Properties

Label 495.2.c.d.199.2
Level $495$
Weight $2$
Character 495.199
Analytic conductor $3.953$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [495,2,Mod(199,495)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(495, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("495.199");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 495.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.95259490005\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 165)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.2
Root \(-0.854638 + 0.854638i\) of defining polynomial
Character \(\chi\) \(=\) 495.199
Dual form 495.2.c.d.199.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.53919i q^{2} -0.369102 q^{4} +(-2.17009 + 0.539189i) q^{5} +0.290725i q^{7} -2.51026i q^{8} +O(q^{10})\) \(q-1.53919i q^{2} -0.369102 q^{4} +(-2.17009 + 0.539189i) q^{5} +0.290725i q^{7} -2.51026i q^{8} +(0.829914 + 3.34017i) q^{10} +1.00000 q^{11} -6.97107i q^{13} +0.447480 q^{14} -4.60197 q^{16} -4.78765i q^{17} -7.75872 q^{19} +(0.800984 - 0.199016i) q^{20} -1.53919i q^{22} +4.00000i q^{23} +(4.41855 - 2.34017i) q^{25} -10.7298 q^{26} -0.107307i q^{28} -7.41855 q^{29} +6.34017 q^{31} +2.06278i q^{32} -7.36910 q^{34} +(-0.156755 - 0.630898i) q^{35} -3.41855i q^{37} +11.9421i q^{38} +(1.35350 + 5.44748i) q^{40} +7.41855 q^{41} -0.290725i q^{43} -0.369102 q^{44} +6.15676 q^{46} -5.26180i q^{47} +6.91548 q^{49} +(-3.60197 - 6.80098i) q^{50} +2.57304i q^{52} +5.75872i q^{53} +(-2.17009 + 0.539189i) q^{55} +0.729794 q^{56} +11.4186i q^{58} +3.60197 q^{59} -6.68035 q^{61} -9.75872i q^{62} -6.02893 q^{64} +(3.75872 + 15.1278i) q^{65} +6.15676i q^{67} +1.76713i q^{68} +(-0.971071 + 0.241276i) q^{70} +5.07838 q^{71} +1.12783i q^{73} -5.26180 q^{74} +2.86376 q^{76} +0.290725i q^{77} +0.921622 q^{79} +(9.98667 - 2.48133i) q^{80} -11.4186i q^{82} +1.70928i q^{83} +(2.58145 + 10.3896i) q^{85} -0.447480 q^{86} -2.51026i q^{88} +4.34017 q^{89} +2.02666 q^{91} -1.47641i q^{92} -8.09890 q^{94} +(16.8371 - 4.18342i) q^{95} +4.68035i q^{97} -10.6442i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 10 q^{4} - 2 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 10 q^{4} - 2 q^{5} + 16 q^{10} + 6 q^{11} + 4 q^{14} + 10 q^{16} + 4 q^{19} - 14 q^{20} - 2 q^{25} + 16 q^{26} - 16 q^{29} + 16 q^{31} - 52 q^{34} + 12 q^{35} - 12 q^{40} + 16 q^{41} - 10 q^{44} + 24 q^{46} - 22 q^{49} + 16 q^{50} - 2 q^{55} - 76 q^{56} - 16 q^{59} + 4 q^{61} - 66 q^{64} - 28 q^{65} + 24 q^{70} + 24 q^{71} - 16 q^{74} - 36 q^{76} + 12 q^{79} + 58 q^{80} + 44 q^{85} - 4 q^{86} + 4 q^{89} + 16 q^{91} + 24 q^{94} + 44 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(397\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.53919i 1.08837i −0.838965 0.544185i \(-0.816839\pi\)
0.838965 0.544185i \(-0.183161\pi\)
\(3\) 0 0
\(4\) −0.369102 −0.184551
\(5\) −2.17009 + 0.539189i −0.970492 + 0.241133i
\(6\) 0 0
\(7\) 0.290725i 0.109884i 0.998490 + 0.0549418i \(0.0174973\pi\)
−0.998490 + 0.0549418i \(0.982503\pi\)
\(8\) 2.51026i 0.887511i
\(9\) 0 0
\(10\) 0.829914 + 3.34017i 0.262442 + 1.05626i
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 6.97107i 1.93343i −0.255861 0.966714i \(-0.582359\pi\)
0.255861 0.966714i \(-0.417641\pi\)
\(14\) 0.447480 0.119594
\(15\) 0 0
\(16\) −4.60197 −1.15049
\(17\) 4.78765i 1.16118i −0.814197 0.580588i \(-0.802823\pi\)
0.814197 0.580588i \(-0.197177\pi\)
\(18\) 0 0
\(19\) −7.75872 −1.77997 −0.889987 0.455987i \(-0.849286\pi\)
−0.889987 + 0.455987i \(0.849286\pi\)
\(20\) 0.800984 0.199016i 0.179105 0.0445013i
\(21\) 0 0
\(22\) 1.53919i 0.328156i
\(23\) 4.00000i 0.834058i 0.908893 + 0.417029i \(0.136929\pi\)
−0.908893 + 0.417029i \(0.863071\pi\)
\(24\) 0 0
\(25\) 4.41855 2.34017i 0.883710 0.468035i
\(26\) −10.7298 −2.10429
\(27\) 0 0
\(28\) 0.107307i 0.0202791i
\(29\) −7.41855 −1.37759 −0.688795 0.724956i \(-0.741860\pi\)
−0.688795 + 0.724956i \(0.741860\pi\)
\(30\) 0 0
\(31\) 6.34017 1.13873 0.569364 0.822085i \(-0.307189\pi\)
