Properties

Label 495.2.c.d.199.3
Level $495$
Weight $2$
Character 495.199
Analytic conductor $3.953$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 495.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.95259490005\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 165)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.3
Root \(1.45161 + 1.45161i\) of defining polynomial
Character \(\chi\) \(=\) 495.199
Dual form 495.2.c.d.199.4

$q$-expansion

\(f(q)\) \(=\) \(q-1.21432i q^{2} +0.525428 q^{4} +(-0.311108 + 2.21432i) q^{5} -4.90321i q^{7} -3.06668i q^{8} +O(q^{10})\) \(q-1.21432i q^{2} +0.525428 q^{4} +(-0.311108 + 2.21432i) q^{5} -4.90321i q^{7} -3.06668i q^{8} +(2.68889 + 0.377784i) q^{10} +1.00000 q^{11} +4.14764i q^{13} -5.95407 q^{14} -2.67307 q^{16} -5.33185i q^{17} +5.18421 q^{19} +(-0.163465 + 1.16346i) q^{20} -1.21432i q^{22} -4.00000i q^{23} +(-4.80642 - 1.37778i) q^{25} +5.03657 q^{26} -2.57628i q^{28} +1.80642 q^{29} +2.62222 q^{31} -2.88739i q^{32} -6.47457 q^{34} +(10.8573 + 1.52543i) q^{35} -5.80642i q^{37} -6.29529i q^{38} +(6.79060 + 0.954067i) q^{40} -1.80642 q^{41} +4.90321i q^{43} +0.525428 q^{44} -4.85728 q^{46} +7.05086i q^{47} -17.0415 q^{49} +(-1.67307 + 5.83654i) q^{50} +2.17929i q^{52} +7.18421i q^{53} +(-0.311108 + 2.21432i) q^{55} -15.0366 q^{56} -2.19358i q^{58} +1.67307 q^{59} +0.755569 q^{61} -3.18421i q^{62} -8.85236 q^{64} +(-9.18421 - 1.29036i) q^{65} +4.85728i q^{67} -2.80150i q^{68} +(1.85236 - 13.1842i) q^{70} -0.428639 q^{71} +12.7096i q^{73} -7.05086 q^{74} +2.72393 q^{76} -4.90321i q^{77} +6.42864 q^{79} +(0.831613 - 5.91903i) q^{80} +2.19358i q^{82} +2.90321i q^{83} +(11.8064 + 1.65878i) q^{85} +5.95407 q^{86} -3.06668i q^{88} +0.622216 q^{89} +20.3368 q^{91} -2.10171i q^{92} +8.56199 q^{94} +(-1.61285 + 11.4795i) q^{95} +2.75557i q^{97} +20.6938i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 10 q^{4} - 2 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 10 q^{4} - 2 q^{5} + 16 q^{10} + 6 q^{11} + 4 q^{14} + 10 q^{16} + 4 q^{19} - 14 q^{20} - 2 q^{25} + 16 q^{26} - 16 q^{29} + 16 q^{31} - 52 q^{34} + 12 q^{35} - 12 q^{40} + 16 q^{41} - 10 q^{44} + 24 q^{46} - 22 q^{49} + 16 q^{50} - 2 q^{55} - 76 q^{56} - 16 q^{59} + 4 q^{61} - 66 q^{64} - 28 q^{65} + 24 q^{70} + 24 q^{71} - 16 q^{74} - 36 q^{76} + 12 q^{79} + 58 q^{80} + 44 q^{85} - 4 q^{86} + 4 q^{89} + 16 q^{91} + 24 q^{94} + 44 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(397\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.21432i 0.858654i −0.903149 0.429327i \(-0.858751\pi\)
0.903149 0.429327i \(-0.141249\pi\)
\(3\) 0 0
\(4\) 0.525428 0.262714
\(5\) −0.311108 + 2.21432i −0.139132 + 0.990274i
\(6\) 0 0
\(7\) 4.90321i 1.85324i −0.375999 0.926620i \(-0.622700\pi\)
0.375999 0.926620i \(-0.377300\pi\)
\(8\) 3.06668i 1.08423i
\(9\) 0 0
\(10\) 2.68889 + 0.377784i 0.850302 + 0.119466i
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 4.14764i 1.15035i 0.818031 + 0.575175i \(0.195066\pi\)
−0.818031 + 0.575175i \(0.804934\pi\)
\(14\) −5.95407 −1.59129
\(15\) 0 0
\(16\) −2.67307 −0.668268
\(17\) 5.33185i 1.29316i −0.762845 0.646582i \(-0.776198\pi\)
0.762845 0.646582i \(-0.223802\pi\)
\(18\) 0 0
\(19\) 5.18421 1.18934 0.594669 0.803970i \(-0.297283\pi\)
0.594669 + 0.803970i \(0.297283\pi\)
\(20\) −0.163465 + 1.16346i −0.0365518 + 0.260159i
\(21\) 0 0
\(22\) 1.21432i 0.258894i
\(23\) 4.00000i 0.834058i −0.908893 0.417029i \(-0.863071\pi\)
0.908893 0.417029i \(-0.136929\pi\)
\(24\) 0 0
\(25\) −4.80642 1.37778i −0.961285 0.275557i
\(26\) 5.03657 0.987752
\(27\) 0 0
\(28\) 2.57628i 0.486872i
\(29\) 1.80642 0.335444 0.167722 0.985834i \(-0.446359\pi\)
0.167722 + 0.985834i \(0.446359\pi\)
\(30\) 0 0
\(31\) 2.62222 0.470964 0.235482 0.971879i \(-0.424333\pi\)
0.235482 + 0.971879i \(0.424333\pi\)
\(32\) 2.88739i 0.510423i
\(33\) 0 0
\(34\) −6.47457 −1.11038
\(35\) 10.8573 + 1.52543i 1.83522 + 0.257844i
\(36\) 0 0
\(37\) 5.80642i 0.954570i −0.878749 0.477285i \(-0.841621\pi\)
0.878749 0.477285i \(-0.158379\pi\)
