) 0 0
\(772\) 1.66688i 0.0599924i
\(773\) 46.0625i 1.65675i −0.560171 0.828377i \(-0.689264\pi\)
0.560171 0.828377i \(-0.310736\pi\)
\(774\) 0 0
\(775\) −0.589104 4.77575i −0.0211612 0.171550i
\(776\) −30.7005 −1.10208
\(777\) 0 0
\(778\) 9.66291i 0.346432i
\(779\) −48.6253 −1.74218
\(780\) 0 0
\(781\) −14.0508 −0.502777
\(782\) 22.3272i 0.798420i
\(783\) 0 0
\(784\) −24.2506 −0.866093
\(785\) −2.70052 2.38787i −0.0963858 0.0852268i
\(786\) 0 0
\(787\) 26.0303i 0.927881i 0.885866 + 0.463940i \(0.153565\pi\)
−0.885866 + 0.463940i \(0.846435\pi\)
\(788\) 4.01573i 0.143054i
\(789\) 0 0
\(790\) 34.6761 + 30.6615i 1.23372 + 1.09089i
\(791\) −2.70052