0.569364 + 0.822085i \(0.307189\pi\)
\(32\) 2.06278i 0.364651i
\(33\) 0 0
\(34\) −7.36910 −1.26379
\(35\) −0.156755 0.630898i −0.0264965 0.106641i
\(36\) 0 0
\(37\) 3.41855i 0.562006i −0.959707 0.281003i \(-0.909333\pi\)
0.959707 0.281003i \(-0.0906671\pi\)
\(38\) 11.9421i 1.93727i
\(39\) 0 0
\(40\) 1.35350 + 5.44748i 0.214008 + 0.861322i
\(41\) 7.41855 1.15858 0.579291 0.815120i \(-0.303329\pi\)
0.579291 + 0.815120i \(0.303329\pi\)
\(42\) 0 0
\(43\) 0.290725i 0.0443351i −0.999754 0.0221675i \(-0.992943\pi\)
0.999754 0.0221675i \(-0.00705673\pi\)
\(44\) −0.369102 −0.0556443
\(45\) 0 0
\(46\) 6.15676 0.907764
\(47\) 5.26180i 0.767512i −0.923435 0.383756i \(-0.874630\pi\)
0.923435 0.383756i \(-0.125370\pi\)
\(48\) 0 0
\(49\) 6.91548 0.987926
\(50\) −3.60197 6.80098i −0.509395 0.961804i
\(51\) 0 0
\(52\) 2.57304i 0.356816i
\(53\) 5.75872i 0.791022i 0.918461 + 0.395511i \(0.129432\pi\)
−0.918461 + 0.395511i \(0.870568\pi\)
\(54\) 0 0
\(55\) −2.17009 + 0.539189i −0.292614 + 0.0727042i
\(56\) 0.729794 0.0975229
\(57\) 0 0
\(58\) 11.4186i 1.49933i
\(59\) 3.60197 0.468936 0.234468 0.972124i \(-0.424665\pi\)
0.234468 + 0.972124i \(0.424665\pi\)
\(60\) 0 0
\(61\) −6.68035 −0.855331 −0.427665 0.903937i \(-0.640664\pi\)
−0.427665 + 0.903937i \(0.640664\pi\)
\(62\) 9.75872i 1.23936i
\(63\) 0 0
\(64\) −6.02893 −0.753616
\(65\) 3.75872 + 15.1278i 0.466212 + 1.87638i
\(66\) 0 0
\(67\) 6.15676i 0.752167i 0.926586 + 0.376084i \(0.122729\pi\)
−0.926586 + 0.376084i \(0.877271\pi\)
\(68\) 1.76713i 0.214296i
\(69\) 0 0
\(70\) −0.971071 + 0.241276i −0.116065 + 0.0288380i
\(71\) 5.07838 0.602693 0.301346 0.953515i \(-0.402564\pi\)
0.301346 + 0.953515i \(0.402564\pi\)
\(72\) 0 0
\(73\) 1.12783i 0.132002i 0.997820 + 0.0660010i \(0.0210241\pi\)
−0.997820 + 0.0660010i \(0.978976\pi\)
\(74\) −5.26180 −0.611671
\(75\) 0 0
\(76\) 2.86376 0.328496
\(77\) 0.290725i 0.0331311i
\(78\) 0 0
\(79\) 0.921622 0.103691 0.0518453 0.998655i \(-0.483490\pi\)
0.0518453 + 0.998655i \(0.483490\pi\)
\(80\) 9.98667 2.48133i 1.11654 0.277421i
\(81\) 0 0
\(82\) 11.4186i 1.26097i
\(83\) 1.70928i 0.187617i 0.995590 + 0.0938087i \(0.0299042\pi\)
−0.995590 + 0.0938087i \(0.970096\pi\)
\(84\) 0 0
\(85\) 2.58145 + 10.3896i 0.279997 + 1.12691i
\(86\) −0.447480 −0.0482530
\(87\) 0 0
\(88\) 2.51026i 0.267595i
\(89\) 4.34017 0.460057 0.230029 0.973184i \(-0.426118\pi\)
0.230029 + 0.973184i \(0.426118\pi\)
\(90\) 0 0
\(91\) 2.02666 0.212452
\(92\) 1.47641i 0.153926i
\(93\) 0 0
\(94\) −8.09890 −0.835337
\(95\) 16.8371 4.18342i 1.72745 0.429210i
\(96\) 0 0
\(97\) 4.68035i 0.475217i 0.971361 + 0.237609i \(0.0763635\pi\)
−0.971361 + 0.237609i \(0.923636\pi\)
\(98\) 10.6442i 1.07523i
\(99\) 0 0
\(100\) −1.63090 + 0.863763i −0.163090 + 0.0863763i
\(101\) 8.58145 0.853886 0.426943 0.904279i \(-0.359590\pi\)
0.426943 + 0.904279i \(0.359590\pi\)
\(102\) 0 0
\(103\) 6.73820i 0.663935i −0.943291 0.331968i \(-0.892288\pi\)
0.943291 0.331968i \(-0.107712\pi\)
\(104\) −17.4992 −1.71594
\(105\) 0 0
\(106\) 8.86376 0.860925
\(107\) 12.2329i 1.18260i −0.806453 0.591298i \(-0.798616\pi\)
0.806453 0.591298i \(-0.201384\pi\)
\(108\) 0 0
\(109\) 6.31351 0.604725 0.302362 0.953193i \(-0.402225\pi\)
0.302362 + 0.953193i \(0.402225\pi\)
\(110\) 0.829914 + 3.34017i 0.0791291 + 0.318473i
\(111\) 0 0
\(112\) 1.33791i 0.126420i
\(113\) 16.4969i 1.55190i −0.630794 0.775950i \(-0.717271\pi\)
0.630794 0.775950i \(-0.282729\pi\)
\(114\) 0 0
\(115\) −2.15676 8.68035i −0.201118 0.809446i
\(116\) 2.73820 0.254236
\(117\) 0 0
\(118\) 5.54411i 0.510377i
\(119\) 1.39189 0.127594
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 10.2823i 0.930917i
\(123\) 0 0
\(124\) −2.34017 −0.210154
\(125\) −8.32684 + 7.46081i −0.744775 + 0.667315i
\(126\) 0 0
\(127\) 4.87217i 0.432336i 0.976356 + 0.216168i \(0.0693558\pi\)
−0.976356 + 0.216168i \(0.930644\pi\)
\(128\) 13.4052i 1.18487i
\(129\) 0 0
\(130\) 23.2846 5.78539i 2.04219 0.507412i
\(131\) 8.68035 0.758405 0.379203 0.925314i \(-0.376198\pi\)
0.379203 + 0.925314i \(0.376198\pi\)
\(132\) 0 0