\(38\) 6.29529i 1.02123i
\(39\) 0 0
\(40\) 6.79060 + 0.954067i 1.07369 + 0.150851i
\(41\) −1.80642 −0.282116 −0.141058 0.990001i \(-0.545050\pi\)
−0.141058 + 0.990001i \(0.545050\pi\)
\(42\) 0 0
\(43\) 4.90321i 0.747733i 0.927483 + 0.373866i \(0.121968\pi\)
−0.927483 + 0.373866i \(0.878032\pi\)
\(44\) 0.525428 0.0792112
\(45\) 0 0
\(46\) −4.85728 −0.716167
\(47\) 7.05086i 1.02847i 0.857648 + 0.514236i \(0.171925\pi\)
−0.857648 + 0.514236i \(0.828075\pi\)
\(48\) 0 0
\(49\) −17.0415 −2.43450
\(50\) −1.67307 + 5.83654i −0.236608 + 0.825411i
\(51\) 0 0
\(52\) 2.17929i 0.302213i
\(53\) 7.18421i 0.986827i 0.869795 + 0.493413i \(0.164251\pi\)
−0.869795 + 0.493413i \(0.835749\pi\)
\(54\) 0 0
\(55\) −0.311108 + 2.21432i −0.0419498 + 0.298579i
\(56\) −15.0366 −2.00935
\(57\) 0 0
\(58\) 2.19358i 0.288031i
\(59\) 1.67307 0.217815 0.108908 0.994052i \(-0.465265\pi\)
0.108908 + 0.994052i \(0.465265\pi\)
\(60\) 0 0
\(61\) 0.755569 0.0967407 0.0483703 0.998829i \(-0.484597\pi\)
0.0483703 + 0.998829i \(0.484597\pi\)
\(62\) 3.18421i 0.404395i
\(63\) 0 0
\(64\) −8.85236 −1.10654
\(65\) −9.18421 1.29036i −1.13916 0.160050i
\(66\) 0 0
\(67\) 4.85728i 0.593411i 0.954969 + 0.296706i \(0.0958880\pi\)
−0.954969 + 0.296706i \(0.904112\pi\)
\(68\) 2.80150i 0.339732i
\(69\) 0 0
\(70\) 1.85236 13.1842i 0.221399 1.57581i
\(71\) −0.428639 −0.0508701 −0.0254351 0.999676i \(-0.508097\pi\)
−0.0254351 + 0.999676i \(0.508097\pi\)
\(72\) 0 0
\(73\) 12.7096i 1.48755i 0.668430 + 0.743775i \(0.266967\pi\)
−0.668430 + 0.743775i \(0.733033\pi\)
\(74\) −7.05086 −0.819645
\(75\) 0 0
\(76\) 2.72393 0.312456
\(77\) 4.90321i 0.558773i
\(78\) 0 0
\(79\) 6.42864 0.723278 0.361639 0.932318i \(-0.382217\pi\)
0.361639 + 0.932318i \(0.382217\pi\)
\(80\) 0.831613 5.91903i 0.0929772 0.661768i
\(81\) 0 0
\(82\) 2.19358i 0.242240i
\(83\) 2.90321i 0.318669i 0.987225 + 0.159334i \(0.0509348\pi\)
−0.987225 + 0.159334i \(0.949065\pi\)
\(84\) 0 0
\(85\) 11.8064 + 1.65878i 1.28059 + 0.179920i
\(86\) 5.95407 0.642044
\(87\) 0 0
\(88\) 3.06668i 0.326909i
\(89\) 0.622216 0.0659547 0.0329774 0.999456i \(-0.489501\pi\)
0.0329774 + 0.999456i \(0.489501\pi\)
\(90\) 0 0
\(91\) 20.3368 2.13187
\(92\) 2.10171i 0.219118i
\(93\) 0 0
\(94\) 8.56199 0.883102
\(95\) −1.61285 + 11.4795i −0.165475 + 1.17777i
\(96\) 0 0
\(97\) 2.75557i 0.279786i 0.990167 + 0.139893i \(0.0446758\pi\)
−0.990167 + 0.139893i \(0.955324\pi\)
\(98\) 20.6938i 2.09039i
\(99\) 0 0
\(100\) −2.52543 0.723926i −0.252543 0.0723926i
\(101\) 17.8064 1.77181 0.885903 0.463871i \(-0.153540\pi\)
0.885903 + 0.463871i \(0.153540\pi\)
\(102\) 0 0
\(103\) 4.94914i 0.487654i 0.969819 + 0.243827i \(0.0784029\pi\)
−0.969819 + 0.243827i \(0.921597\pi\)
\(104\) 12.7195 1.24725
\(105\) 0 0
\(106\) 8.72393 0.847343
\(107\) 11.1985i 1.08260i 0.840830 + 0.541300i \(0.182068\pi\)
−0.840830 + 0.541300i \(0.817932\pi\)
\(108\) 0 0
\(109\) −15.7146 −1.50518 −0.752591 0.658488i \(-0.771196\pi\)
−0.752591 + 0.658488i \(0.771196\pi\)
\(110\) 2.68889 + 0.377784i 0.256376 + 0.0360203i
\(111\) 0 0
\(112\) 13.1066i 1.23846i
\(113\) 1.76494i 0.166031i 0.996548 + 0.0830156i \(0.0264551\pi\)
−0.996548 + 0.0830156i \(0.973545\pi\)
\(114\) 0 0
\(115\) 8.85728 + 1.24443i 0.825946 + 0.116044i
\(116\) 0.949145 0.0881259
\(117\) 0 0
\(118\) 2.03164i 0.187028i
\(119\) −26.1432 −2.39654
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0.917502i 0.0830667i
\(123\) 0 0
\(124\) 1.37778 0.123729
\(125\) 4.54617 10.2143i 0.406622 0.913597i
\(126\) 0 0
\(127\) 18.7096i 1.66021i −0.557606 0.830106i \(-0.688280\pi\)
0.557606 0.830106i \(-0.311720\pi\)
\(128\) 4.97481i 0.439715i
\(129\) 0 0
\(130\) −1.56691 + 11.1526i −0.137428 + 0.978145i
\(131\) 1.24443 0.108726 0.0543632 0.998521i \(-0.482687\pi\)
0.0543632 + 0.998521i \(0.482687\pi\)
\(132\) 0 0
\(133\) 25.4193i 2.20413i
\(134\) 5.89829 0.509535
\(135\) 0 0
\(136\) −16.3511 −1.40209
\(137\) 18.7971i 1.60594i 0.596019 + 0.802970i \(0.296748\pi\)
−0.596019 + 0.802970i \(0.703252\pi\)
\(138\) 0 0