\(133\) 2.25565i 0.195590i
\(134\) 9.47641 0.818637
\(135\) 0 0
\(136\) −12.0183 −1.03056
\(137\) 12.5958i 1.07613i 0.842902 + 0.538067i \(0.180845\pi\)
−0.842902 + 0.538067i \(0.819155\pi\)
\(138\) 0 0
\(139\) 9.91548 0.841020 0.420510 0.907288i \(-0.361851\pi\)
0.420510 + 0.907288i \(0.361851\pi\)
\(140\) 0.0578588 + 0.232866i 0.00488996 + 0.0196808i
\(141\) 0 0
\(142\) 7.81658i 0.655953i
\(143\) 6.97107i 0.582950i
\(144\) 0 0
\(145\) 16.0989 4.00000i 1.33694 0.332182i
\(146\) 1.73594 0.143667
\(147\) 0 0
\(148\) 1.26180i 0.103719i
\(149\) −1.26180 −0.103370 −0.0516851 0.998663i \(-0.516459\pi\)
−0.0516851 + 0.998663i \(0.516459\pi\)
\(150\) 0 0
\(151\) 1.60197 0.130366 0.0651832 0.997873i \(-0.479237\pi\)
0.0651832 + 0.997873i \(0.479237\pi\)
\(152\) 19.4764i 1.57975i
\(153\) 0 0
\(154\) 0.447480 0.0360590
\(155\) −13.7587 + 3.41855i −1.10513 + 0.274585i
\(156\) 0 0
\(157\) 7.10504i 0.567044i −0.958966 0.283522i \(-0.908497\pi\)
0.958966 0.283522i \(-0.0915029\pi\)
\(158\) 1.41855i 0.112854i
\(159\) 0 0
\(160\) −1.11223 4.47641i −0.0879293 0.353891i
\(161\) −1.16290 −0.0916492
\(162\) 0 0
\(163\) 22.9360i 1.79649i 0.439499 + 0.898243i \(0.355156\pi\)
−0.439499 + 0.898243i \(0.644844\pi\)
\(164\) −2.73820 −0.213818
\(165\) 0 0
\(166\) 2.63090 0.204197
\(167\) 4.81432i 0.372543i −0.982498 0.186271i \(-0.940360\pi\)
0.982498 0.186271i \(-0.0596404\pi\)
\(168\) 0 0
\(169\) −35.5958 −2.73814
\(170\) 15.9916 3.97334i 1.22650 0.304741i
\(171\) 0 0
\(172\) 0.107307i 0.00818209i
\(173\) 12.8865i 0.979746i −0.871794 0.489873i \(-0.837043\pi\)
0.871794 0.489873i \(-0.162957\pi\)
\(174\) 0 0
\(175\) 0.680346 + 1.28458i 0.0514293 + 0.0971052i
\(176\) −4.60197 −0.346886
\(177\) 0 0
\(178\) 6.68035i 0.500713i
\(179\) 1.84324 0.137771 0.0688853 0.997625i \(-0.478056\pi\)
0.0688853 + 0.997625i \(0.478056\pi\)
\(180\) 0 0
\(181\) 10.2823 0.764278 0.382139 0.924105i \(-0.375187\pi\)
0.382139 + 0.924105i \(0.375187\pi\)
\(182\) 3.11942i 0.231226i
\(183\) 0 0
\(184\) 10.0410 0.740235
\(185\) 1.84324 + 7.41855i 0.135518 + 0.545423i
\(186\) 0 0
\(187\) 4.78765i 0.350108i
\(188\) 1.94214i 0.141645i
\(189\) 0 0
\(190\) −6.43907 25.9155i −0.467139 1.88011i
\(191\) 11.5174 0.833373 0.416687 0.909050i \(-0.363191\pi\)
0.416687 + 0.909050i \(0.363191\pi\)
\(192\) 0 0
\(193\) 3.86603i 0.278283i −0.990273 0.139141i \(-0.955566\pi\)
0.990273 0.139141i \(-0.0444343\pi\)
\(194\) 7.20394 0.517212
\(195\) 0 0
\(196\) −2.55252 −0.182323
\(197\) 8.57304i 0.610804i 0.952224 + 0.305402i \(0.0987908\pi\)
−0.952224 + 0.305402i \(0.901209\pi\)
\(198\) 0 0
\(199\) −8.31351 −0.589329 −0.294665 0.955601i \(-0.595208\pi\)
−0.294665 + 0.955601i \(0.595208\pi\)
\(200\) −5.87444 11.0917i −0.415386 0.784302i
\(201\) 0 0
\(202\) 13.2085i 0.929345i
\(203\) 2.15676i 0.151375i
\(204\) 0 0
\(205\) −16.0989 + 4.00000i −1.12440 + 0.279372i
\(206\) −10.3714 −0.722608
\(207\) 0 0
\(208\) 32.0806i 2.22439i
\(209\) −7.75872 −0.536682
\(210\) 0 0
\(211\) 25.9155 1.78410 0.892048 0.451941i \(-0.149268\pi\)
0.892048 + 0.451941i \(0.149268\pi\)
\(212\) 2.12556i 0.145984i
\(213\) 0 0
\(214\) −18.8287 −1.28710
\(215\) 0.156755 + 0.630898i 0.0106906 + 0.0430269i
\(216\) 0 0
\(217\) 1.84324i 0.125128i
\(218\) 9.71769i 0.658165i
\(219\) 0 0
\(220\) 0.800984 0.199016i 0.0540023 0.0134176i
\(221\) −33.3751 −2.24505
\(222\) 0 0
\(223\) 9.62863i 0.644781i 0.946607 + 0.322390i \(0.104486\pi\)
−0.946607 + 0.322390i \(0.895514\pi\)
\(224\) −0.599701 −0.0400692
\(225\) 0 0
\(226\) −25.3919 −1.68904
\(227\) 18.3896i 1.22056i 0.792185 + 0.610281i \(0.208943\pi\)
−0.792185 + 0.610281i \(0.791057\pi\)
\(228\) 0 0
\(229\) −17.1506 −1.13334 −0.566672 0.823943i \(-0.691769\pi\)
−0.566672 + 0.823943i \(0.691769\pi\)
\(230\) −13.3607 + 3.31965i −0.880978 + 0.218892i
\(231\) 0 0
\(232\) 18.6225i 1.22263i
\(233\) 4.10731i 0.269079i −0.990908 0.134539i \(-0.957045\pi\)
0.990908 0.134539i \(-0.0429555\pi\)
\(234\) 0 0
\(235\) 2.83710 + 11.4186i 0.185072 + 0.744864i
\(236\) −1.32950 −0.0865428
\(237\) 0 0
\(238\) 2.14238i 0.138870i
\(239\) −4.36683 −0.282467 −0.141234 0.989976i \(-0.545107\pi\)
−0.141234 + 0.989976i \(0.545107\pi\)
\(240\) 0 0
\(241\) −5.20394 −0.335215 −0.167608 0.985854i \(-0.553604\pi\)
−0.167608 + 0.985854i \(0.553604\pi\)
\(242\) 1.53919i 0.0989428i
\(243\) 0 0
\(244\) 2.46573 0.157852
\(245\) −15.0072 + 3.72875i −0.958774 + 0.238221i
\(246\) 0 0
\(247\) 54.0866i 3.44145i
\(248\) 15.9155i 1.01063i
\(249\) 0 0
\(250\) 11.4836 + 12.8166i 0.726286 + 0.810592i
\(251\) 8.28231 0.522775 0.261388 0.965234i \(-0.415820\pi\)
0.261388 + 0.965234i \(0.415820\pi\)
\(252\) 0 0
\(253\) 4.00000i 0.251478i
\(254\) 7.49920 0.470541
\(255\) 0 0
\(256\) 8.57531 0.535957
\(257\) 11.0205i 0.687441i −0.939072 0.343721i \(-0.888313\pi\)
0.939072 0.343721i \(-0.111687\pi\)
\(258\) 0 0
\(259\) 0.993857 0.0617553
\(260\) −1.38735 5.58372i −0.0860400 0.346287i
\(261\) 0 0
\(262\) 13.3607i 0.825426i
\(263\) 2.97107i 0.183204i −0.995796 0.0916020i \(-0.970801\pi\)
0.995796 0.0916020i \(-0.0291988\pi\)
\(264\) 0 0
\(265\) −3.10504 12.4969i −0.190741 0.767680i
\(266\) −3.47187 −0.212874
\(267\) 0 0
\(268\) 2.27247i 0.138813i
\(269\) −15.8432 −0.965980 −0.482990 0.875626i \(-0.660449\pi\)
−0.482990 + 0.875626i \(0.660449\pi\)
\(270\) 0 0
\(271\) −6.28231 −0.381623 −0.190812 0.981627i \(-0.561112\pi\)
−0.190812 + 0.981627i \(0.561112\pi\)
\(272\) 22.0326i 1.33592i
\(273\) 0 0
\(274\) 19.3874 1.17123
\(275\) 4.41855 2.34017i 0.266449 0.141118i
\(276\) 0 0
\(277\) 5.12783i 0.308101i 0.988063 + 0.154051i \(0.0492319\pi\)
−0.988063 + 0.154051i \(0.950768\pi\)
\(278\) 15.2618i 0.915342i
\(279\) 0 0
\(280\) −1.58372 + 0.393497i −0.0946452 + 0.0235159i
\(281\) −21.8888 −1.30578 −0.652889 0.757454i \(-0.726443\pi\)
−0.652889 + 0.757454i \(0.726443\pi\)
\(282\) 0 0
\(283\) 25.9649i 1.54345i −0.635954 0.771727i \(-0.719393\pi\)
0.635954 0.771727i \(-0.280607\pi\)
\(284\) −1.87444 −0.111228
\(285\) 0 0
\(286\) −10.7298 −0.634466
\(287\) 2.15676i 0.127309i
\(288\) 0 0
\(289\) −5.92162 −0.348331
\(290\) −6.15676 24.7792i −0.361537 1.45509i
\(291\) 0 0
\(292\) 0.416283i 0.0243611i
\(293\) 10.4163i 0.608526i 0.952588 + 0.304263i \(0.0984101\pi\)
−0.952588 + 0.304263i \(0.901590\pi\)
\(294\) 0 0
\(295\) −7.81658 + 1.94214i −0.455099 + 0.113076i
\(296\) −8.58145 −0.498787
\(297\) 0 0
\(298\) 1.94214i 0.112505i
\(299\) 27.8843 1.61259
\(300\) 0 0
\(301\) 0.0845208 0.00487170
\(302\) 2.46573i 0.141887i
\(303\) 0 0
\(304\) 35.7054 2.04785
\(305\) 14.4969 3.60197i 0.830092 0.206248i
\(306\) 0 0
\(307\) 29.0700i 1.65911i −0.558425 0.829555i \(-0.688594\pi\)
0.558425 0.829555i \(-0.311406\pi\)
\(308\) 0.107307i 0.00611439i
\(309\) 0 0
\(310\) 5.26180 + 21.1773i 0.298850 + 1.20279i
\(311\) −5.44521 −0.308770 −0.154385 0.988011i \(-0.549340\pi\)
−0.154385 + 0.988011i \(0.549340\pi\)
\(312\) 0 0
\(313\) 25.0928i 1.41833i −0.705044 0.709163i \(-0.749073\pi\)
0.705044 0.709163i \(-0.250927\pi\)
\(314\) −10.9360 −0.617154
\(315\) 0 0
\(316\) −0.340173 −0.0191362
\(317\) 21.1773i 1.18943i −0.803935 0.594717i \(-0.797264\pi\)
0.803935 0.594717i \(-0.202736\pi\)
\(318\) 0 0
\(319\) −7.41855 −0.415359
\(320\) 13.0833 3.25073i 0.731379 0.181721i
\(321\) 0 0
\(322\) 1.78992i 0.0997484i
\(323\) 37.1461i 2.06686i
\(324\) 0 0
\(325\) −16.3135 30.8020i −0.904911 1.70859i
\(326\) 35.3028 1.95524
\(327\) 0 0
\(328\) 18.6225i 1.02825i
\(329\) 1.52973 0.0843369
\(330\) 0 0
\(331\) −6.70701 −0.368650 −0.184325 0.982865i \(-0.559010\pi\)
−0.184325 + 0.982865i \(0.559010\pi\)
\(332\) 0.630898i 0.0346250i
\(333\) 0 0
\(334\) −7.41014 −0.405465
\(335\) −3.31965 13.3607i −0.181372 0.729973i
\(336\) 0 0
\(337\) 23.7503i 1.29376i 0.762591 + 0.646881i \(0.223927\pi\)
−0.762591 + 0.646881i \(0.776073\pi\)
\(338\) 54.7887i 2.98011i
\(339\) 0 0
\(340\) −0.952819 3.83483i −0.0516739 0.207973i
\(341\) 6.34017 0.343340
\(342\) 0 0
\(343\) 4.04557i 0.218440i
\(344\) −0.729794 −0.0393479
\(345\) 0 0
\(346\) −19.8348 −1.06633
\(347\) 31.1689i 1.67323i 0.547790 + 0.836616i \(0.315469\pi\)