\(139\) −14.0415 −1.19098 −0.595492 0.803361i \(-0.703043\pi\)
−0.595492 + 0.803361i \(0.703043\pi\)
\(140\) 5.70471 + 0.801502i 0.482136 + 0.0677393i
\(141\) 0 0
\(142\) 0.520505i 0.0436798i
\(143\) 4.14764i 0.346843i
\(144\) 0 0
\(145\) −0.561993 + 4.00000i −0.0466709 + 0.332182i
\(146\) 15.4336 1.27729
\(147\) 0 0
\(148\) 3.05086i 0.250779i
\(149\) −3.05086 −0.249936 −0.124968 0.992161i \(-0.539883\pi\)
−0.124968 + 0.992161i \(0.539883\pi\)
\(150\) 0 0
\(151\) −0.326929 −0.0266051 −0.0133026 0.999912i \(-0.504234\pi\)
−0.0133026 + 0.999912i \(0.504234\pi\)
\(152\) 15.8983i 1.28952i
\(153\) 0 0
\(154\) −5.95407 −0.479792
\(155\) −0.815792 + 5.80642i −0.0655260 + 0.466383i
\(156\) 0 0
\(157\) 19.9081i 1.58884i 0.607367 + 0.794421i \(0.292226\pi\)
−0.607367 + 0.794421i \(0.707774\pi\)
\(158\) 7.80642i 0.621046i
\(159\) 0 0
\(160\) 6.39361 + 0.898290i 0.505459 + 0.0710160i
\(161\) −19.6128 −1.54571
\(162\) 0 0
\(163\) 12.1748i 0.953607i 0.879010 + 0.476804i \(0.158205\pi\)
−0.879010 + 0.476804i \(0.841795\pi\)
\(164\) −0.949145 −0.0741158
\(165\) 0 0
\(166\) 3.52543 0.273626
\(167\) 13.0049i 1.00635i 0.864184 + 0.503176i \(0.167835\pi\)
−0.864184 + 0.503176i \(0.832165\pi\)
\(168\) 0 0
\(169\) −4.20294 −0.323303
\(170\) 2.01429 14.3368i 0.154489 1.09958i
\(171\) 0 0
\(172\) 2.57628i 0.196440i
\(173\) 13.8938i 1.05633i −0.849142 0.528165i \(-0.822880\pi\)
0.849142 0.528165i \(-0.177120\pi\)
\(174\) 0 0
\(175\) −6.75557 + 23.5669i −0.510673 + 1.78149i
\(176\) −2.67307 −0.201490
\(177\) 0 0
\(178\) 0.755569i 0.0566323i
\(179\) 12.8573 0.960998 0.480499 0.876995i \(-0.340456\pi\)
0.480499 + 0.876995i \(0.340456\pi\)
\(180\) 0 0
\(181\) 0.917502 0.0681974 0.0340987 0.999418i \(-0.489144\pi\)
0.0340987 + 0.999418i \(0.489144\pi\)
\(182\) 24.6953i 1.83054i
\(183\) 0 0
\(184\) −12.2667 −0.904314
\(185\) 12.8573 + 1.80642i 0.945286 + 0.132811i
\(186\) 0 0
\(187\) 5.33185i 0.389904i
\(188\) 3.70471i 0.270194i
\(189\) 0 0
\(190\) 13.9398 + 1.95851i 1.01130 + 0.142085i
\(191\) −14.3684 −1.03966 −0.519831 0.854269i \(-0.674005\pi\)
−0.519831 + 0.854269i \(0.674005\pi\)
\(192\) 0 0
\(193\) 11.7605i 0.846539i −0.906004 0.423269i \(-0.860882\pi\)
0.906004 0.423269i \(-0.139118\pi\)
\(194\) 3.34614 0.240239
\(195\) 0 0
\(196\) −8.95407 −0.639576
\(197\) 3.82071i 0.272215i −0.990694 0.136107i \(-0.956541\pi\)
0.990694 0.136107i \(-0.0434592\pi\)
\(198\) 0 0
\(199\) 13.7146 0.972199 0.486100 0.873903i \(-0.338419\pi\)
0.486100 + 0.873903i \(0.338419\pi\)
\(200\) −4.22522 + 14.7397i −0.298768 + 1.04226i
\(201\) 0 0
\(202\) 21.6227i 1.52137i
\(203\) 8.85728i 0.621659i
\(204\) 0 0
\(205\) 0.561993 4.00000i 0.0392513 0.279372i
\(206\) 6.00984 0.418726
\(207\) 0 0
\(208\) 11.0869i 0.768741i
\(209\) 5.18421 0.358599
\(210\) 0 0
\(211\) 1.95851 0.134830 0.0674148 0.997725i \(-0.478525\pi\)
0.0674148 + 0.997725i \(0.478525\pi\)
\(212\) 3.77478i 0.259253i
\(213\) 0 0
\(214\) 13.5986 0.929578
\(215\) −10.8573 1.52543i −0.740460 0.104033i
\(216\) 0 0
\(217\) 12.8573i 0.872809i
\(218\) 19.0825i 1.29243i
\(219\) 0 0
\(220\) −0.163465 + 1.16346i −0.0110208 + 0.0784408i
\(221\) 22.1146 1.48759
\(222\) 0 0
\(223\) 26.0098i 1.74175i −0.491506 0.870874i \(-0.663554\pi\)
0.491506 0.870874i \(-0.336446\pi\)
\(224\) −14.1575 −0.945937
\(225\) 0 0
\(226\) 2.14320 0.142563
\(227\) 6.34122i 0.420882i −0.977607 0.210441i \(-0.932510\pi\)
0.977607 0.210441i \(-0.0674899\pi\)
\(228\) 0 0
\(229\) 23.3274 1.54152 0.770759 0.637127i \(-0.219877\pi\)
0.770759 + 0.637127i \(0.219877\pi\)
\(230\) 1.51114 10.7556i 0.0996415 0.709201i
\(231\) 0 0
\(232\) 5.53972i 0.363700i
\(233\) 1.42372i 0.0932708i 0.998912 + 0.0466354i \(0.0148499\pi\)
−0.998912 + 0.0466354i \(0.985150\pi\)
\(234\) 0 0
\(235\) −15.6128 2.19358i −1.01847 0.143093i
\(236\) 0.879077 0.0572231
\(237\) 0 0
\(238\) 31.7462i 2.05780i
\(239\) −18.9590 −1.22636 −0.613178 0.789945i \(-0.710109\pi\)
−0.613178 + 0.789945i \(0.710109\pi\)
\(240\) 0 0
\(241\) −1.34614 −0.0867126 −0.0433563 0.999060i \(-0.513805\pi\)