−0.547790 + 0.836616i \(0.684531\pi\)
\(348\) 0 0
\(349\) −11.0472 −0.591342 −0.295671 0.955290i \(-0.595543\pi\)
−0.295671 + 0.955290i \(0.595543\pi\)
\(350\) 1.97721 1.04718i 0.105687 0.0559742i
\(351\) 0 0
\(352\) 2.06278i 0.109947i
\(353\) 27.4329i 1.46011i −0.683390 0.730054i \(-0.739495\pi\)
0.683390 0.730054i \(-0.260505\pi\)
\(354\) 0 0
\(355\) −11.0205 + 2.73820i −0.584908 + 0.145329i
\(356\) −1.60197 −0.0849041
\(357\) 0 0
\(358\) 2.83710i 0.149945i
\(359\) −19.1506 −1.01073 −0.505365 0.862905i \(-0.668642\pi\)
−0.505365 + 0.862905i \(0.668642\pi\)
\(360\) 0 0
\(361\) 41.1978 2.16830
\(362\) 15.8264i 0.831818i
\(363\) 0 0
\(364\) −0.748046 −0.0392083
\(365\) −0.608111 2.44748i −0.0318300 0.128107i
\(366\) 0 0
\(367\) 14.5692i 0.760504i −0.924883 0.380252i \(-0.875837\pi\)
0.924883 0.380252i \(-0.124163\pi\)
\(368\) 18.4079i 0.959577i
\(369\) 0 0
\(370\) 11.4186 2.83710i 0.593622 0.147494i
\(371\) −1.67420 −0.0869203
\(372\) 0 0
\(373\) 8.81432i 0.456388i 0.973616 + 0.228194i \(0.0732820\pi\)
−0.973616 + 0.228194i \(0.926718\pi\)
\(374\) −7.36910 −0.381047
\(375\) 0 0
\(376\) −13.2085 −0.681175
\(377\) 51.7152i 2.66347i
\(378\) 0 0
\(379\) 23.5174 1.20801 0.604005 0.796980i \(-0.293571\pi\)
0.604005 + 0.796980i \(0.293571\pi\)
\(380\) −6.21461 + 1.54411i −0.318803 + 0.0792111i
\(381\) 0 0
\(382\) 17.7275i 0.907019i
\(383\) 19.3028i 0.986329i −0.869936 0.493164i \(-0.835840\pi\)
0.869936 0.493164i \(-0.164160\pi\)
\(384\) 0 0
\(385\) −0.156755 0.630898i −0.00798900 0.0321535i
\(386\) −5.95055 −0.302875
\(387\) 0 0
\(388\) 1.72753i 0.0877019i
\(389\) −20.0410 −1.01612 −0.508060 0.861321i \(-0.669637\pi\)
−0.508060 + 0.861321i \(0.669637\pi\)
\(390\) 0 0
\(391\) 19.1506 0.968488
\(392\) 17.3596i 0.876795i
\(393\) 0 0
\(394\) 13.1955 0.664781
\(395\) −2.00000 + 0.496928i −0.100631 + 0.0250032i
\(396\) 0 0
\(397\) 33.3607i 1.67433i −0.546954 0.837163i \(-0.684213\pi\)
0.546954 0.837163i \(-0.315787\pi\)
\(398\) 12.7961i 0.641409i
\(399\) 0 0
\(400\) −20.3340 + 10.7694i −1.01670 + 0.538470i
\(401\) 37.6475 1.88003 0.940014 0.341135i \(-0.110811\pi\)
0.940014 + 0.341135i \(0.110811\pi\)
\(402\) 0 0
\(403\) 44.1978i 2.20165i
\(404\) −3.16743 −0.157586
\(405\) 0 0
\(406\) −3.31965 −0.164752
\(407\) 3.41855i 0.169451i
\(408\) 0 0
\(409\) 25.2039 1.24625 0.623127 0.782120i \(-0.285862\pi\)
0.623127 + 0.782120i \(0.285862\pi\)
\(410\) 6.15676 + 24.7792i 0.304060 + 1.22376i
\(411\) 0 0
\(412\) 2.48709i 0.122530i
\(413\) 1.04718i 0.0515284i
\(414\) 0 0
\(415\) −0.921622 3.70928i −0.0452407 0.182081i
\(416\) 14.3798 0.705027
\(417\) 0 0
\(418\) 11.9421i 0.584109i
\(419\) 17.8432 0.871700 0.435850 0.900019i \(-0.356448\pi\)
0.435850 + 0.900019i \(0.356448\pi\)
\(420\) 0 0
\(421\) −11.8120 −0.575684 −0.287842 0.957678i \(-0.592938\pi\)
−0.287842 + 0.957678i \(0.592938\pi\)
\(422\) 39.8888i 1.94176i
\(423\) 0 0
\(424\) 14.4559 0.702040
\(425\) −11.2039 21.1545i −0.543471 1.02614i
\(426\) 0 0
\(427\) 1.94214i 0.0939868i
\(428\) 4.51518i 0.218249i
\(429\) 0 0
\(430\) 0.971071 0.241276i 0.0468292 0.0116354i
\(431\) −16.6803 −0.803464 −0.401732 0.915757i \(-0.631592\pi\)
−0.401732 + 0.915757i \(0.631592\pi\)
\(432\) 0 0
\(433\) 28.3135i 1.36066i 0.732906 + 0.680330i \(0.238164\pi\)
−0.732906 + 0.680330i \(0.761836\pi\)
\(434\) 2.83710 0.136185
\(435\) 0 0
\(436\) −2.33033 −0.111603
\(437\) 31.0349i 1.48460i
\(438\) 0 0
\(439\) 27.4452 1.30989 0.654944 0.755677i \(-0.272692\pi\)
0.654944 + 0.755677i \(0.272692\pi\)
\(440\) 1.35350 + 5.44748i 0.0645258 + 0.259698i
\(441\) 0 0
\(442\) 51.3705i 2.44345i
\(443\) 0.412408i 0.0195941i 0.999952 + 0.00979704i \(0.00311854\pi\)
−0.999952 + 0.00979704i \(0.996881\pi\)
\(444\) 0 0
\(445\) −9.41855 + 2.34017i −0.446482 + 0.110935i
\(446\) 14.8203 0.701761
\(447\) 0 0
\(448\) 1.75276i 0.0828100i
\(449\) 1.33403 0.0629568 0.0314784 0.999504i \(-0.489978\pi\)
0.0314784 + 0.999504i \(0.489978\pi\)
\(450\) 0 0
\(451\) 7.41855 0.349326
\(452\) 6.08906i 0.286405i
\(453\) 0 0
\(454\) 28.3051 1.32842
\(455\) −4.39803 + 1.09275i −0.206183 + 0.0512291i
\(456\) 0 0
\(457\) 11.6514i 0.545030i 0.962151 + 0.272515i \(0.0878555\pi\)
−0.962151 + 0.272515i \(0.912145\pi\)
\(458\) 26.3980i 1.23350i
\(459\) 0 0
\(460\) 0.796064 + 3.20394i 0.0371167 + 0.149384i
\(461\) 2.05786 0.0958440 0.0479220 0.998851i \(-0.484740\pi\)
0.0479220 + 0.998851i \(0.484740\pi\)
\(462\) 0 0
\(463\) 28.7792i 1.33748i −0.743494 0.668742i \(-0.766833\pi\)
0.743494 0.668742i \(-0.233167\pi\)
\(464\) 34.1399 1.58491
\(465\) 0 0
\(466\) −6.32192 −0.292857
\(467\) 1.84324i 0.0852952i −0.999090 0.0426476i \(-0.986421\pi\)
0.999090 0.0426476i \(-0.0135793\pi\)
\(468\) 0 0
\(469\) −1.78992 −0.0826509
\(470\) 17.5753 4.36683i 0.810688 0.201427i
\(471\) 0 0
\(472\) 9.04187i 0.416186i
\(473\) 0.290725i 0.0133675i
\(474\) 0 0
\(475\) −34.2823 + 18.1568i −1.57298 + 0.833089i
\(476\) −0.513749 −0.0235477
\(477\) 0 0
\(478\) 6.72138i 0.307429i
\(479\) 26.8371 1.22622 0.613109 0.789998i \(-0.289919\pi\)
0.613109 + 0.789998i \(0.289919\pi\)
\(480\) 0 0
\(481\) −23.8310 −1.08660
\(482\) 8.00984i 0.364838i
\(483\) 0 0
\(484\) −0.369102 −0.0167774
\(485\) −2.52359 10.1568i −0.114590 0.461195i
\(486\) 0 0
\(487\) 28.5646i 1.29439i 0.762326 + 0.647193i \(0.224057\pi\)
−0.762326 + 0.647193i \(0.775943\pi\)
\(488\) 16.7694i 0.759115i
\(489\) 0 0
\(490\) 5.73925 + 23.0989i 0.259273 + 1.04350i
\(491\) −25.9877 −1.17281 −0.586405 0.810018i \(-0.699457\pi\)
−0.586405 + 0.810018i \(0.699457\pi\)
\(492\) 0 0
\(493\) 35.5174i 1.59963i
\(494\) 83.2495 3.74557
\(495\) 0 0
\(496\) −29.1773 −1.31010
\(497\) 1.47641i 0.0662260i
\(498\) 0 0
\(499\) 27.5174 1.23185 0.615925 0.787805i \(-0.288782\pi\)
0.615925 + 0.787805i \(0.288782\pi\)
\(500\) 3.07346 2.75380i 0.137449 0.123154i
\(501\) 0 0
\(502\) 12.7480i 0.568973i
\(503\) 22.6576i 1.01025i 0.863046 + 0.505125i \(0.168554\pi\)
−0.863046 + 0.505125i \(0.831446\pi\)
\(504\) 0 0
\(505\) −18.6225 + 4.62702i −0.828690 + 0.205900i
\(506\) 6.15676 0.273701
\(507\) 0 0
\(508\) 1.79833i 0.0797880i
\(509\) −27.8432 −1.23413 −0.617065 0.786912i \(-0.711678\pi\)
−0.617065 + 0.786912i \(0.711678\pi\)
\(510\) 0 0
\(511\) −0.327887 −0.0145049
\(512\) 13.6114i 0.601546i
\(513\) 0 0
\(514\) −16.9627 −0.748191
\(515\) 3.63317 + 14.6225i 0.160096 + 0.644344i
\(516\) 0 0
\(517\) 5.26180i 0.231413i
\(518\) 1.52973i 0.0672126i
\(519\) 0 0
\(520\) 37.9748 9.43537i 1.66530 0.413768i
\(521\) −29.7009 −1.30122 −0.650609 0.759413i \(-0.725486\pi\)
−0.650609 + 0.759413i \(0.725486\pi\)
\(522\) 0 0
\(523\) 24.7565i 1.08252i −0.840854 0.541262i \(-0.817947\pi\)
0.840854 0.541262i \(-0.182053\pi\)
\(524\) −3.20394 −0.139965
\(525\) 0 0
\(526\) −4.57304 −0.199394
\(527\) 30.3545i 1.32226i
\(528\) 0 0
\(529\) 7.00000 0.304348
\(530\) −19.2351 + 4.77924i −0.835521 + 0.207597i
\(531\) 0 0
\(532\) 0.832567i 0.0360963i
\(533\) 51.7152i 2.24004i
\(534\) 0 0
\(535\) 6.59583 + 26.5464i 0.285162 + 1.14770i
\(536\) 15.4551 0.667557
\(537\) 0 0
\(538\) 24.3857i 1.05134i
\(539\) 6.91548 0.297871
\(540\) 0 0
\(541\) −12.5236 −0.538431 −0.269216 0.963080i \(-0.586764\pi\)
−0.269216 + 0.963080i \(0.586764\pi\)
\(542\) 9.66967i 0.415348i
\(543\) 0 0
\(544\) 9.87587 0.423425
\(545\) −13.7009 + 3.40417i −0.586881 + 0.145819i
\(546\) 0 0
\(547\) 14.2784i 0.610502i −0.952272 0.305251i \(-0.901260\pi\)
0.952272 0.305251i \(-0.0987404\pi\)
\(548\) 4.64915i 0.198602i
\(549\) 0 0
\(550\) −3.60197 6.80098i −0.153588 0.289995i
\(551\) 57.5585 2.45207
\(552\) 0 0
\(553\) 0.267938i 0.0113939i
\(554\) 7.89269 0.335328
\(555\) 0 0
\(556\) −3.65983 −0.155211
\(557\) 3.57918i 0.151655i 0.997121 + 0.0758274i \(0.0241598\pi\)
−0.997121 + 0.0758274i \(0.975840\pi\)
\(558\) 0 0
\(559\) −2.02666 −0.0857187
\(560\) 0.721384 + 2.90337i 0.0304840 + 0.122690i
\(561\) 0 0
\(562\) 33.6910i 1.42117i
\(563\) 28.9588i 1.22047i 0.792222 + 0.610234i \(0.208924\pi\)
−0.792222 + 0.610234i \(0.791076\pi\)
\(564\) 0 0
\(565\) 8.89496 + 35.7998i 0.374214 + 1.50611i
\(566\) −39.9649 −1.67985
\(567\) 0 0
\(568\) 12.7480i 0.534896i