−0.0433563 + 0.999060i \(0.513805\pi\)
\(242\) 1.21432i 0.0780594i
\(243\) 0 0
\(244\) 0.396997 0.0254151
\(245\) 5.30174 37.7353i 0.338716 2.41082i
\(246\) 0 0
\(247\) 21.5022i 1.36816i
\(248\) 8.04149i 0.510635i
\(249\) 0 0
\(250\) −12.4035 5.52051i −0.784463 0.349147i
\(251\) −1.08250 −0.0683267 −0.0341633 0.999416i \(-0.510877\pi\)
−0.0341633 + 0.999416i \(0.510877\pi\)
\(252\) 0 0
\(253\) 4.00000i 0.251478i
\(254\) −22.7195 −1.42555
\(255\) 0 0
\(256\) −11.6637 −0.728981
\(257\) 0.133353i 0.00831834i −0.999991 0.00415917i \(-0.998676\pi\)
0.999991 0.00415917i \(-0.00132391\pi\)
\(258\) 0 0
\(259\) −28.4701 −1.76905
\(260\) −4.82564 0.677993i −0.299273 0.0420473i
\(261\) 0 0
\(262\) 1.51114i 0.0933584i
\(263\) 0.147643i 0.00910407i 0.999990 + 0.00455203i \(0.00144896\pi\)
−0.999990 + 0.00455203i \(0.998551\pi\)
\(264\) 0 0
\(265\) −15.9081 2.23506i −0.977229 0.137299i
\(266\) −30.8671 −1.89258
\(267\) 0 0
\(268\) 2.55215i 0.155897i
\(269\) −26.8573 −1.63752 −0.818759 0.574138i \(-0.805337\pi\)
−0.818759 + 0.574138i \(0.805337\pi\)
\(270\) 0 0
\(271\) 3.08250 0.187248 0.0936242 0.995608i \(-0.470155\pi\)
0.0936242 + 0.995608i \(0.470155\pi\)
\(272\) 14.2524i 0.864180i
\(273\) 0 0
\(274\) 22.8256 1.37895
\(275\) −4.80642 1.37778i −0.289838 0.0830835i
\(276\) 0 0
\(277\) 8.70964i 0.523311i 0.965161 + 0.261656i \(0.0842685\pi\)
−0.965161 + 0.261656i \(0.915732\pi\)
\(278\) 17.0509i 1.02264i
\(279\) 0 0
\(280\) 4.67799 33.2958i 0.279564 1.98980i
\(281\) 20.3783 1.21567 0.607833 0.794065i \(-0.292039\pi\)
0.607833 + 0.794065i \(0.292039\pi\)
\(282\) 0 0
\(283\) 6.32248i 0.375833i −0.982185 0.187916i \(-0.939827\pi\)
0.982185 0.187916i \(-0.0601734\pi\)
\(284\) −0.225219 −0.0133643
\(285\) 0 0
\(286\) 5.03657 0.297818
\(287\) 8.85728i 0.522829i
\(288\) 0 0
\(289\) −11.4286 −0.672273
\(290\) 4.85728 + 0.682439i 0.285229 + 0.0400742i
\(291\) 0 0
\(292\) 6.67799i 0.390800i
\(293\) 16.6780i 0.974339i −0.873308 0.487169i \(-0.838029\pi\)
0.873308 0.487169i \(-0.161971\pi\)
\(294\) 0 0
\(295\) −0.520505 + 3.70471i −0.0303050 + 0.215697i
\(296\) −17.8064 −1.03498
\(297\) 0 0
\(298\) 3.70471i 0.214608i
\(299\) 16.5906 0.959458
\(300\) 0 0
\(301\) 24.0415 1.38573
\(302\) 0.396997i 0.0228446i
\(303\) 0 0
\(304\) −13.8578 −0.794797
\(305\) −0.235063 + 1.67307i −0.0134597 + 0.0957998i
\(306\) 0 0
\(307\) 9.58565i 0.547082i 0.961860 + 0.273541i \(0.0881949\pi\)
−0.961860 + 0.273541i \(0.911805\pi\)
\(308\) 2.57628i 0.146797i
\(309\) 0 0
\(310\) 7.05086 + 0.990632i 0.400462 + 0.0562641i
\(311\) −14.5303 −0.823941 −0.411970 0.911197i \(-0.635159\pi\)
−0.411970 + 0.911197i \(0.635159\pi\)
\(312\) 0 0
\(313\) 21.0321i 1.18881i −0.804167 0.594403i \(-0.797388\pi\)
0.804167 0.594403i \(-0.202612\pi\)
\(314\) 24.1748 1.36427
\(315\) 0 0
\(316\) 3.37778 0.190015
\(317\) 0.990632i 0.0556394i −0.999613 0.0278197i \(-0.991144\pi\)
0.999613 0.0278197i \(-0.00885643\pi\)
\(318\) 0 0
\(319\) 1.80642 0.101140
\(320\) 2.75404 19.6019i 0.153955 1.09578i
\(321\) 0 0
\(322\) 23.8163i 1.32723i
\(323\) 27.6414i 1.53801i
\(324\) 0 0
\(325\) 5.71456 19.9353i 0.316987 1.10581i
\(326\) 14.7841 0.818818
\(327\) 0 0
\(328\) 5.53972i 0.305880i
\(329\) 34.5718 1.90601
\(330\) 0 0
\(331\) −17.5812 −0.966350 −0.483175 0.875524i \(-0.660517\pi\)
−0.483175 + 0.875524i \(0.660517\pi\)
\(332\) 1.52543i 0.0837187i
\(333\) 0 0
\(334\) 15.7921 0.864107
\(335\) −10.7556 1.51114i −0.587639 0.0825623i
\(336\) 0 0
\(337\) 3.16992i 0.172676i 0.996266 + 0.0863382i \(0.0275166\pi\)
−0.996266 + 0.0863382i \(0.972483\pi\)
\(338\) 5.10372i 0.277606i
\(339\) 0 0
\(340\) 6.20342 + 0.871569i 0.336428 + 0.0472675i
\(341\) 2.62222 0.142001
\(342\) 0 0
\(343\) 49.2355i 2.65847i
\(344\) 15.0366 0.810717
\(345\) 0 0
\(346\) −16.8716 −0.907021
\(347\) 4.97634i 0.267144i 0.991039 + 0.133572i \(0.0426447\pi\)
−0.991039 + 0.133572i \(0.957355\pi\)
\(348\) 0 0
\(349\) −18.2034 −0.974407 −0.487203 0.873289i \(-0.661983\pi\)
−0.487203 + 0.873289i \(0.661983\pi\)
\(350\) 28.6178 + 8.20342i 1.52968 + 0.438491i