\(569\) −25.8264 −1.08270 −0.541350 0.840797i \(-0.682087\pi\)
−0.541350 + 0.840797i \(0.682087\pi\)
\(570\) 0 0
\(571\) 17.1194 0.716425 0.358213 0.933640i \(-0.383386\pi\)
0.358213 + 0.933640i \(0.383386\pi\)
\(572\) 2.57304i 0.107584i
\(573\) 0 0
\(574\) 3.31965 0.138560
\(575\) 9.36069 + 17.6742i 0.390368 + 0.737065i
\(576\) 0 0
\(577\) 22.5692i 0.939567i 0.882782 + 0.469783i \(0.155668\pi\)
−0.882782 + 0.469783i \(0.844332\pi\)
\(578\) 9.11450i 0.379113i
\(579\) 0 0
\(580\) −5.94214 + 1.47641i −0.246734 + 0.0613046i
\(581\) −0.496928 −0.0206161
\(582\) 0 0
\(583\) 5.75872i 0.238502i
\(584\) 2.83114 0.117153
\(585\) 0 0
\(586\) 16.0326 0.662302
\(587\) 3.63317i 0.149957i −0.997185 0.0749784i \(-0.976111\pi\)
0.997185 0.0749784i \(-0.0238888\pi\)
\(588\) 0 0
\(589\) −49.1917 −2.02691
\(590\) 2.98932 + 12.0312i 0.123068 + 0.495317i
\(591\) 0 0
\(592\) 15.7321i 0.646584i
\(593\) 12.3051i 0.505310i 0.967556 + 0.252655i \(0.0813037\pi\)
−0.967556 + 0.252655i \(0.918696\pi\)
\(594\) 0 0
\(595\) −3.02052 + 0.750491i −0.123829 + 0.0307671i
\(596\) 0.465732 0.0190771
\(597\) 0 0
\(598\) 42.9192i 1.75510i
\(599\) 19.6865 0.804368 0.402184 0.915559i \(-0.368251\pi\)
0.402184 + 0.915559i \(0.368251\pi\)
\(600\) 0 0
\(601\) 25.8843 1.05584 0.527921 0.849294i \(-0.322972\pi\)
0.527921 + 0.849294i \(0.322972\pi\)
\(602\) 0.130094i 0.00530222i
\(603\) 0 0
\(604\) −0.591290 −0.0240593
\(605\) −2.17009 + 0.539189i −0.0882266 + 0.0219211i
\(606\) 0 0
\(607\) 41.5357i 1.68588i −0.538006 0.842941i \(-0.680822\pi\)
0.538006 0.842941i \(-0.319178\pi\)
\(608\) 16.0045i 0.649070i
\(609\) 0 0
\(610\) −5.54411 22.3135i −0.224474 0.903448i
\(611\) −36.6803 −1.48393
\(612\) 0 0
\(613\) 20.6453i 0.833855i 0.908940 + 0.416927i \(0.136893\pi\)
−0.908940 + 0.416927i \(0.863107\pi\)
\(614\) −44.7442 −1.80573
\(615\) 0 0
\(616\) 0.729794 0.0294042
\(617\) 8.69472i 0.350036i −0.984565 0.175018i \(-0.944002\pi\)
0.984565 0.175018i \(-0.0559984\pi\)
\(618\) 0 0
\(619\) −2.65368 −0.106661 −0.0533303 0.998577i \(-0.516984\pi\)
−0.0533303 + 0.998577i \(0.516984\pi\)
\(620\) 5.07838 1.26180i 0.203953 0.0506749i
\(621\) 0 0
\(622\) 8.38121i 0.336056i
\(623\) 1.26180i 0.0505528i
\(624\) 0 0
\(625\) 14.0472 20.6803i 0.561887 0.827214i
\(626\) −38.6225 −1.54367
\(627\) 0 0
\(628\) 2.62249i 0.104649i
\(629\) −16.3668 −0.652588
\(630\) 0 0
\(631\) −10.6393 −0.423544 −0.211772 0.977319i \(-0.567923\pi\)
−0.211772 + 0.977319i \(0.567923\pi\)
\(632\) 2.31351i 0.0920265i
\(633\) 0 0
\(634\) −32.5958 −1.29455
\(635\) −2.62702 10.5730i −0.104250 0.419578i
\(636\) 0 0
\(637\) 48.2083i 1.91008i
\(638\) 11.4186i 0.452065i
\(639\) 0 0
\(640\) −7.22795 29.0905i −0.285710 1.14990i
\(641\) 35.8576 1.41629 0.708145 0.706067i \(-0.249532\pi\)
0.708145 + 0.706067i \(0.249532\pi\)
\(642\) 0 0
\(643\) 12.2146i 0.481697i −0.970563 0.240849i \(-0.922574\pi\)
0.970563 0.240849i \(-0.0774258\pi\)
\(644\) 0.429229 0.0169140
\(645\) 0 0
\(646\) 57.1748 2.24951
\(647\) 25.9421i 1.01989i −0.860207 0.509945i \(-0.829666\pi\)
0.860207 0.509945i \(-0.170334\pi\)
\(648\) 0 0
\(649\) 3.60197 0.141390
\(650\) −47.4101 + 25.1096i −1.85958 + 0.984879i
\(651\) 0 0
\(652\) 8.46573i 0.331544i
\(653\) 14.3402i 0.561174i −0.959829 0.280587i \(-0.909471\pi\)
0.959829 0.280587i \(-0.0905292\pi\)
\(654\) 0 0
\(655\) −18.8371 + 4.68035i −0.736026 + 0.182876i
\(656\) −34.1399 −1.33294
\(657\) 0 0
\(658\) 2.35455i 0.0917899i
\(659\) 6.52359 0.254123 0.127062 0.991895i \(-0.459445\pi\)
0.127062 + 0.991895i \(0.459445\pi\)
\(660\) 0 0
\(661\) 3.16290 0.123022 0.0615112 0.998106i \(-0.480408\pi\)
0.0615112 + 0.998106i \(0.480408\pi\)
\(662\) 10.3234i 0.401228i
\(663\) 0 0
\(664\) 4.29072 0.166512
\(665\) 1.21622 + 4.89496i 0.0471631 + 0.189818i
\(666\) 0 0
\(667\) 29.6742i 1.14899i
\(668\) 1.77698i 0.0687532i
\(669\) 0 0
\(670\) −20.5646 + 5.10957i −0.794481 + 0.197400i
\(671\) −6.68035 −0.257892
\(672\) 0 0
\(673\) 18.4885i 0.712680i 0.934356 + 0.356340i \(0.115976\pi\)
−0.934356 + 0.356340i \(0.884024\pi\)
\(674\) 36.5562 1.40809