\(351\) 0 0
\(352\) 2.88739i 0.153898i
\(353\) 22.4099i 1.19276i −0.802703 0.596379i \(-0.796605\pi\)
0.802703 0.596379i \(-0.203395\pi\)
\(354\) 0 0
\(355\) 0.133353 0.949145i 0.00707765 0.0503754i
\(356\) 0.326929 0.0173272
\(357\) 0 0
\(358\) 15.6128i 0.825165i
\(359\) 21.3274 1.12562 0.562809 0.826587i \(-0.309721\pi\)
0.562809 + 0.826587i \(0.309721\pi\)
\(360\) 0 0
\(361\) 7.87601 0.414527
\(362\) 1.11414i 0.0585579i
\(363\) 0 0
\(364\) 10.6855 0.560072
\(365\) −28.1432 3.95407i −1.47308 0.206965i
\(366\) 0 0
\(367\) 35.1338i 1.83397i −0.398921 0.916985i \(-0.630615\pi\)
0.398921 0.916985i \(-0.369385\pi\)
\(368\) 10.6923i 0.557374i
\(369\) 0 0
\(370\) 2.19358 15.6128i 0.114039 0.811673i
\(371\) 35.2257 1.82883
\(372\) 0 0
\(373\) 17.0049i 0.880481i −0.897880 0.440241i \(-0.854893\pi\)
0.897880 0.440241i \(-0.145107\pi\)
\(374\) −6.47457 −0.334792
\(375\) 0 0
\(376\) 21.6227 1.11511
\(377\) 7.49240i 0.385878i
\(378\) 0 0
\(379\) −2.36842 −0.121657 −0.0608287 0.998148i \(-0.519374\pi\)
−0.0608287 + 0.998148i \(0.519374\pi\)
\(380\) −0.847435 + 6.03164i −0.0434725 + 0.309417i
\(381\) 0 0
\(382\) 17.4479i 0.892710i
\(383\) 1.21585i 0.0621271i −0.999517 0.0310635i \(-0.990111\pi\)
0.999517 0.0310635i \(-0.00988942\pi\)
\(384\) 0 0
\(385\) 10.8573 + 1.52543i 0.553338 + 0.0777430i
\(386\) −14.2810 −0.726884
\(387\) 0 0
\(388\) 1.44785i 0.0735035i
\(389\) 2.26671 0.114927 0.0574633 0.998348i \(-0.481699\pi\)
0.0574633 + 0.998348i \(0.481699\pi\)
\(390\) 0 0
\(391\) −21.3274 −1.07857
\(392\) 52.2607i 2.63957i
\(393\) 0 0
\(394\) −4.63957 −0.233738
\(395\) −2.00000 + 14.2351i −0.100631 + 0.716244i
\(396\) 0 0
\(397\) 18.4889i 0.927929i 0.885854 + 0.463965i \(0.153574\pi\)
−0.885854 + 0.463965i \(0.846426\pi\)
\(398\) 16.6539i 0.834782i
\(399\) 0 0
\(400\) 12.8479 + 3.68292i 0.642396 + 0.184146i
\(401\) −17.5625 −0.877028 −0.438514 0.898724i \(-0.644495\pi\)
−0.438514 + 0.898724i \(0.644495\pi\)
\(402\) 0 0
\(403\) 10.8760i 0.541773i
\(404\) 9.35599 0.465478
\(405\) 0 0
\(406\) −10.7556 −0.533790
\(407\) 5.80642i 0.287814i
\(408\) 0 0
\(409\) 21.3461 1.05550 0.527749 0.849400i \(-0.323036\pi\)
0.527749 + 0.849400i \(0.323036\pi\)
\(410\) −4.85728 0.682439i −0.239884 0.0337032i
\(411\) 0 0
\(412\) 2.60042i 0.128113i
\(413\) 8.20342i 0.403664i
\(414\) 0 0
\(415\) −6.42864 0.903212i −0.315570 0.0443369i
\(416\) 11.9759 0.587165
\(417\) 0 0
\(418\) 6.29529i 0.307913i
\(419\) 28.8573 1.40977 0.704885 0.709321i \(-0.250999\pi\)
0.704885 + 0.709321i \(0.250999\pi\)
\(420\) 0 0
\(421\) −35.4893 −1.72964 −0.864822 0.502078i \(-0.832569\pi\)
−0.864822 + 0.502078i \(0.832569\pi\)
\(422\) 2.37826i 0.115772i
\(423\) 0 0
\(424\) 22.0316 1.06995
\(425\) −7.34614 + 25.6271i −0.356340 + 1.24310i
\(426\) 0 0
\(427\) 3.70471i 0.179284i
\(428\) 5.88400i 0.284414i
\(429\) 0 0
\(430\) −1.85236 + 13.1842i −0.0893286 + 0.635799i
\(431\) −9.24443 −0.445289 −0.222644 0.974900i \(-0.571469\pi\)
−0.222644 + 0.974900i \(0.571469\pi\)
\(432\) 0 0
\(433\) 6.28544i 0.302059i −0.988529 0.151030i \(-0.951741\pi\)
0.988529 0.151030i \(-0.0482589\pi\)
\(434\) −15.6128 −0.749441
\(435\) 0 0
\(436\) −8.25686 −0.395432
\(437\) 20.7368i 0.991977i
\(438\) 0 0
\(439\) 36.5303 1.74350 0.871749 0.489952i \(-0.162986\pi\)
0.871749 + 0.489952i \(0.162986\pi\)
\(440\) 6.79060 + 0.954067i 0.323729 + 0.0454834i
\(441\) 0 0
\(442\) 26.8542i 1.27732i
\(443\) 38.2766i 1.81857i 0.416170 + 0.909287i \(0.363372\pi\)
−0.416170 + 0.909287i \(0.636628\pi\)
\(444\) 0 0
\(445\) −0.193576 + 1.37778i −0.00917639 + 0.0653132i
\(446\) −31.5843 −1.49556
\(447\) 0 0
\(448\) 43.4050i 2.05069i
\(449\) −31.8479 −1.50300 −0.751498 0.659735i \(-0.770668\pi\)
−0.751498 + 0.659735i \(0.770668\pi\)
\(450\) 0 0
\(451\) −1.80642 −0.0850612
\(452\) 0.927346i 0.0436187i
\(453\) 0 0
\(454\) −7.70027 −0.361391
\(455\) −6.32693 + 45.0321i −0.296611 + 2.11114i
\(456\) 0 0
\(457\) 1.39207i 0.0651185i −0.999470 0.0325592i \(-0.989634\pi\)
0.999470 0.0325592i \(-0.0103658\pi\)
\(458\) 28.3269i 1.32363i
\(459\) 0 0
\(460\) 4.65386 + 0.653858i 0.216987 + 0.0304863i
\(461\) 7.70471 0.358844 0.179422 0.983772i \(-0.442577\pi\)
0.179422 + 0.983772i \(0.442577\pi\)
\(462\) 0 0
\(463\) 4.68244i 0.217611i 0.994063 + 0.108806i \(0.0347026\pi\)
−0.994063 + 0.108806i \(0.965297\pi\)
\(464\) −4.82870 −0.224167
\(465\) 0 0
\(466\) 1.72885 0.0800873
\(467\) 12.8573i 0.594964i 0.954727 + 0.297482i \(0.0961468\pi\)
−0.954727 + 0.297482i \(0.903853\pi\)
\(468\) 0 0
\(469\) 23.8163 1.09973
\(470\) −2.66370 + 18.9590i −0.122867 + 0.874513i
\(471\) 0 0
\(472\) 5.13077i 0.236163i
\(473\) 4.90321i 0.225450i
\(474\) 0 0
\(475\) −24.9175 7.14272i −1.14329 0.327731i
\(476\) −13.7364 −0.629605
\(477\) 0 0
\(478\) 23.0223i 1.05301i
\(479\) 8.38715 0.383219 0.191609 0.981471i \(-0.438629\pi\)
0.191609 + 0.981471i \(0.438629\pi\)
\(480\) 0 0
\(481\) 24.0830 1.09809
\(482\) 1.63465i 0.0744561i
\(483\) 0 0
\(484\) 0.525428 0.0238831
\(485\) −6.10171 0.857279i −0.277064 0.0389270i
\(486\) 0 0
\(487\) 9.83500i 0.445667i −0.974857 0.222833i \(-0.928469\pi\)
0.974857 0.222833i \(-0.0715306\pi\)
\(488\) 2.31708i 0.104890i
\(489\) 0 0
\(490\) −45.8227 6.43801i −2.07006 0.290840i
\(491\) 32.9403 1.48657 0.743286 0.668973i \(-0.233266\pi\)
0.743286 + 0.668973i \(0.233266\pi\)
\(492\) 0 0
\(493\) 9.63158i 0.433785i
\(494\) 26.1106 1.17477
\(495\) 0 0
\(496\) −7.00937 −0.314730
\(497\) 2.10171i 0.0942746i
\(498\) 0 0
\(499\) 1.63158 0.0730397 0.0365199 0.999333i \(-0.488373\pi\)
0.0365199 + 0.999333i \(0.488373\pi\)
\(500\) 2.38868 5.36689i 0.106825 0.240014i
\(501\) 0 0
\(502\) 1.31450i 0.0586689i
\(503\) 41.8622i 1.86654i −0.359171 0.933272i \(-0.616941\pi\)
0.359171 0.933272i \(-0.383059\pi\)
\(504\) 0 0
\(505\) −5.53972 + 39.4291i −0.246514 + 1.75457i
\(506\) −4.85728 −0.215932
\(507\) 0 0
\(508\) 9.83056i 0.436160i
\(509\) −38.8573 −1.72232 −0.861159 0.508335i \(-0.830261\pi\)
−0.861159 + 0.508335i \(0.830261\pi\)
\(510\) 0 0
\(511\) 62.3180 2.75679
\(512\) 24.1131i 1.06566i
\(513\) 0 0
\(514\) −0.161933 −0.00714257
\(515\) −10.9590 1.53972i −0.482911 0.0678481i
\(516\) 0 0
\(517\) 7.05086i 0.310096i
\(518\) 34.5718i 1.51900i
\(519\) 0 0
\(520\) −3.95713 + 28.1650i −0.173532 + 1.23512i
\(521\) −11.1111 −0.486785 −0.243393 0.969928i \(-0.578260\pi\)
−0.243393 + 0.969928i \(0.578260\pi\)
\(522\) 0 0
\(523\) 27.3002i 1.19375i 0.802332 + 0.596877i \(0.203592\pi\)
−0.802332 + 0.596877i \(0.796408\pi\)
\(524\) 0.653858 0.0285639
\(525\) 0 0
\(526\) 0.179286 0.00781724
\(527\) 13.9813i 0.609033i
\(528\) 0 0
\(529\) 7.00000 0.304348
\(530\) −2.71408 + 19.3176i −0.117892 + 0.839101i
\(531\) 0 0
\(532\) 13.3560i 0.579055i
\(533\) 7.49240i 0.324532i
\(534\) 0 0
\(535\) −24.7971 3.48394i −1.07207 0.150624i
\(536\) 14.8957 0.643396
\(537\) 0 0
\(538\) 32.6133i 1.40606i
\(539\) −17.0415 −0.734029
\(540\) 0 0
\(541\) −16.1017 −0.692267 −0.346133 0.938185i \(-0.612506\pi\)
−0.346133 + 0.938185i \(0.612506\pi\)
\(542\) 3.74314i 0.160782i
\(543\) 0 0
\(544\) −15.3951 −0.660061
\(545\) 4.88892 34.7971i 0.209418 1.49054i
\(546\) 0 0
\(547\) 40.0370i 1.71186i −0.517091 0.855930i \(-0.672985\pi\)
0.517091 0.855930i \(-0.327015\pi\)
\(548\) 9.87649i 0.421903i
\(549\) 0 0
\(550\) −1.67307 + 5.83654i −0.0713400 + 0.248871i
\(551\) 9.36488 0.398957
\(552\) 0 0
\(553\) 31.5210i 1.34041i
\(554\) 10.5763 0.449343
\(555\) 0 0
\(556\) −7.37778 −0.312888
\(557\) 28.2908i 1.19872i −0.800479 0.599361i \(-0.795422\pi\)
0.800479 0.599361i \(-0.204578\pi\)
\(558\) 0 0
\(559\) −20.3368 −0.860154
\(560\) −29.0223 4.07758i −1.22641 0.172309i
\(561\) 0 0
\(562\) 24.7457i 1.04384i
\(563\) 32.7926i 1.38204i 0.722834 + 0.691022i \(0.242839\pi\)
−0.722834 + 0.691022i \(0.757161\pi\)
\(564\) 0 0
\(565\) −3.90813 0.549086i −0.164416 0.0231002i
\(566\) −7.67752 −0.322710
\(567\) 0 0
\(568\) 1.31450i 0.0551551i
\(569\) −8.88586 −0.372515 −0.186257 0.982501i \(-0.559636\pi\)
−0.186257 + 0.982501i \(0.559636\pi\)
\(570\) 0 0
\(571\) −10.6953 −0.447586 −0.223793 0.974637i \(-0.571844\pi\)