\(675\) 0 0
\(676\) 13.1385 0.505327
\(677\) 15.0966i 0.580211i −0.956995 0.290105i \(-0.906310\pi\)
0.956995 0.290105i \(-0.0936903\pi\)
\(678\) 0 0
\(679\) −1.36069 −0.0522186
\(680\) 26.0806 6.48011i 1.00015 0.248501i
\(681\) 0 0
\(682\) 9.75872i 0.373681i
\(683\) 12.4657i 0.476988i −0.971144 0.238494i \(-0.923346\pi\)
0.971144 0.238494i \(-0.0766537\pi\)
\(684\) 0 0
\(685\) −6.79153 27.3340i −0.259491 1.04438i
\(686\) 6.22690 0.237744
\(687\) 0 0
\(688\) 1.33791i 0.0510072i
\(689\) 40.1445 1.52938
\(690\) 0 0
\(691\) −30.7214 −1.16870 −0.584348 0.811503i \(-0.698650\pi\)
−0.584348 + 0.811503i \(0.698650\pi\)
\(692\) 4.75646i 0.180813i
\(693\) 0 0
\(694\) 47.9748 1.82110
\(695\) −21.5174 + 5.34632i −0.816203 + 0.202797i
\(696\) 0 0
\(697\) 35.5174i 1.34532i
\(698\) 17.0037i 0.643599i
\(699\) 0 0
\(700\) −0.251117 0.474142i −0.00949134 0.0179209i
\(701\) −17.9955 −0.679679 −0.339840 0.940483i \(-0.610373\pi\)
−0.339840 + 0.940483i \(0.610373\pi\)
\(702\) 0 0
\(703\) 26.5236i 1.00036i
\(704\) −6.02893 −0.227224
\(705\) 0 0
\(706\) −42.2245 −1.58914
\(707\) 2.49484i 0.0938281i
\(708\) 0 0
\(709\) −23.5897 −0.885929 −0.442965 0.896539i \(-0.646073\pi\)
−0.442965 + 0.896539i \(0.646073\pi\)
\(710\) 4.21461 + 16.9627i 0.158172 + 0.636597i
\(711\) 0 0
\(712\) 10.8950i 0.408306i
\(713\) 25.3607i 0.949765i
\(714\) 0 0
\(715\) 3.75872 + 15.1278i 0.140568 + 0.565749i
\(716\) −0.680346 −0.0254257
\(717\) 0 0
\(718\) 29.4764i 1.10005i
\(719\) 24.5646 0.916106 0.458053 0.888925i \(-0.348547\pi\)
0.458053 + 0.888925i \(0.348547\pi\)
\(720\) 0 0
\(721\) 1.95896 0.0729556
\(722\) 63.4112i 2.35992i
\(723\) 0 0
\(724\) −3.79523 −0.141048
\(725\) −32.7792 + 17.3607i −1.21739 + 0.644760i
\(726\) 0 0
\(727\) 8.51130i 0.315667i 0.987466 + 0.157833i \(0.0504509\pi\)
−0.987466 + 0.157833i \(0.949549\pi\)
\(728\) 5.08745i 0.188553i
\(729\) 0 0
\(730\) −3.76713 + 0.935998i −0.139428 + 0.0346428i
\(731\) −1.39189 −0.0514809
\(732\) 0 0
\(733\) 29.8615i 1.10296i 0.834188 + 0.551480i \(0.185937\pi\)
−0.834188 + 0.551480i \(0.814063\pi\)
\(734\) −22.4247 −0.827711
\(735\) 0 0
\(736\) −8.25112 −0.304140
\(737\) 6.15676i 0.226787i
\(738\) 0 0
\(739\) 36.7526 1.35197 0.675983 0.736917i \(-0.263719\pi\)
0.675983 + 0.736917i \(0.263719\pi\)
\(740\) −0.680346 2.73820i −0.0250100 0.100658i
\(741\) 0 0
\(742\) 2.57691i 0.0946015i
\(743\) 2.17501i 0.0797933i −0.999204 0.0398966i \(-0.987297\pi\)
0.999204 0.0398966i \(-0.0127029\pi\)
\(744\) 0 0
\(745\) 2.73820 0.680346i 0.100320 0.0249259i
\(746\) 13.5669 0.496719
\(747\) 0 0
\(748\) 1.76713i 0.0646128i
\(749\) 3.55640 0.129948
\(750\) 0 0
\(751\) −44.4580 −1.62229 −0.811147 0.584842i \(-0.801157\pi\)
−0.811147 + 0.584842i \(0.801157\pi\)
\(752\) 24.2146i 0.883016i
\(753\) 0 0
\(754\) 79.5995 2.89884
\(755\) −3.47641 + 0.863763i −0.126519 + 0.0314356i
\(756\) 0 0
\(757\) 26.4247i 0.960422i −0.877153 0.480211i \(-0.840560\pi\)
0.877153 0.480211i \(-0.159440\pi\)
\(758\) 36.1978i 1.31476i
\(759\) 0 0
\(760\) −10.5015 42.2655i −0.380928 1.53313i
\(761\) 27.6163 1.00109 0.500546 0.865710i \(-0.333133\pi\)
0.500546 + 0.865710i \(0.333133\pi\)
\(762\) 0 0
\(763\) 1.83549i 0.0664493i
\(764\) −4.25112 −0.153800
\(765\) 0 0
\(766\) −29.7107 −1.07349
\(767\) 25.1096i 0.906654i
\(768\) 0 0
\(769\) −27.8432 −1.00405 −0.502027 0.864852i \(-0.667412\pi\)
−0.502027 + 0.864852i \(0.667412\pi\)
\(770\) −0.971071 + 0.241276i −0.0349950 + 0.00869499i
\(771\) 0 0
\(772\) 1.42696i 0.0513575i
\(773\) 18.0267i 0.648374i −0.945993 0.324187i \(-0.894909\pi\)
0.945993 0.324187i \(-0.105091\pi\)
\(774\) 0 0
\(775\) 28.0144 14.8371i 1.00631 0.532964i
\(776\) 11.7489 0.421760
\(777\) 0 0
\(778\) 30.8469i 1.10592i
\(779\) −57.5585 −2.06225
\(780\) 0 0
\(781\) 5.07838 0.181719
\(782\) 29.4764i 1.05407i
\(783\) 0 0
\(784\) −31.8248 −1.13660
\(785\) 3.83096 + 15.4186i 0.136733 + 0.550312i
\(786\) 0 0
\(787\) 35.6391i 1.27040i 0.772349 + 0.635199i \(0.219082\pi\)
−0.772349 + 0.635199i \(0.780918\pi\)
\(788\) 3.16433i 0.112725i
\(789\) 0 0
\(790\)