−0.223793 + 0.974637i \(0.571844\pi\)
\(572\) 2.17929i 0.0911205i
\(573\) 0 0
\(574\) 10.7556 0.448929
\(575\) −5.51114 + 19.2257i −0.229830 + 0.801767i
\(576\) 0 0
\(577\) 27.1338i 1.12960i 0.825229 + 0.564798i \(0.191046\pi\)
−0.825229 + 0.564798i \(0.808954\pi\)
\(578\) 13.8780i 0.577250i
\(579\) 0 0
\(580\) −0.295286 + 2.10171i −0.0122611 + 0.0872688i
\(581\) 14.2351 0.590570
\(582\) 0 0
\(583\) 7.18421i 0.297540i
\(584\) 38.9763 1.61285
\(585\) 0 0
\(586\) −20.2524 −0.836620
\(587\) 10.9590i 0.452326i −0.974089 0.226163i \(-0.927382\pi\)
0.974089 0.226163i \(-0.0726182\pi\)
\(588\) 0 0
\(589\) 13.5941 0.560136
\(590\) 4.49871 + 0.632060i 0.185209 + 0.0260215i
\(591\) 0 0
\(592\) 15.5210i 0.637908i
\(593\) 23.7003i 0.973253i 0.873610 + 0.486627i \(0.161773\pi\)
−0.873610 + 0.486627i \(0.838227\pi\)
\(594\) 0 0
\(595\) 8.13335 57.8894i 0.333435 2.37323i
\(596\) −1.60300 −0.0656616
\(597\) 0 0
\(598\) 20.1463i 0.823842i
\(599\) 41.7146 1.70441 0.852205 0.523208i \(-0.175265\pi\)
0.852205 + 0.523208i \(0.175265\pi\)
\(600\) 0 0
\(601\) 14.5906 0.595162 0.297581 0.954697i \(-0.403820\pi\)
0.297581 + 0.954697i \(0.403820\pi\)
\(602\) 29.1941i 1.18986i
\(603\) 0 0
\(604\) −0.171778 −0.00698953
\(605\) −0.311108 + 2.21432i −0.0126483 + 0.0900249i
\(606\) 0 0
\(607\) 19.9826i 0.811071i 0.914079 + 0.405535i \(0.132915\pi\)
−0.914079 + 0.405535i \(0.867085\pi\)
\(608\) 14.9688i 0.607066i
\(609\) 0 0
\(610\) 2.03164 + 0.285442i 0.0822588 + 0.0115572i
\(611\) −29.2444 −1.18310
\(612\) 0 0
\(613\) 19.0781i 0.770555i 0.922801 + 0.385278i \(0.125894\pi\)
−0.922801 + 0.385278i \(0.874106\pi\)
\(614\) 11.6400 0.469754
\(615\) 0 0
\(616\) −15.0366 −0.605840
\(617\) 39.3590i 1.58454i −0.610174 0.792268i \(-0.708900\pi\)
0.610174 0.792268i \(-0.291100\pi\)
\(618\) 0 0
\(619\) 23.0923 0.928160 0.464080 0.885793i \(-0.346385\pi\)
0.464080 + 0.885793i \(0.346385\pi\)
\(620\) −0.428639 + 3.05086i −0.0172146 + 0.122525i
\(621\) 0 0
\(622\) 17.6445i 0.707480i
\(623\) 3.05086i 0.122230i
\(624\) 0 0
\(625\) 21.2034 + 13.2444i 0.848137 + 0.529777i
\(626\) −25.5397 −1.02077
\(627\) 0 0
\(628\) 10.4603i 0.417411i
\(629\) −30.9590 −1.23442
\(630\) 0 0
\(631\) −25.5111 −1.01558 −0.507791 0.861480i \(-0.669538\pi\)
−0.507791 + 0.861480i \(0.669538\pi\)
\(632\) 19.7146i 0.784203i
\(633\) 0 0
\(634\) −1.20294 −0.0477750
\(635\) 41.4291 + 5.82071i 1.64406 + 0.230988i
\(636\) 0 0
\(637\) 70.6820i 2.80052i
\(638\) 2.19358i 0.0868445i
\(639\) 0 0
\(640\) −11.0158 1.54770i −0.435439 0.0611783i
\(641\) 6.25380 0.247010 0.123505 0.992344i \(-0.460586\pi\)
0.123505 + 0.992344i \(0.460586\pi\)
\(642\) 0 0
\(643\) 6.84743i 0.270036i 0.990843 + 0.135018i \(0.0431093\pi\)
−0.990843 + 0.135018i \(0.956891\pi\)
\(644\) −10.3051 −0.406079
\(645\) 0 0
\(646\) −33.5655 −1.32062
\(647\) 20.2953i 0.797890i 0.916975 + 0.398945i \(0.130624\pi\)
−0.916975 + 0.398945i \(0.869376\pi\)
\(648\) 0 0
\(649\) 1.67307 0.0656738
\(650\) −24.2079 6.93930i −0.949511 0.272182i
\(651\) 0 0
\(652\) 6.39700i 0.250526i
\(653\) 10.6222i 0.415679i 0.978163 + 0.207840i \(0.0666432\pi\)
−0.978163 + 0.207840i \(0.933357\pi\)
\(654\) 0 0
\(655\) −0.387152 + 2.75557i −0.0151273 + 0.107669i
\(656\) 4.82870 0.188529
\(657\) 0 0
\(658\) 41.9813i 1.63660i
\(659\) 10.1017 0.393507 0.196753 0.980453i \(-0.436960\pi\)
0.196753 + 0.980453i \(0.436960\pi\)
\(660\) 0 0
\(661\) 21.6128 0.840642 0.420321 0.907375i \(-0.361917\pi\)
0.420321 + 0.907375i \(0.361917\pi\)
\(662\) 21.3492i 0.829760i
\(663\) 0 0
\(664\) 8.90321 0.345512
\(665\) 56.2864 + 7.90813i 2.18269 + 0.306664i
\(666\) 0 0
\(667\) 7.22570i 0.279780i
\(668\) 6.83314i 0.264382i
\(669\) 0 0
\(670\) −1.83500 + 13.0607i −0.0708924 + 0.504579i
\(671\) 0.755569 0.0291684
\(672\) 0 0
\(673\) 10.2208i 0.393982i 0.980405 + 0.196991i \(0.0631170\pi\)
−0.980405 + 0.196991i \(0.936883\pi\)
\(674\) 3.84929 0.148269
\(675\) 0 0
\(676\) −2.20834 −0.0849363
\(677\) 13.9224i 0.535082i 0.963546 + 0.267541i \(0.0862111\pi\)
−0.963546 + 0.267541i \(0.913789\pi\)
\(678\) 0 0
\(679\) 13.5111 0.518510
\(680\) 5.08694 36.2065i 0.195075 1.38846i
\(681\) 0 0
\(682\) 3.18421i 0.121930i
\(683\) 10.3970i 0.397830i 0.980017 + 0.198915i \(0.0637418\pi\)
−0.980017 + 0.198915i \(0.936258\pi\)
\(684\) 0 0
\(685\) −41.6227 5.84791i −1.59032 0.223437i
\(686\) 59.7877 2.28270
\(687\) 0 0
\(688\) 13.1066i 0.499686i
\(689\) −29.7975 −1.13520
\(690\) 0 0
\(691\) −0.977725 −0.0371944 −0.0185972 0.999827i \(-0.505920\pi\)
−0.0185972 + 0.999827i \(0.505920\pi\)
\(692\) 7.30021i 0.277512i
\(693\) 0 0
\(694\) 6.04287 0.229384
\(695\) 4.36842 31.0923i 0.165703 1.17940i
\(696\) 0 0
\(697\) 9.63158i 0.364822i
\(698\) 22.1048i 0.836678i
\(699\) 0 0
\(700\) −3.54956 + 12.3827i −0.134161 + 0.468022i
\(701\) −48.9688 −1.84953 −0.924764 0.380542i \(-0.875737\pi\)
−0.924764 + 0.380542i \(0.875737\pi\)
\(702\) 0 0
\(703\) 30.1017i 1.13531i
\(704\) −8.85236 −0.333636
\(705\) 0 0
\(706\) −27.2128 −1.02417
\(707\) 87.3087i 3.28358i
\(708\) 0 0
\(709\) 37.2672 1.39960 0.699799 0.714340i \(-0.253273\pi\)
0.699799 + 0.714340i \(0.253273\pi\)
\(710\) −1.15257 0.161933i −0.0432550 0.00607725i
\(711\) 0 0
\(712\) 1.90813i 0.0715103i
\(713\) 10.4889i 0.392811i
\(714\) 0 0
\(715\) −9.18421 1.29036i −0.343470 0.0482569i
\(716\) 6.75557 0.252467
\(717\) 0 0
\(718\) 25.8983i 0.966516i
\(719\) 5.83500 0.217609 0.108804 0.994063i \(-0.465298\pi\)
0.108804 + 0.994063i \(0.465298\pi\)
\(720\) 0 0
\(721\) 24.2667 0.903739
\(722\) 9.56400i 0.355935i
\(723\) 0 0
\(724\) 0.482081 0.0179164
\(725\) −8.68244 2.48886i −0.322458 0.0924340i
\(726\) 0 0
\(727\) 46.8385i 1.73715i 0.495562 + 0.868573i \(0.334962\pi\)
−0.495562 + 0.868573i \(0.665038\pi\)
\(728\) 62.3663i 2.31145i
\(729\) 0 0
\(730\) −4.80150 + 34.1748i −0.177712 + 1.26487i
\(731\) 26.1432 0.966941
\(732\) 0 0
\(733\) 45.2083i 1.66981i −0.550395 0.834904i \(-0.685523\pi\)
0.550395 0.834904i \(-0.314477\pi\)
\(734\) −42.6637 −1.57475
\(735\) 0 0
\(736\) −11.5496 −0.425723
\(737\) 4.85728i 0.178920i
\(738\) 0 0
\(739\) −5.65433 −0.207998 −0.103999 0.994577i \(-0.533164\pi\)
−0.103999 + 0.994577i \(0.533164\pi\)
\(740\) 6.75557 + 0.949145i 0.248340 + 0.0348913i
\(741\) 0 0
\(742\) 42.7753i 1.57033i
\(743\) 4.50622i 0.165317i −0.996578 0.0826585i \(-0.973659\pi\)
0.996578 0.0826585i \(-0.0263411\pi\)
\(744\) 0 0
\(745\) 0.949145 6.75557i 0.0347740 0.247505i
\(746\) −20.6494 −0.756029
\(747\) 0 0
\(748\) 2.80150i 0.102433i
\(749\) 54.9086 2.00632
\(750\) 0 0
\(751\) 47.5121 1.73374 0.866870 0.498534i \(-0.166128\pi\)
0.866870 + 0.498534i \(0.166128\pi\)
\(752\) 18.8474i 0.687295i
\(753\) 0 0
\(754\) 9.09817 0.331336
\(755\) 0.101710 0.723926i 0.00370161 0.0263464i
\(756\) 0 0
\(757\) 46.6637i 1.69602i 0.529979 + 0.848011i \(0.322200\pi\)
−0.529979 + 0.848011i \(0.677800\pi\)
\(758\) 2.87601i 0.104462i
\(759\) 0 0
\(760\) 35.2039 + 4.94608i 1.27698 + 0.179413i
\(761\) −14.9304 −0.541227 −0.270613 0.962688i \(-0.587227\pi\)
−0.270613 + 0.962688i \(0.587227\pi\)
\(762\) 0 0
\(763\) 77.0518i 2.78946i
\(764\) −7.54956 −0.273134
\(765\) 0 0
\(766\) −1.47643 −0.0533457
\(767\) 6.93930i 0.250564i
\(768\) 0 0
\(769\) −38.8573 −1.40123 −0.700615 0.713540i \(-0.747091\pi\)
−0.700615 + 0.713540i \(0.747091\pi\)
\(770\) 1.85236 13.1842i 0.0667543 0.475126i
\(771\) 0 0
\(772\) 6.17929i 0.222397i
\(773\) 36.3368i 1.30694i 0.756951 + 0.653471i \(0.226688\pi\)
−0.756951 + 0.653471i \(0.773312\pi\)
\(774\) 0 0
\(775\) −12.6035 3.61285i −0.452730 0.129777i
\(776\) 8.45044 0.303353
\(777\) 0 0
\(778\) 2.75251i 0.0986821i
\(779\) −9.36488 −0.335532
\(780\) 0 0
\(781\) −0.428639 −0.0153379
\(782\) 25.8983i 0.926121i
\(783\) 0 0
\(784\) 45.5531 1.62690
\(785\) −44.0830 6.19358i −1.57339 0.221058i
\(786\) 0 0
\(787\) 33.5482i 1.19586i 0.801547 + 0.597932i \(0.204011\pi\)
−0.801547 + 0.597932i \(0.795989\pi\)
\(788\) 2.00751i 0.0715145i
\(789\) 0 0
\(790\) 17.2859 + 2.42864i 0.615005 + 0.0864071i
\(791\) 8.65386 0.307696
\(792\) 0 0
\(793\) 3.13383i 0.111286i
\(794\) 22.4514 0.796770
\(795\) 0 0